欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (04): 533-541.doi: 10.3724/SP.J.1006.2018.00533

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL

贺亚军1(), 吴道明1, 傅鹰1,2, 钱伟1,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400716
    2 浙江省农业科学院作物与核技术利用研究所, 浙江杭州310021
  • 收稿日期:2017-07-11 接受日期:2017-11-21 出版日期:2018-01-20 网络出版日期:2017-12-01
  • 通讯作者: 钱伟
  • 作者简介:

    hyj790124@163.com

  • 基金资助:
    本研究由国家自然科学基金项目(31671729), 国家重点研发计划项目(2016YFD0100202)和重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0391)资助

Detection of QTLs for Plant Height Related Traits in Brassica napus L. Using DH and Immortalized F2 Population

Ya-Jun HE1(), Dao-Ming WU1, Ying FU1,2, Wei QIAN1,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
    2 Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
  • Received:2017-07-11 Accepted:2017-11-21 Published:2018-01-20 Published online:2017-12-01
  • Contact: Wei QIAN
  • Supported by:
    The study was supported by the National Natural Science Foundation of China (31671729), the National Key Research and Development Program of China (2016YFD0100202), and Chongqing Research Program of Basic Research and Frontier Technology (cstc2017jcyjAX0391).

摘要:

株高是油菜重要的农艺性状之一。以油菜品种Express、SWU07构建的包含261个株系的DH群体和由其构建的包含234个株系的IF2群体为材料, 分析2年环境下株高及其相关性状QTL表明, 在2个群体的各年份环境中总共检测到41个株高及其相关性状QTL, 分布于甘蓝型油菜的13条染色体上, 其中9个与株高相关的QTL, 分布于A02、A09、C01、C02和C06连锁群, 分别揭示了3.85%~13.34%的表型变异, 15个与主花序长度相关的QTL, 分布于A01、A02、A05、A08、A09、C01、C03和C05连锁群, 分别揭示了3.82%~9.52%的表型变异; 11个与第1分枝高度相关的QTL, 分布于A01、A03、A09、C01和C03连锁群, 分别揭示了4.01%~16.54%的表型变异; 4个与分枝区段长相关的QTL, 分布于甘蓝型油菜的A07、A09、C03和C04连锁群, 揭示了4.79%~8.10%的表型变异; 2个与平均节间长相关的QTL, 分布于A07和C05连锁群, 分别揭示了4.29%~6.04%的表型变异。其中5个QTL在不同年份环境或不同群体中被重复检测到。这些QTL为油菜株高的遗传改良提供了有用的信息。

关键词: 甘蓝型油菜, 株高相关性状, 数量性状位点

Abstract:

Plant height is one of the important agronomic traits in rapeseed. In this study, QTLs for plant height and plant height related traits in Brassica napus were evaluated in two years environments by using a doubled haploid (DH) population lines derived from the cross between two rapeseed cultivars, Express and SWU07, and an immortalized F2 population generated by randomly permuted intermating of these DH lines. A total of 41 putative QTLs were identified for plant height and plant height related traits and located on 13 linkage groups. Among them, nine QTLs were identified for plant height, located on A02, A09, C01, C02, and C06, respectively, with explained phenotypic variation ranging from 3.85% to 13.34%, 15 QTLs were identified for inflorescence length, located on A01, A02, A05, A08, A09, C01, C03, and C05, respectively, with explained phenotypic variation ranging from 3.82% to 9.52%, 11 QTLs were identified for the first branch height, located on A01, A03, A09, C01, and C03, respectively, with explained phenotypic variation ranging from 4.01% to 16.54%, four QTLs were identified for branch segment, located on A07, A09, C03, and C04, respectively, with explained phenotypic variation ranging from 4.79% to 8.10%, two QTLs were identified for average internode length, located on A07 and C05, respectively, with explained phenotypic variation ranging from 4.29% to 6.04%. Five of these QTLs were persistently expressed in different year environments or in different populations. These QTLs provide useful information for improving plant height in rapeseed breeding.

Key words: Brassica napus, plant height related traits, QTL

图1

亲本SWU07与Express"

图2

DH群体与IF2群体株高相关性状在2010年和2011年的频率分布"

表1

亲本及2个群体5个株高相关性状在2年的表型分析"

年份及性状
Year and trait
亲本 Parent DH群体 DH population IF2群体 IF2 population
Express SWU7 最大值
Max.
最小值
Min.
平均值
Average
标准差
SD
最大值
Max.
最小值
Min.
平均值
Average
标准差
SD
2010
株高PH 187.90 171.90 210.25 134.75 174.63 13.59 209.50 167.50 189.33 9.33
第1分枝高BH 64.42 54.21 96.75 0 53.73 12.03 98.25 20.88 70.78 10.33
主花序长MFL 62.45 66.64 95.00 43.25 69.74 9.54 81.38 50.25 66.93 6.74
分枝区段长BSL 61.03 51.05 103.75 7.00 51.44 15.75 89.62 20.12 51.62 9.77
平均节间长AIL 8.14 7.38 16.38 0.27 6.69 2.22 15.24 3.29 8.00 1.45
2011
株高PH 188.20 172.4 211.94 146.38 176.51 12.03 207.00 149.00 183.64 10.28
第1分枝高BH 64.11 54.48 82.19 0 56.17 10.89 84.50 36.25 56.62 8.48
主花序长MFL 62.89 67.24 96.00 40.42 67.08 8.71 94.25 48.88 75.98 7.62
分枝区段长BSL 61.20 50.68 109.31 10.12 53.18 16.62 73.74 28.00 51.04 7.24
平均节间长AIL 8.34 6.90 15.33 1.49 7.34 2.31 9.72 4.75 6.71 0.70

表2

各性状在2个年份间的相关性分析"

群体
Population
株高
PH
第1分枝高
BH
主花序长
MFL
分枝区段长
BS
平均节间长
AIL
DH 相关系数r 0.71173 0.59625 0.62933 0.62424 0.56011
PP-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IF2 相关系数r 0.42004 0.27913 0.44481 0.08834 0.09174
PP-value <0.0001 <0.0001 <0.0001 0.23700 0.22060

表3

DH群体和IF2群体各性状间的相关系数"

性状
Trait
株高
PH
第1分枝高
BH
主花序长
MFL
分枝区段长
BS
平均节间长
AIL
2010
株高PH 0.37004** 0.38887** 0.29524** 0.15032*
第1分枝高BH 0.05025 -0.16880* -0.58786** -0.52719**
主花序长MFL 0.56513** 0.00826 -0.13980 -0.11797
分枝区段长BS 0.46819** -0.70657** -0.12289* 0.78030**
平均节间长AIL 0.40174** -0.66423** -0.03479 0.85850**
2011
株高PH 0.50163** 0.55404** 0.24941** 0.19897**
第1分枝高BH -0.09142 -0.06965 -0.38554** -0.31154**
主花序长MFL 0.42398** 0.00725 -0.18439** 0.08776
分枝区段长BS 0.56407** -0.72415** -0.22219** 0.55513**
平均节间长AIL 0.51891** -0.71135** -0.10067 0.89344**

图 3

株高相关性状QTL在连锁群上的分布"

表4

在DH群体和IF2群体中检测到的株高相关性状QTL"

QTL名称
QTL name
位置
Position
加性效应
Additive
贡献率
R2(%)
LOD值
LOD score
置信区间
Confidence interval
qPH-A02-1-2010IF2 0.01 -7.4375 5.8060 2.6304 0-4.6
qPH-A02-2011DH 46.01 -2.4401 3.8457 2.6262 45.0-50.3
qPH-A02-2-2010IF2 6.81 -8.4548 8.5134 4.1982 5.9-7.3
qPH-A09-2010DH 55.81 -3.3042 5.6678 3.0804 53.3-59.3
qPH-C01-1-2010DH# 36.01 3.5905 6.8271 4.7230 35.8-36.4
qPH-C01-1-2011DH# 35.01 3.6424 9.0971 6.1127 34.9-36.1
qPH-C01-2010IF2 27.41 2.1962 5.2034 2.9173 25.3-29.9
qPH-C01-2-2010DH# 41.61 5.0102 13.3370 5.1212 40.6-42.9
qPH-C01-2-2011DH# 41.61 4.1570 11.7177 4.7139 40.3-42.9
qPH-C02-2011IF2 20.91 -3.6501 6.3109 3.7199 19.9-22.4
qPH-C06-2010DH 0.01 -2.7798 3.8592 2.7071 0-4.9
qMFL-A01-2010DH 10.31 2.5968 4.6167 3.0365 9.1-13.8
qMFL-A02-1-2011DH# 4.21 -2.6647 4.8134 3.5387 1.2-7.2
qMFL-A02-2011IF2# 7.31 -4.3769 3.8153 2.6593 5.7-7.9
qMFL-A02-2-2011DH 10.91 -2.6231 6.6987 4.0032 9.4-13.0
qMFL-A05-1-2011DH 123.21 1.8066 4.0520 3.0253 118.5-125.2
qMFL-A05-2-2011DH 130.91 1.8008 4.0021 2.7637 125.2-136.9
qMFL-A08-1-2011DH 10.81 -1.9022 4.5131 3.1474 8.5-18.8
qMFL-A08-2-2011DH 21.11 -1.9707 4.9151 3.6317 19.5-23.8
qMFL-A09-1-2010DH 10.51 -2.8631 5.3042 2.5221 3.8-12.5
qMFL-A09-2-2010DH 98.81 -2.5999 4.4557 3.0245 94.7-99.8
qMFL-C01-1-2011DH 26.41 1.9285 4.2338 2.6209 25.6-27.4
qMFL-C01-2010IF2# 29.31 1.6312 5.6672 3.0765 28.8-30.1
qMFL-C01-2011IF2# 29.31 1.9919 6.5915 3.9887 28.7-29.9
qMFL-C01-2-2011DH 31.71 2.7168 9.5163 4.4021 30.7-33.1
qMFL-C03-1-2011DH# 15.31 2.2077 5.3394 3.4259 14.8-19.8
qMFL-C03-2011IF2# 17.61 1.9917 6.5247 4.2625 16.2-18.8
qMFL-C03-2-2011DH 24.81 2.3843 5.5196 3.7784 24.7-30.4
qMFL-C05-2010IF2 6.81 1.7169 5.3536 3.0272 2.9-9.2
qBH-A01-1-2011IF2 8.91 2.3066 5.0922 2.7862 8.0-10.6
qBH-A01-2-2011IF2 14.11 2.3209 4.8624 2.9737 13.5-15.4
qBH-A03-2010DH 76.51 2.5367 6.7539 4.3702 68.6-79.5
qBH-A09-2011DH 58.91 -3.0668 5.9761 3.9711 57.5-59.5
qBH-C01-1-2010DH 31.71 3.9053 16.5377 7.1960 30.7-32.5
qBH-C01-2011DH 26.41 -3.5477 7.1231 4.0033 25.3-27.6
qBH-C01-2011IF2 29.31 -1.7200 4.0073 2.5198 27.7-30.7
qBH-C01-2-2010DH 37.01 3.8418 15.6741 6.6958 36.5-37.1
qBH-C03-1-2010DH 17.61 2.7300 6.8083 4.9960 15.0-18.6
qBH-C03-2-2010DH 24.81 3.6189 10.7972 7.3851 22.3-25.9
qBH-C03-3-2010DH 30.11 2.9942 7.7415 4.6107 28.1-33.5
qBS-A07-2011DH 6.31 -4.1923 5.2783 3.0509 2.7-8.8
qBS-A09-2010DH 10.51 4.5982 8.0987 3.3536 6.5-12.1
qBS-C03-2011IF2 12.61 -2.0515 7.4363 4.5989 11.0-13.1
qBS-C04-2010DH 11.31 -3.7725 4.7862 2.7486 3.8-17.9
qAIL-A07-2011DH 5.31 -0.5257 4.2949 2.7073 3.3-10.1
qAIL-C05-2010IF2 3.81 -0.3883 6.0439 2.8258 2.9-7.1
[1] 周清元, 李军庆, 崔翠, 卜海东, 阴涛, 颜银华, 李加纳, 张正圣. 油菜半矮杆新品系10D130株型性状的遗传分析. 作物学报, 2013, 39: 207-215
Zhou Q Y, Li J Q, Cui C, Bo H D, Yin T, Yan Y H, Li J N, Zhang Z S.Genetic analysis of plant type in semi-dwarf new line (10D130) of rapeseed. Acta Agron Sin, 2013, 39: 207-215 (in Chinese with English abstract)
[2] 刘后利. 油菜遗传育种学. 北京: 中国农业大学出版社, 2000. pp 32-45
Liu H L.Genetics and Breeding of Rapeseed. Beijing: China Agricultural University Press, 2000. pp 32-45
[3] Islam N, Evans E.InXuence of lodging and nitrogen rate on the yield and yield attributes of oilseed rape ( Brassica napus L.).Theor Appl Genet, 1994, 88: 530-534
[4] Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y.Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016, 6: 21625
[5] 易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006, 32: 676-682
Yi B, Chen W, Ma C Z, Fu T D, Tu J X.Mapping of quantitative trait loci for yield and yield components in Brassica napus L.Acta Agron Sin, 2006, 32: 676-682 (in Chinese with English abstract)
[6] 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊. 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2015, 41: 1027-1033
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z.Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening in Brassica napus L.Acta Agron Sin, 2015, 41: 1027-1033 (in Chinese with English abstract)
[7] Cai D, Xiao ·Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K.Association mapping of six yield‑related traits in rapeseed ( Brassica napus L.).Theor Appl Genet, 2014, 127: 85-96
[8] Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D.Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858
[9] Zhang S H, Fu T D, Zhu J C, Wang J P, Wen Y C, Ma C Z, Jiang Y Z.QTL mapping and epistasis analysis for plant height and height to the first branch in rapeseed ( Brassica napus L.).BIOTECHNOLOGY: Gene Clon Funct Anal, 2007, 2: 232-235
[10] Shi J Q, Li R Y, Qiu D, Jiang C C, Long Y, Morgan C, Nancroft I, Zhao J Y, Meng J L.Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009, 182: 851-861
[11] Shi T X, Li R Y, Zhao Z K, Ding G D, Long Y, Meng J L, Xu F S, Shi L.QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLoS One, 2013, 8: e54559
[12] Ding G D, Zhao Z K, Liao Y, Hu Y F, Shi L, Long Y, Xu F S.Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot, 2012, 109: 747-759
[13] Udall J A, Quijada P A, Lambert B, Osbom T C.Quantitative trait analysis of seed yield and other complex traits in hybrid spring rape seed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006, 113: 597-609
[14] Butruille D V, Guries R P, Osbom T C.Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L.Genetics, 1999, 153: 949-964
[15] Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D.Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858
[16] 张凤启, 刘越英, 程晓晖, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅. 利用高密度SNP标记定位甘蓝型油菜株高QTL. 中国油料作物学报, 2014, 36: 695-700
Zhang F Q, Liu Y Y, Cheng X H, Tong C B, Dong C H, Tang M Q, Huang J Y, Liu S Y.QTL mapping of plant height using high density SNP markers in Brassica napus. Chin J Oil Crop Sci, 2014, 36: 695-700 (in Chinese with English abstract)
[17] Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M.Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016, 7: 17
[18] Wang X, Wang H, Long Y, Liu L, Zhao Y, Tian J, Zhao W, Li B, Chen Li, Chao H, Li M.Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L.Theor Appl Genet, 2015, 128: 1175-1192
[19] Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F.Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid.Proc Natl Acad Sci USA, 2003, 100: 2574-2579
[20] Fu Y, Lu K, Qian L, Mei J, Wei D, Peng X, Xu X, Li J, Frauen M, Dreyer F, Snowdon R J, Qian W.Development of genic cleavage markers in association with seed glucosinolate content in canola.Theor Appl Genet, 2015, 128: 1029-1037
[21] Zeng Z B.Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci.Proc Natl Acad Sci USA, 1993, 90: 10972-10976
[22] Zeng Z B.Precision mapping of quantitative trait loci.Genetics, 1994, 136: 1457-1468
[23] Churchill G A, Doerge R W.Empirical threshold values for quantitative trait mapping.Genetics, 1994, 138: 963-971
[24] 李云, 付绍红, 杨进, 王继胜, 邹琼, 陈晓华, 陶兰蓉, 康泽明, 唐蓉, 张汝全. 甘蓝型油菜矮秆突变体bndf-1的遗传鉴定及利用潜力分析. 中国农学通报, 2013, 29(13): 173-177
Li Y, Fu S H, Yang J, Wang J S, Zou Q, Chen X H, Tao L R, Kang Z M, Tang R, Zhang R Q.The identification and application of dwarf mutation bndf-1 in Brassica napus. Chin Agric Sci Bull, 2013, 29(13): 173-177 (in Chinese with English abstract)
[25] Khush G S.Green revolution: the way forward.Nat Rev Genet, 2001, 2: 815-822
[26] Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S.Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought- stressed maize.Ann Bot, 2002, 89: 941
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[9] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[10] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[11] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[12] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[13] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[14] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[15] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!