欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1643-1649.doi: 10.3724/SP.J.1006.2017.01643

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用BSR-Seq定位小麦品种郑麦103抗条锈病基因YrZM103

张怀志1,谢菁忠2,陈永兴2,刘旭3,王勇1,闫素红3,杨兆生3,赵虹4,王西成4,贾联合5,曹廷杰4,*,刘志勇2,*   

  1. 1中国农业大学农学院, 北京 100193; 2中国科学院遗传与发育生物学研究所, 北京 100101; 3中国农业科学院棉花研究所, 河南安阳 455000;4河南省农业科学院小麦研究所, 河南郑州450002; 5河北省唐县职业技术教育中心,河北唐县 072350
  • 收稿日期:2017-01-13 修回日期:2017-07-23 出版日期:2017-11-12 网络出版日期:2017-08-10
  • 通讯作者: 刘志勇, E-mail: zyliu@genetics.ac.cn; 曹廷杰, E-mail: caotingjie893@163.com
  • 基金资助:

    本研究由国家重点研发计划项目(2017YFD0101802)资助。

Mapping Stripe Rust Resistance Gene YrZM103 in Wheat Cultivar Zhengmai 103 by BSR-Seq

ZHANG Huai-Zhi1,XIE Jing-Zhong2,CHEN Yong-Xing2,LIU Xu3,WANG Yong1,WU Qiu-Hong2,Lu Ping2,ZHANG De-Yun1,LI Miao-Miao1,GUO Guang-Hao1,YAN Su-Hong3,YANG Zhao-Sheng3,ZHAO Hong4,WANG Xi-Cheng4,JIA Lianhe5,CAO Ting-Jie4,*,LIU Zhi-Yong2,*   

  1. 1 College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; 2 State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 3 Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; 4Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 5Tangxian Vocational and Technical Educational Center, Tangxian, Hebei 072350, China
  • Received:2017-01-13 Revised:2017-07-23 Published:2017-11-12 Published online:2017-08-10
  • Contact: 刘志勇, E-mail: zyliu@genetics.ac.cn; 曹廷杰, E-mail: caotingjie893@163.com
  • Supported by:

    This study was supported by the National Key Research and Development Program of China (2017YFD0101802).

摘要:

郑麦103是一个高抗条锈病的小麦新品种,为明确其携带的抗病基因,用郑麦103与感条锈病品种农大399杂交构建分离群体,用条锈菌CYR32、CYR33和CRY34 (V26)混合菌系进行田间接种和成株期抗性鉴定,对214个F2:3家系的条锈病抗性进行遗传分析,初步确定郑麦103的抗条锈性由单个主效基因控制,定名为YrZM103。通过BSR-Seq技术开发了6个与YrZM103紧密连锁的分子标记,将YrZM103定位于染色体臂7BL分子标记ZM215ZM221之间,遗传距离分别为11.8 cM和6.9 cM。利用7BL染色体上与其他已知抗条锈病基因紧密连锁的分子标记进行比较作图,发现YrZM103是不同于7BL末端其他抗条锈病基因的新基因。

关键词: 郑麦103, 条锈病, 分子标记, BSR-Seq, 小麦

Abstract:

Zhengmai 103 is a new wheat cultivar highly resistant to stripe rust. In order to detect the stripe rust resistance gene in Zhengmai 103, a segregating population was developed by making cross between Zhengmai 103 and a highly stripe rust susceptible wheat cultivar Nongda 399. The 214 F2 derived F2:3 progenies were inoculated with mixed prevailing Pst races CYR32, CYR33 and CYR34 (V26) in field condition for disease resistance evaluation at adult plant stage. Genetic analysis revealed that the stripe rust resistance of Zhengmai 103 is controlled by a single gene, temporarily designated YrZM103. By applying RNA-seq with bulked segregant analysis (BSA), six polymorphic markers were developed to map YrZM103 on chromosome 7BL flanked by markers ZM215 and ZM221 with genetic distances of 6.9 and 11.8 cM, respectively. Comparative genetic mapping indicated YrZM103 was located on different genetic interval from that of known stripe rust resistance genes on 7BL.

Key words: Zhengmai 103, Stripe rust, Molecular marker, BSR-Seq, Wheat

[1] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002. pp 370–373
Li Z Q, Zeng S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002. pp 370–373 (in Chinese)
[2] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽.小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48: 3439–3453
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin, 2015, 48: 3439–3453 (in Chinese with English abstract)
[3] Bansal M, Kaur S, Dhaliwal H S, Bains N S, Bariana H S, Chhuneja P, Bansal U K. Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol, 2017, 66: 38–44
[4] McIntosh R A, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2017 supplement, Komugi-wheat genetic resources database, http://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp, 2017.
[5] Herrera-Foessel S A, Singh R P, Lan C X, Huerta-Espino J, Calvo-Salazar V, Bansal U K, Bariana H S, Lagudah E S. Yr60, a gene conferring moderate resistance to stripe rust in wheat. Plant Dis, 2015, 99: 508–511
[6] Zhou X L, Han D J, Chen X M, Gou H L, Guo S J, Rong L, Wang Q L, Huang L L, Kang Z S. Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor Appl Genet, 2014, 127: 2349–2358
[7] 胡小平, 王保通, 康振生. 中国小麦条锈菌毒性变异研究进展. 麦类作物学报, 2014, 34: 709-716
Hu X P, Wang B T, Kang Z S. Research progress on virulence variation of Puccinia striiformis f. sp. tritici in China. J Triticeae Crops, 2014, 34: 709–716 (in Chinese with English abstract)
[8] Liu T G, Peng Y L, Chen W Q, Zhang Z Y. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Dis, 94: 1163–1163
[9] 何中虎, 夏先春, 陈新民, 庄巧生.中国小麦育种进展与展望. 作物学报, 2011, 37: 202–215
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202–215 (in Chinese with English abstract)
[10] Liu S Z, Yeh C T, Tang H M, Nettleton D, Schnable P S. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One, 2012, 7: e36406
[11] Trick M, Adamski N M, Mugford S G, Jiang C C, Febrer M, Uauy C. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol, 2012, 12: 14
[12] Ramirez Gonzalez R H, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J, 2015, 13: 613–624
[13] McIntosh R A, Wellings C R, Park R F. Wheat Rusts: An Atlas of Rust Genes. East Melbourne, Australia: CSIRO Publication, 1995. pp 28–55
[14] Wang Z Z, Li H W, Zhang D Y, Guo L, Chen J J, Chen Y X, Wu Q H, Xie J Z, Zhang Y, Sun Q X, Dvorak J, Luo M C, Liu Z Y. Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor Appl Genet, 2015, 128: 365–373
[15] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley Mendelian inheritance, chromosomal location, and population-dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018
[16] Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/eXP3.0 Whitehead Institute Tech Rep, 3rd edn. Whitehead Institute, Cambridge, 1992
[17] Ren R S, Wang M N, Chen X M, Zhang Z J. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet, 2012, 125: 847–857
[18] Li Z F, Zheng T C, He Z H, Li G Q, Xu S C, Li X P, Yang G Y, Singh R P, Xia X C. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 2006, 112: 1098–1103
[19] Li Y, Niu Y C, Chen X M. Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers. Theor Appl Genet, 2009, 112: 339–346
[20] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919–3929
Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919–3929 (in Chinese with English abstract)
[21] 王冬梅, 冯晶, 王凤涛, 蔺瑞明, 徐世昌. 2010-2011年度四省小麦区试品种遗传多样性和抗条锈性分析. 植物保护, 2013, 39(1): 21–28
Wang D M, Feng J, Wang F T, Lin R M, Xu S C. Molecular genetic diversity and stripe rust resistance of regional trial wheat cultivars in four provinces in 2010–2011. Plant Prot, 2013, 39(1): 21–28 (in Chinese with English abstract)
[22] Prins R, Marais G F. A genetic study of the gametocidal effect of the Lr19 translocation of common wheat. South Afr J Plant & Soil, 1999, 16: 10–14

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!