欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (03): 357-368.doi: 10.3724/SP.J.1006.2018.00357

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通菜豆种质资源不同环境下表型差异及生态适应性评价

王兰芬1(), 武晶1, 王昭礼2, 陈吉宝3, 余莉2, 王强4, 王述民1,*()   

  1. 1中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京 100081,
    2贵州省毕节市农业科学研究所, 贵州毕节 551700,
    3南阳师范学院, 河南南阳 473061,
    4黑龙江省农业科学院作物育种所, 黑龙江哈尔滨 150000
  • 收稿日期:2017-04-27 接受日期:2017-11-21 出版日期:2018-03-12 网络出版日期:2017-12-11
  • 通讯作者: 王述民
  • 作者简介:

    wanglanfen@caas.cn

  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-08), 中国农业科学院科技创新工程项目, 国家农作物种质资源共享服务平台(NICGR2017-006), 农作物种质资源保护与利用专项(NWB036-07)和引进国际先进农业科学技术计划项目(2016-X16)资助

Adaptability and Phenotypic Variations of Agronomic Traits in Common Bean Germplasm Resources in Different Environments

Lan-Fen WANG1(), Jing WU1, Zhao-Li WANG2, Ji-Bao CHEN3, Li YU2, Qiang WANG4, Shu-Min WANG1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081,China
    2 Bijie Agricultural Science Institute, Bijie 551700, Guizhou, China
    3 Nanyang Normal University, Nanyang 473061, Henan, China
    4 Institute of Crop Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, Heilongjiang, China
  • Received:2017-04-27 Accepted:2017-11-21 Published:2018-03-12 Published online:2017-12-11
  • Contact: Shu-Min WANG
  • Supported by:
    This study was supported by the China Agriculture Research System (CARS-09), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences, National Infrastructure for Crop Germplasm Resources (NICGR2017-006), Protection and Utilization for Crop Germplasm Resources (NWB036-07), and the Program of Introducing International Super Agricultural Science and Technology (2016-X6).

摘要:

2014—2015年在黑龙江哈尔滨、河南南阳、贵州毕节和海南乐东,对686份普通菜豆种质资源的表型鉴定, 旨在明确不同环境下普通菜豆种质资源的12个表型变异及生态适应性, 遴选特异资源, 提高繁种及种质创新的效率。结果表明, 乐东是南美洲普通菜豆种质资源良好的繁育基地, 而毕节是国内普通菜豆种质资源较好的繁育基地。参试群体内不同的种质资源间表型差异明显, 4个试点平均各性状变异系数介于8.11%~70.83%之间, 其中株高的差异最大, 变异系数为70.83%。百粒重的遗传力最大, 为0.73; 遗传力最小的性状是播种至开花时间, 仅为0.01。性状间的相关性及通径分析表明, 单株荚数对单株产量的贡献最大。遴选出具有矮秆、大粒、早熟等特性的种质218份, 其中, 9份同时具有3种特异性状, 53份同时具有2种特异性状。

关键词: 普通菜豆, 种质资源, 生态适应性, 表型鉴定, 遗传力, 相关性分析, 通径分析

Abstract:

This study aimed at evaluating the phenotypic variation and environmental adaptability of common bean (Phaseolus vulgaris L.) germplasm resources. Twelve traits of 686 accessions of common bean were assessed in Harbin of Heihongjiang province, Nanyang of Henan province, Bijie of Guizhou province and Ledong of Hainan province in 2014-2015. The results showed that Ledong was the best location for the reproduction of germplasm resources from South America and Bijie was the best location for the reproduction of Chinese germplasm resources. There were large variations in the 12 traits among the 686 common bean germplasm resources and the average (across locations) coefficients of variation ranged from 8.11% of growth duration to 70.83% of plant height. Hundred-seed weight showed the highest heritability of 0.73, whereas days from sowing to flowering showed the lowest one of 0.01. The correlation and path analysis revealed that number of pods per plant was the most important factor affecting the yield per plant. Two hundred and eighteen specific germplasm resources were identified with dwarf, large-seed, and early maturity and so on, among which nine had three favorable traits and 53 had two favorable traits simultaneously.

Key words: common bean, germplasm resource, environmental adaptation, phenotypic evaluation, heritability, correlation analysis, path analysis

表1

材料来源"

中国种质来源
Origin of domestic germplasm
份数
No.
引进种质来源
Origin of alien germplasm
份数
No.
中国黑龙江 Heilongjiang, China 86 阿根廷 Argentina 38
中国山西 Shanxi, China 66 巴西 Brazil 38
中国内蒙古 Inner Mongolia, China 63 国际热带农业研究中心 CIAT 37
中国贵州 Guizhou, China 56 哥伦比亚 Columbia 18
中国吉林 Jilin, China 42 法国 France 8
中国云南 Yunnan, China 37 墨西哥 Mexico 8
中国湖北 Hubei, China 34 美国 America 5
中国陕西 Shaanxi, China 33 秘鲁 Peru 4
中国四川 Sichuan, China 25 危地马拉 Guatemala 3
中国甘肃 Gansu, China 21 保加利亚 Bulgaria 2
中国河北 Hebei, China 11 玻利维亚 Bolivia 2
中国北京 Beijing, China 10 多米尼加共和国 Dominican Republic 1
中国山东 Shandong, China 9 厄瓜多尔 Ecuador 1
中国新疆 Xinjiang, China 6 海地 Haiti 1
中国湖南 Hunan, China 2 加拿大 Canada 1
中国江苏 Jiangsu, China 1 葡萄牙 Portugal 1
中国辽宁 Liaoning, China 1 委内瑞拉 Venezuela 1
中国台湾 Taiwan, China 1 英国 UK 1
中国西藏 Xizang, China 1 赞比亚 Zambia 1
中国海南 Hainan, China 1 智利 Chile 1
不详 Unknown 1 不详 Unknown 7
合计 Total 507 合计 Total 179

表2

4个试点的日照时数和温度概况及686份普通菜豆的结实情况"

地点
Location
播种-收获日期Sowing-harvest date (month/day) 日照时长
Sunshine hours (h)
日最高温度
Daily max. temp. (°C)
日最低温度
Daily min. temp. (°C)
平均值
Mean
最大值Max. 最小值Min. 平均值
Mean
最大值Max. 最小值Min. 平均值
Mean
最大值Max. 最小值Min.
哈尔滨 Harbin 5/23-9/30 14.47 15.72 11.77 26.0 37 10 16.0 24 -2
南阳 Nanyang 4/30-8/31 13.88 14.32 12.88 30.0 38 21 21.2 28 11
毕节 Bijie 4/21-9/22 13.33 13.85 12.13 24.1 31 13 16.3 21 9
乐东 Ledong 11/19-2/23 11.11 11.63 10.59 26.3 32 19 16.1 23 8
种质材料份数 No. of accessions 结实率
Seed setting rate (%)
未出苗Emergence-failed 幼苗死亡
Seedling-died
未开花
Bloom-failed
未成熟
Immature
正常结实
Fertile
哈尔滨 Harbin 6 10 45 16 609 88.78
南阳 Nanyang 0 6 69 46 565 82.36
毕节 Bijie 9 7 2 39 629 91.69
乐东 Ledong 2 1 0 0 683 99.56

表3

686份普通菜豆材料12个农艺性状在4个试点的变异"

性状
Trait
地点
Location
最小值
Min.
最大值
Max.
均值
Average
标准差
SD
变异系数
CV (%)
遗传力Heritability
播种至出苗时间
Days from sowing to
emergence (d)
哈尔滨 Harbin
南阳 Nanyang 9.00 14.00 12.19 0.96 7.92
毕节 Bijie 17.00 23.00 20.38 0.97 4.74
乐东 Ledong 7.00 13.00 7.80 0.91 11.68
播种至开花时间
Days from sowing to
flowering (d)
哈尔滨 Harbin 33.00 82.00 48.72 11.78 24.18 0.01
南阳 Nanyang 33.00 89.00 49.43 7.86 15.91
毕节 Bijie 45.00 80.00 56.33 7.49 13.29
乐东 Ledong 30.00 49.00 36.63 3.57 9.74
生育期 哈尔滨 Harbin 69.00 129.00 100.14 14.13 14.11 0.58
Growth duration (d) 南阳 Nanyang 63.00 122.00 88.79 5.89 6.63
毕节 Bijie 92.00 154.00 106.64 7.77 7.29
乐东 Ledong 67.00 99.00 80.41 6.22 7.74
株高 哈尔滨 Harbin 22.00 385.00 154.76 105.72 68.31 0.58
Plant height (cm) 南阳 Nanyang 14.29 376.14 133.20 81.75 61.37
毕节 Bijie 6.00 440.00 113.80 93.91 82.52
乐东 Ledong 18.00 280.00 79.12 56.28 71.13
主茎节数 哈尔滨 Harbin 2.00 27.20 6.52 5.86 89.90 0.28
Node number per plant 南阳 Nanyang
毕节 Bijie 1.80 24.00 7.66 5.11 66.66
乐东 Ledong 3.40 32.67 13.20 5.16 39.10
主茎分枝数
Branch number per plant
哈尔滨 Harbin 2.20 8.40 4.53 1.05 23.14
南阳 Nanyang 3.00 18.00 6.49 2.32 35.78
毕节 Bijie 1.00 5.00 1.86 0.57 30.85
乐东 Ledong 1.00 6.71 2.45 0.69 28.10
性状
Trait
地点
Location
最小值
Min.
最大值
Max.
均值
Average
标准差
SD
变异系数
CV (%)
遗传力Heritability
单株荚数 哈尔滨 Harbin 3.90 177.00 32.32 18.86 58.35 0.09
Pod number per plant 南阳 Nanyang 0.10 94.00 20.23 17.58 86.93
毕节 Bijie 0.75 41.50 9.86 6.67 67.68
乐东 Ledong 1.80 44.50 12.29 6.26 50.93
荚长 哈尔滨 Harbin 4.72 18.58 10.96 2.28 20.80 0.53
Pod length (cm) 南阳 Nanyang 4.39 22.98 8.19 2.20 26.80
毕节 Bijie 4.44 21.00 10.15 2.37 23.39
乐东 Ledong 4.00 20.40 10.50 2.77 26.37
荚宽 哈尔滨 Harbin 6.20 19.80 9.94 1.84 18.53 0.67
Pod width (cm) 南阳 Nanyang 5.20 21.50 9.73 2.37 24.37
毕节 Bijie 5.60 21.00 10.44 1.91 18.33
乐东 Ledong 4.80 25.00 9.96 2.04 20.46
单荚粒数 哈尔滨 Harbin 2.60 10.00 5.67 1.26 22.22 0.30
Seed number per pod 南阳 Nanyang 0.70 7.50 3.69 1.17 31.63
毕节 Bijie 1.25 8.20 4.72 1.17 24.71
乐东 Ledong 1.40 9.60 5.12 1.06 20.66
单株产量 哈尔滨 Harbin 2.88 175.46 40.55 23.20 57.22
Yield per plant (g) 南阳 Nanyang
毕节 Bijie 0.30 48.86 9.67 6.74 69.63
乐东 Ledong 1.00 40.07 12.39 6.24 50.35
百粒重
Hundred-seed weight (g)
哈尔滨 Harbin 10.80 90.00 35.08 13.14 37.46 0.73
南阳 Nanyang 4.00 56.90 28.34 9.06 31.98
毕节 Bijie 9.60 85.30 33.41 13.45 40.26
乐东 Ledong 4.10 87.50 32.48 14.78 45.52

表4

686份普通菜豆材料在4个试点农艺性状的相关系数"

表5

单株产量与其他性状相关系数的分解"

地点
Location
性状
Trait
相关系数
Correlation coefficient
通径系数
Path
coefficient
间接通径系数Indirect path coefficient
PPL HGT HSW SPP MAT DFF PL 合计Total
哈尔滨 单株荚数PNP 0.637 0.691 0.091 -0.161 0.037 -0.021 -0.054
Harbin 株高PH 0.549 0.373 0.168 -0.020 0.064 -0.035 0.177
百粒重HSW -0.074 0.327 -0.341 -0.023 -0.058 0.021 -0.401
单荚粒数SNP 0.349 0.121 0.214 0.197 -0.157 -0.026 0.228
播种至开花时间DSF 0.213 -0.081 0.177 0.162 -0.083 0.039 0.295
毕节 单株荚数PNP 0.779 0.906 -0.180 0.071 -0.018 -0.109
Bijie 百粒重HSW -0.096 0.365 -0.447 -0.079 0.047 -0.526
荚长PL 0.132 0.113 -0.140 0.153 0.004 0.017
单荚粒数SNP 0.388 0.124 0.523 -0.232 0.004 0.290
乐东 单株荚数PNP 0.589 0.750 -0.227 0.065 0.092 -0.064 -0.027 -0.161
Ledong 百粒重HSW 0.103 0.468 -0.363 -0.103 0.005 0.045 0.051 -0.365
单荚粒数SNP 0.246 0.226 0.214 -0.213 0.058 -0.058 0.019 0.020
生育期 GD 0.508 0.233 0.297 0.010 0.056 -0.102 0.015 0.275
播种至开花时间DSF 0.300 -0.142 0.339 -0.147 0.092 0.168 -0.009 0.443
荚长PL 0.226 0.099 -0.203 0.239 0.043 0.035 0.013 0.127

表6

62份具有2种或3种特性的普通菜豆特异资源"

[1] Broughton W J, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J.Beans (Phaseolus spp.) — model food legumes. Plant Soil, 2003, 252: 55-128
[2] Schmutz J, McClean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam S M, Gao D, Abernathy B, Barry K, Blair M, Brick M A, Chovatia M, Gepts P, Goodstein D M, Gonzales M, Hellsten U, Hyten D L, Jia G, Kelly J D, Kudrna D, Lee R, Richard M M, Miklas P N, Osorno J M, Rodrigues J, Thareau V, Urrea C A, Wang M, Yu Y, Zhang M, Wing R A, Cregan P B, Rokhsar D S, Jackson S A. A reference genome for common bean and genome-wide analysis of dual domestications.Nat Genet, 2014, 46: 707-713
[3] Garner W W, Allard H A.The effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Agric Res, 1920, 18: 553-606
[4] Wallace D H.Physiological genetics of plant maturity, adaptation and yield. In: Janick J ed. Plant Breeding Reviews. Vol. 3. Hoboken, NJ, USA. John Wiley & Sons, Inc., 1985. pp 21-166
[5] White J W, Laing D R.Photoperiod response of flowering in diverse genotypes of common bean (Phaseolus vulgaris). Field Crops Res, 1989, 22: 113-128
[6] Delgadosalinas A, Turley T, Richman A, Lavin M.Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae).Syst Bot, 1999, 24: 438-460
[7] Delgadosalinas A, Bibler R, Lavin M.Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot, 2006, 31: 779-791
[8] Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A.Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci USA, 2012, 109: 788-796
[9] Desiderio F, Bitocchi E, Bellucci E, Rau D, Rodriguez M.Chloroplast microsatellite diversity in Phaseolus vulgaris. Front Plant Sci, 2013, 3: 312
[10] Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, Giardini A, Attene G, Nanni L, Papa R.Genomics of Origin, Domestication and Evolution of Phaseolus vulgaris. In: Tuberosa R, Graner A, Frison E, eds. Genomics of Plant Genetic Resources, Springer Netherlands, 2014. pp 483-507
[11] Debouck D G, Smartt J.Beans. In: Smartt J, Simmonds N W, eds. Evolution of Crop Plants. 2nd Edn. Longman Harlow, England, 1995. pp 287-294
[12] 郑卓杰. 中国食用豆类学. 北京: 中国农业出版社, 1997: 222-249
Zheng Z J.Food Legumes in China. Beijing: China Agriculture Press, 1997. pp 222-249 (in Chinese)
[13] Santalla M, Rodiño A P, De Ron A M. Allozyme evidence supporting southwester Europe as a secondary center of genetic diversity for common bean.Theor Appl Genet, 2002, 104: 934-944
[14] Angioi S A, Rau D, Attene G, Nanni L, Bellucci E, Logozzo G, Negri V, Spagnoletti Z P, Papa R.Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet, 2010, 121: 829-843
[15] Antunes P L, Bilhalva A B, Elias M C, Soares G J D. Valor nutricional de feijão (Phaseolus vulgaris L.), cultivars Rico 23, Carioca, Piratâ-1 E Rosinha-G2. Rev Bras Agro, 1995, 1: 12-18
[16] Júnior V A, Melo P G, Pereira H S, Bassinello P Z, Melo L C.Genetic potential of common bean progenies selected for crude fiber content obtained through different breeding methods.Genet Mol Res, 2015, 14:5763-5774
[17] Ribeiro N D, Londero P M G, Hoffmann J L, Poersch N L, Filho A C. Dissimilaridade genética para proteína e fibra em grãos de feijão dos grupos preto e de cor. Rev Bras Agron, 2005, 11: 167-173
[18] 王述民, 段醒男, 丁国庆, 王晓鸣. 普通菜豆种质资源的收集与评价. 中国种业, 1999, (03): 50-51
Wang S M, Duan X N, Deng G Q, Wang X M.Collection and evaluation of common bean germplasm resources.Chin Seed Ind, 1999, (03): 50-51 (in Chinese)
[19] 王述民, 张亚芝, 刘绍文, 李家银, 王石宝. 普通菜豆优异种质联合鉴定与评价. 中国种业, 1997, (2): 5-7
Wang S M, Zhang Y Z, Liu S W, Li J Y, Wang S B.Joint identification and evaluation of common bean excellent germplasms. China Seed Ind, 1997, (2): 5-7 (in Chinese)
[20] 王述民, 张亚芝, 王石宝, 刘绍文, 李家银. 普通菜豆优异种质联合鉴定研究. 中国种业, 1996, (03): 12-14
Wang S M, Zhang Y Z, Wang S B, Liu S W, Li J Y.Joint identification research of common bean excellent germplasms.Chin Seed Ind, 1996, (03): 12-14 (in Chinese)
[21] 王述民, 张亚芝, 魏淑红. 普通菜豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 12-21
Wang S M, Zhang Y Z, Wei S H.Descriptors and Data Standard for Common Bean. Beijing: China Agriculture Press, 2006. pp 12-21 (in Chinese)
[22] 胡家蓬, 王佩芝, 程须珍. 中国食用豆类优异资源. 北京: 中国农业出版社, 1998
Hu J P, Wang P Z, Cheng X Z.Elite Germplasm of Chinese Food Legume. Beijing: China Agriculture Press, 1998 (in Chinese)
[23] 王述民. 普通菜豆生产技术. 北京: 北京教育出版社, 2016. pp 52-53
Wang S M.Production Technology for Common Bean. Beijing: Beijing Education Press, 2016. pp 52-53 (in Chinese)
[24] 李莹. 大豆品种产量构成因素的研究. 大豆科学, 1984, 3: 209-214
Li Y.Research of Soybean Yield Components. Soybean Sci, 1984, 3: 209-214 (in Chinese)
[25] 杨光宇. 大豆品种主要数量性状的相关和通径分析. 吉林农业科学, 1985, (1): 7-10
Yang G Y.Correlation and path analysis of soybean varieties main quantitative character.Jilin Agric Sci, 1985, (1): 7-10 (in Chinese)
[26] Hamblin J, Evans A M.The estimation of cross yield using early generation and parental yields in dry beans (Phaseolus vulgaris L.). Euphytica, 1976, 25: 515-520
[27] Adams M W.Basis of yield component compensation m crops with special reference of field bean,Phaseolus vulgaris L. Crop Sci, 1967, 7: 637-640
[28] Nienhuis J, Singh S P.Effects of location and plant density on yield and architectural traits in dry beans.Crop Sci, 1985, 25: 355-358
[29] Sarafi A A.Yield-component selection experiment involving American and Iranian cultivars of the common bean.Crop Sci, 1978, 18: 5-7
[30] Sullivan J G, Buss F A.Recurrent mass selection for increased seed yield and seed protein percentage in the common bean (Phaseolus vulgaris L.) using a selection index. J Am Soc Hort Sci, 1983,108: 42-46
[31] Nienhuis J, Singh S P.Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of Middle-American origin: II. Genetic variance, heritability and expected response from selection. Plant Breed, 1988, 101: 143-154
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[3] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[4] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[5] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[6] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析[J]. 作物学报, 2021, 47(10): 1978-1987.
[7] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[8] 张毅,许乃银,郭利磊,杨子光,张笑晴,杨晓妮. 我国北部冬麦区小麦区域试验重复次数和试点数量的优化设计[J]. 作物学报, 2020, 46(8): 1166-1173.
[9] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[10] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[11] 张晓军,肖进,王海燕,乔麟轶,李欣,郭慧娟,常利芳,张树伟,阎晓涛,畅志坚,武宗信. 小偃麦衍生品系的赤霉病抗性评价[J]. 作物学报, 2020, 46(01): 62-73.
[12] 郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元,崔翠. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430.
[13] 陆海燕,周玲,林峰,王蕊,王凤格,赵涵. 基于高通量测序开发玉米高效KASP分子标记[J]. 作物学报, 2019, 45(6): 872-878.
[14] 崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805.
[15] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!