作物学报 ›› 2018, Vol. 44 ›› Issue (01): 1-14.doi: 10.3724/SP.J.1006.2018.00001
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
吴秋红1,陈永兴1,李丹2,王振忠3,张艳2,袁成国4,王西成5,赵虹5,曹廷杰5,*,刘志勇1,*
WU Qiu-Hong1,CHEN Yong-Xing1,LI Dan2,WANG Zhen-Zhong3,ZHANG Yan2,YUAN Cheng-Guo4,WANG Xi-Cheng5,ZHAO Hong5,CAO Ting-Jie5,*,LIU Zhi-Yong1,*
摘要:
规模化定位小麦品种携带的抗白粉病基因对于抗病性种质创新和新品种选育具有重要的意义。本研究采用Illumina Infinium iSelect 90k SNP芯片结合集群分离分析法(bulked segregate analysis,BSA)对36个河南省小麦新品系携带的抗白粉病基因进行了定位。SNP芯片检测表明,在24个小麦品系构建的抗、感池DNA间可检测到一个明显富集的SNP峰,表明其可能携带单一主效抗白粉病基因;在其他12个小麦品系构建的抗、感池DNA间可检测到多个SNP峰,推测其可能含多个抗白粉病基因。有26个小麦品系在2AL染色体上检测到的SNP数目最多,推测其携带位于2AL染色体上的Pm4b抗白粉病基因。开发出与2AL染色体上抗白粉病基因紧密连锁的分子标记Xwggc116,可用于这些小麦品系中抗白粉病基因的分子检测。研究结果表明高通量SNP分析技术平台可以用来规模化定位小麦品种中的抗白粉病基因,明确了河南省抗白粉病小麦品系中携带Pm2、Pm4b、Pm21和新1BL/1RS易位等有限的抗白粉病基因,抗病基因资源非常狭窄,亟需引进新的多样化抗病基因资源,拓宽遗传基础,培育抗病小麦新品种。
[1] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 469–487 Zhuang Q S. Wheat Improvement and Pedigree Analysis in China. Beijing: China Agriculture Press, 2003. pp 469-487 (in Chinese) [2] 杨作民, 唐伯让, 沈克全, 夏先春. 小麦抗病育种的战略问题——小麦对锈病, 白粉病第二线抗源的建立和应用. 作物学报, 1994, 20: 385–394 Yang Z M, Tang B R. Shen K Q. Xia X C. A strategic problem in wheat resistance breeding: building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agron Sin, 1994, 20: 385–394 (in Chinese with English abstract) [3] McIntosh R A, Dubcovsky J, Rogers W J, Rogers J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: supplement. 2017, Komugi—wheat genetic resources database, https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClass List.jsp [4] Lander E S. The new genomics: global views of biology. Science, 1996, 274: 536–539 [5] Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Sorrells M E, Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057–8062 [6] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787–796 [7] 曹廷杰, 陈永兴, 李丹, 张艳, 王西成, 赵虹, 刘志勇. 河南小麦新育成品系白粉病抗性鉴定与分子标记检测. 作物学报, 2015, 41: 1172–1182 Cao T J, Chen Y X, Li D, Zhang Y, Wang X C, Zhao H, Liu Z Y. Identification and molecular detection of powdery mildew resistance of new bred wheat varieties (lines) in Henan province, China. Acta Agron Sin, 2015, 41: 1172–1182 (in Chinese with English abstract) [8] 吴全安. 粮食作物种质资源抗病虫鉴定方法. 北京: 中国农业出版社, 1991 Wu Q A. Methods Used in the Evaluation of Pest Resistant Potentialities in Food Crop Germplasm Resources. Beijing: China Agriculture Press, 1991 (in Chinese) [9] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018 [10] Ma Z Q, Wei J B, Cheng S H. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat. Theor Appl Genet, 2004, 109: 140–145 [11] 刘金元, 刘大钧, 陶文静, 李万隆, 陈佩度. 小麦白粉病抗性基因Pm4a的RFLP标记转化为STS标记的研究. 农业生物技术学报, 1999, 7: 113–116 Liu J Y, Liu D J, Tao W J, Li W L, Chen P D. Study on the conversion of RFLP markers co-segregated with Pm4a to sequenced-tagged-site markers. J Agric Biotech, 1999, 7(2): 113–116 (in Chinese with English abstract) [12] Francis H A, Leitch A R, and Koebner R M D. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat, Theor Appl Genet, 1995, 90: 636–642 [13] Song W, Xie C J, Du J K, Xie H, Liu Q, Ni Z F, Tsomin Y, Sun Q X, Liu Z Y. A “one-marker-for-two-genes” approach for efficient molecular discrimination of Pm12 and Pm21 conferring resistance to powdery mildew in wheat. Mol Breed, 2009, 23: 357–363 [14] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832 [15] 邹喻苹, 葛颂. 新一代分子标记——SNPs及其应用. 生物多样性, 2003, 11: 370–382 Zou Y P, Ge S. A novel molecular marker: SNPs and its application. Chin Biodiv, 2003, 11: 370–382 (in Chinese with English abstract) [16] Sears E R, Briggle L W. Mapping gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci, 1969, 9: 96–97 [17] 金善宝. 中国小麦品种及其系谱. 北京: 中国农业科学出版社, 1983 Jin S B. Chinese Wheat Varieties and Their Pedigree. Beijing: China Agricultural Science and Technology Press, 1983 (in Chinese) [18] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531–535 Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30: 531–535 (in Chinese with English abstract) [19] 袁文焕, 宋位中, 杨家秀, 李艳芳, 杨世成. 洛10、洛13致病类群的发现与研究. 中国农业科学, 1988, 21(5): 53–58 Yuan W H, Song W Z, Yang J X, Li Y F, Yang S H. The discovery and studies on physiological races of wheat stripe rust virulent to Lovrin 10 and Lovrin 13. Sci Agric Sin, 1988, 21(5): 53–58 (in Chinese with English abstract) [20] McIntosh R A, Bennett F G A. Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust J Biolo Sci, 1979, 32: 115–126 [21] Hao YF, Liu AF, Wang YH, Feng D S, Gao J R, Li X F, Liu S B, Wang H G. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet, 2008, 117: 1205–1212 [22] Schmolke M, Mohler V, Hartl L, Zeller F J, Hsam S L. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed, 2012, 29: 449–456 [23] Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 2005, 48: 585–590 [24] Fu B S, Chen Y, Li N, Ma H Q, Kong Z X, Zhang L X, Jia H Y, Ma Z Q. PmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theor Appl Genet, 2013, 126: 913–921 [25] Niu J S, Wang B Q, Wang Y H, Cao A Z, Qi Z J, Shen T M. Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line ‘Lankao 90 (6)’. Plant Breed, 2008, 127: 346–349 [26] Xu W G, Li X C, Hu L, Zhang L, Zhang Z J, Dong B H, Wang S G. Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22. Mol Breed, 2010, 26: 31–38 [27] 高安礼, 何华纲, 陈全战, 张守忠, 陈佩度. 分子标记辅助选择小麦抗白粉病基因 Pm2、Pm4a和Pm21的聚合体. 作物学报, 2005, 31: 1400–1405 Gao A L, He H G, Chen Q Z, Zhang S Z, Chen P D. Pyramiding wheat powdery mildew resistance genes Pm2, Pm4a and Pm21 by molecular marker-assisted selection. Acta Agron Sin, 2005, 31: 1400–1405 (in Chinese with English abstract) [28] 王俊美, 王飞, 宋玉立, 康振生, 刘红彦. 小麦已知抗白粉病基因在河南的抗性评价及Pm2基因的标记追踪. 麦类作物学报, 2009, 29: 535–539 Wang J M, Wang F, Song Y L, Kang Z S, Liu H Y. Evaluation of the known wheat powdery mildew resistance genes in Henan province and marker tracing of Pm2 gene. J Triticeae Crops, 2009, 29: 535–539 (in Chinese with English abstract) [29] 王竹林, 王艺桦, 刘联正, 奚亚军, 刘曙东. 小麦抗白粉病基因Pm4的分子标记辅助育种研究. 麦类作物学报, 2011, 31: 819–823 Wang Z L, Wang Y H, Liu L Z, Xi Y J, Liu S D. Molecular marker assisted selection for powdery mildew resistance gene Pm4 in wheat breeding. J Triticeae Crops, 2011, 31: 819–823 (in Chinese with English abstract) [30] 张林, 樊庆琦, 隋新霞, 李根英, 楚秀生, 黄承彦. 山东小麦品种抗白粉病基因的分子鉴定. 麦类作物学报, 2008, 28: 905–911 Zhang L, Fan Q Q, Sui X X, Li G Y, Chu X S, Huang C Y. Detection of powdery mildew resistance genes in the varieties and landraces in Shandong province. J Triticeae Crops, 2008, 28: 905–911 (in Chinese with English abstract) [31] 赵紫慧, 黄江, 陆鸣, 王晓鸣, 吴龙飞, 武小菲, 赵鑫, 李洪杰. 山东省和河北省小麦白粉菌毒性与遗传多样性分析. 作物学报, 2013, 39: 1377–1385 Zhao Z H, Huang J, Lu M, Wang X M, Wu L F, Wu X F, Zhao X, Li H J. Virulence and genetic diversity of Blumeria graminis f. sp. tritici collected from Shandong and Hebei provinces. Acta Agron Sin, 2013, 39: 1377–1385 (in Chinese with English abstract) [32] 杨立军, 曾凡松, 龚双军, 史文琦, 张学江, 汪华, 向礼波, 喻大昭. 68个主推小麦品种的白粉病抗性分析及基因推导. 中国农业科学, 2013, 46: 3354–3368 Yang L J, Zeng F S, Gong S J, Shi W Q, Zhang X H, Wang H, Xiang L B, Yu D Z. Evaluation of resistance to powdery mildew in 68 Chinese major wheat cultivars and postulation of their resistance genes. Sci Agric Sin, 2013, 46: 3354–3368 (in Chinese with English abstract) [33] 胡娜, 王永玖, 黄琼瑞, 常成, 司红起, 马传喜, 张海萍. 小麦抗白粉病基因的分子标记检测及其抗性评价. 分子植物育种, 2009, 7: 1093–1099 Hu N, Wang Y J, Huang Q R, Chang C, Si H Q, Ma C X, Zhang H P. Molecular marker identification of powdery mildew resistance-related genes of wheat and resistant valuation. Mol Plant Breed, 2009, 7: 1093–1099 (in Chinese with English abstract) [34] 李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943–954 Li H J, Wang X O, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin, 2011, 37: 943–954 (in Chinese with English abstract) |
[1] | 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600. |
[2] | 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714. |
[3] | 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015. |
[4] | 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754. |
[5] | 陈冰嬬, 于淼, 葛占宇, 李洪奎, 黄炎, 李海青, 石贵山, 谢利, 徐宁, 闫峰, 高士杰, 周紫阳, 王鼐. 春播早熟区高粱杂种优势群及杂种优势模式分析[J]. 作物学报, 2023, 49(2): 343-353. |
[6] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[7] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[8] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[9] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[10] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352. |
[13] | 李建领, 公丹, 王素华, 陈红霖, 程须珍, 熊涛, 王丽侠. 豇豆SNP高密度遗传图谱构建及重要农艺性状QTL定位[J]. 作物学报, 2022, 48(10): 2475-2482. |
[14] | 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位[J]. 作物学报, 2022, 48(10): 2654-2662. |
[15] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
|