欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (12): 1809-1817.doi: 10.3724/SP.J.1006.2018.01809

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

高丹草杂种及其亲本转录组SNP及等位基因特异性表达分析

董婧1,逯晓萍1,*(),张坤明1,薛春雷1,张瑞霞2   

  1. 1内蒙古农业大学农学院, 内蒙古呼和浩特010019
    2呼和浩特市种子管理站, 内蒙古呼和浩特 010020
  • 收稿日期:2017-12-21 接受日期:2018-07-20 出版日期:2018-12-12 网络出版日期:2018-07-25
  • 通讯作者: 逯晓萍
  • 基金资助:
    本研究由国家自然科学基金项目(31160302);本研究由国家自然科学基金项目(31460375);呼和浩特市科技计划项目(2012-重-计-8-2)资助

Analysis of SNP and Allele-specific Expression in Transcriptome of Sorghum bicolor × Sorghum sudanense and Their Parents

Jing DONG1,Xiao-Ping LU1,*(),Kun-Ming ZHANG1,Chun-Lei XUE1,Rui-Xia ZHANG2   

  1. 1 Agronomy College, Inner Mongolia Agricultural University, Huhhot 010019, Inner Mongolia, China
    2 Huhhot Seed Management Station, Huhhot 010020, Inner Mongolia, China
  • Received:2017-12-21 Accepted:2018-07-20 Published:2018-12-12 Published online:2018-07-25
  • Contact: Xiao-Ping LU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31160302);This study was supported by the National Natural Science Foundation of China(31460375);the Science and Technology Plan Projects of Hohhot (2012-major-plans-8-2)

摘要:

为探究高丹草杂种及其亲本间单核苷酸变异与其杂种优势形成的关系, 以高丹草杂种及其亲本的根、茎和叶组织为试验材料, 采用Illumina Hiseq 2000进行转录组测序。对平均长度达58 122 160 bp的各测序样品序列信息进行检测后, 均检测到不少于58 000个SNP位点, 位于基因内的SNP个数显著多于位于基因间的SNP个数, SNP发生频率为1/741 bp, 平均转换颠换比为1.00∶1.53。在所有变异类型中, C/T和G/A发生频率最高。经过筛选得到198 (21%)个极显著偏向性等位基因表达偏向性SNP, 其中65%偏向父本白壳苏丹草, 并且很多在白壳苏丹草中具有高水平基因表达的转录本, 在高丹草杂种中的等位基因表达也偏向白壳苏丹草。在3种组织中, 分别有79%、78%和82%转录本的2个亲本等位基因表现出相对平衡的表达水平, 说明与顺式作用相比, 反式作用可能更多地影响了等位基因的特异性表达。选择6个极显著偏向性等位基因表达偏向性SNP-unigene进行qRT-PCR验证, 这些基因的差异基因表达模式与RNA-Seq分析结果一致。本研究采用Illumina 测序技术研究等位基因表达, 为高丹草杂种优势分析提供了依据, 也为其他饲草作物的相关研究提供了理论参考。

关键词: 高丹草, 杂种优势, 转录组, 单核苷酸多态性, 功能注释

Abstract:

Taking root, stem and leaf tissues of S. sudanense hybrids and their parents as test materials, Illumina Hiseq 2000 was used to analyze the transcriptome to explore the relationship between single nucleotide variation and heterosis in the hybrids of Sorghum bicolor × S. sudanense and their parents. About 58 000 SNP loci were detected from the sequencing samples with an average length of 58 122 160 bp. The number of genic SNP was significantly more than that of intergenic SNP. The frequency of SNP was 1/741 bp, and the conversion ratio of the average conversion was 1.00:1.53. Among all the types of variation, C/T and G/A had the highest frequency. After screening, 198 (21%) extremely significant biased alleles were expressed in bias SNP, and 65% of them were biased towards paternal white shell S. sudanense, and many of the transcriptional copies with high level gene expression in the white shell S. sudanense were also expressed in the Sorghum bicolorss × S. sudanense hybrid. The two parental alleles with 79%, 78%, and 82% transcripts showed a stable level of expression in the three tissues. It is suggested that the trans-acting may affect the specific expression of the allele more than the cis-acting. Six highly-biased SNP-unigene alleles were selected for qRT-PCR validation. The differential gene expression pattern of these genes was consistent with that of RNA-Seq analysis. Illumina sequencing technology was used to study allelic expression in this study, provides a basis for heterosis analysis of Sorghum bicolor × S. sudanense and also a theoretical reference for related studies of other forage crops.

Key words: Sorghum bicolor × S. sudanense;, heterosis, transcriptomics, single nucleotide polymorphism, functional annotion

表 1

材料编号及名称"

编号
No.
材料名称(组织)
Material name (tissue)
编号
No.
材料名称(组织)
Material name (tissue)
1 白壳苏丹草(根I) White shell Sudan grass (root I) 15 高粱11A (叶II) Sorghum 11A (leaf II)
2 白壳苏丹草(茎I) White shell Sudan grass (stem I) 16 F1 (根II) F1 (root II)
3 白壳苏丹草(叶I) White shell Sudan grass (leaf I) 17 F1 (茎II) F1 (stem II)
4 高粱11A (根I) Sorghum 11A (root I) 18 F1 (叶II) F1 (leaf II)
5 高粱11A (茎I) Sorghum 11A (stem I) 19 白壳苏丹草(根 III) White shell Sudan grass (root III)
6 高粱11A (叶I) Sorghum 11A (leaf I) 20 白壳苏丹草(茎 III) White shell Sudan grass (stem III)
7 F1 (根I) F1 (root I) 21 白壳苏丹草(叶 III) White shell Sudan grass (leaf III)
8 F1 (茎I) F1 (stem I) 22 高粱11A (根 III) Sorghum 11A (root III)
9 F1 (叶I) F1 (leaf I) 23 高粱11A (茎 III) Sorghum 11A (stem III)
10 白壳苏丹草(根II) White shell Sudan grass (root II) 24 高粱11A (叶 III) Sorghum 11A (leaf III)
11 白壳苏丹草(茎II) White shell Sudan grass (stem II) 25 F1 (根III) F1 (root III)
12 白壳苏丹草(叶II) White shell Sudan grass (leaf II) 26 F1 (茎III) F1 (stem III)
13 高粱11A (根II) Sorghum 11A (root II) 27 F1 (叶III) F1 (leaf III)
14 高粱11A (茎II) Sorghum 11A (stem II)

表2

SNP位点统计表"

材料编号
Material number
总读长
Total reads
SNP数
SNP number
基因内SNP
Genic SNP
基因间SNP
Intergenic SNP
转换
Transition (%)
颠换
Transversion (%)
杂合型
Heterozygosity (%)
1 63 420 052 64 836 59 809 5027 60.19 39.81 10.11
2 59 951 742 71 331 66 793 4538 60.20 39.80 8.32
3 57 812 158 61 330 57 316 4014 60.69 39.31 9.28
4 50 219 934 62 583 57 875 4708 60.56 39.44 23.85
5 50 930 220 70 397 66 138 4259 60.25 39.75 21.43
6 47 779 664 58 033 54 415 3618 60.54 39.46 23.60
7 58 868 406 68 886 64 489 4397 60.09 39.91 22.36
8 64 250 174 65 248 61 364 3884 60.25 39.75 16.52
9 72 335 474 64 670 60 166 4504 60.60 39.40 16.67
10 53 344 576 99 040 92 057 6983 60.30 39.70 31.46
11 58 821 334 107 700 100 064 7636 60.35 39.65 31.87
12 61 991 178 84 379 78 540 5839 60.27 39.73 28.42
13 49 206 246 99 539 92 695 6844 60.46 39.54 34.03
14 54 672 342 98 391 91 657 6734 60.39 39.61 33.68
15 61 319 270 81 486 75 946 5540 60.36 39.64 30.89
16 56 744 190 109 658 102 075 7583 60.26 39.74 31.77
材料编号
Material number
总读长
Total reads
SNP数
SNP number
基因内SNP
Genic SNP
基因间SNP
Intergenic SNP
转换
Transition (%)
颠换
Transversion (%)
杂合型
Heterozygosity (%)
17 59 733 160 95 723 89 741 5982 60.17 39.83 33.54
18 72 158 580 81 267 75 641 5626 60.34 39.66 29.79
19 78 016 508 95 205 87 506 7699 60.50 39.50 36.17
20 53 568 218 82 079 77 412 4667 60.47 39.53 30.25
21 49 779 342 73 905 69 659 4246 60.75 39.25 30.17
22 59 151 356 89 068 82 884 6184 60.36 39.64 38.21
23 50 348 066 75 276 70 970 4306 60.23 39.77 36.31
24 51 025 424 72 978 68 695 4283 60.48 39.52 36.28
25 55 095 668 81 945 76 448 5497 60.75 39.25 31.16
26 57 676 612 87 673 82 696 4977 60.37 39.63 31.16
27 61 078 424 78 864 74 174 4690 60.74 39.26 30.43

图1

SNP类型统计"

图2

SNP-unigene Nr比对结果 括号内为该类型unigene数及其在所有unigene中所占比例。"

图3

SNP-unigene COG比对结果"

图4

等位基因表达偏向性SNP"

图5

高丹草杂种中等位基因表达偏向性"

表3

10个等位基因表达偏向性SNPs"

编号
No.
基因名称
Gene ID
位置
Position
F1 深度
Depth
染色体
Chr.
1 Sobic.001G191200 16936477 A A R 477 1
2 Sobic.001G293800 50043262 G R R 394 1
3 Sobic.002G215700 60749644 C C S 518 2
4 Sobic.002G215700 60750650 T T Y 476 2
5 Sobic.003G085700 7390162 T T W 353 3
6 Sobic.003G206800 53754265 T Y Y 361 3
7 Sobic.003G314500 64282541 T T K 492 3
8 Sobic.003G314500 64279654 C C Y 419 3
9 Sobic.004G225100 56832538 C C Y 476 4
10 Sobic.004G253000 59205755 T T Y 335 4

图6

高丹草杂种及其亲本3个组织中各基因表达量"

[1] 詹秋文, 钱章强 . 高粱与苏丹草杂种优势利用的研究. 作物学报, 2004,30:73-77
doi: 10.3321/j.issn:0496-3490.2004.01.014
Zhan Q W, Qian Z Q . Research of Sorghum-Sudan grass of heterosis utilization. Acta Agron Sin, 2004,30:73-77 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2004.01.014
[2] Lu X P, Yun J F, Gao C P . Quantitative trait loci analysis of economically important traits inSorghum bicolor × S. sudanense hybrid. Can J Plant Sci, 2011,9:81-90
[3] Arnold M L . Natural hybridization and the evolution of domesticated, pest and disease organisms. Mol Ecol, 2004,13:997-1007
doi: 10.1111/j.1365-294X.2004.02145.x pmid: 15078439
[4] Hegarty M J, Hiscock S J . Hybrid speciation in plants: new insights from molecular studies. New Phytol, 2004,165:411-423
doi: 10.1111/j.1469-8137.2004.01253.x pmid: 15720652
[5] Rieseberg L H . Hybrid origins of plant species. Annu Rev Ecol Evol Syst, 1997,28:359-389
doi: 10.1146/annurev.ecolsys.28.1.359
[6] Rieseberg L H, Raymond O, Rosenthal D M . Major ecological transitions in wild sunflowers facilitated by hybridization. Science, 2003,301:1211-1216
doi: 10.1126/science.1086949
[7] 曹廷杰, 谢菁忠, 吴秋红, 陈永兴, 王振忠, 赵虹, 王西成, 詹克瑟, 徐如强, 王际睿, 罗明成, 刘志勇 . 河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析. 作物学报, 2015,41:197-206
Cao Y J, Xie J Z, Wu Q H, Chen Y X, Wang Z H, Zhao H, Wang X C, Zhan K S, Xu R Q, Wang J R, Luo M C, Liu Z Y . Genetic diversity of registered wheat varieties in Henan province based on pedigree and single-nucleotide polymorphism. Acta Agron Sin, 2015,41:197-206 (in Chinese with English abstract)
[8] Birchler J A, Auger D L, Riddle N C . In search of the molecular basis of heterosis. Plant Cell, 2003,15:2236-2239
doi: 10.1105/tpc.151030 pmid: 14523245
[9] 曲存民, 卢坤, 刘水燕, 卜海东, 付福友, 王瑞, 徐新福, 李加纳 . 黄黑籽甘蓝型油菜类黄酮途径基因SNP位点检测分析. 作物学报, 2014,40:1914-1924
doi: 10.3724/SP.J.1006.2014.01914
Qu C M, Lu K, Liu S Y, Bu H D, Fu F Y, Wang R, Xu X F, Li J N . SNP detection and analysis of genes for flavonoid pathway in yellow-and black-seeded Brassica napus L. Acta Agron Sin, 2014,40:1914-1924 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01914
[10] Springer N M, Stupar R M . Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Res, 2007,17:264-275
doi: 10.1016/j.aquatox.2007.07.004 pmid: 17255553
[11] Stupar R M, Spirnger N M . Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics, 2006,173:2199-2210
doi: 10.1534/genetics.106.060699
[12] 许家磊 . 基于甘薯徐781和徐薯18转录组测序的SNP标记开发. 中国农业科学院硕士学位论文,北京, 2015
doi: 10.7666/d.Y2787474
Xu J L . Development of SNP Markers Based on Transcriptome Sequencing of Xu 781 and Xushu 18 in Sweetpotato, Ipomoea batatas (L.) Lam. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2015 (in Chinese with English abstract)
doi: 10.7666/d.Y2787474
[13] Pastinen T . Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet, 2010,11:533-538
doi: 10.1038/nrg2815 pmid: 20567245
[14] 石璇, 王茹媛, 唐君, 李宗芸, 罗永海 . 利用简化基因组技术分析甘薯种间单核苷酸多态性. 作物学报, 2016,42:641-647
Shi X, Wang R Y, Tang J, Li Z Y, Luo Y H . Analysis of interspecific SNPs in sweetpotato using a reduced-representation genotyping technology. Acta Agron Sin, 2016,42:641-647 (in Chinese with English abstract)
[15] 刘峰, 谢玲玲, 弭宝彬, 欧阳娴, 茆振川, 邹学校, 谢丙炎 . 辣椒转录组SNP挖掘及多态性分析. 园艺学报, 2014,41:343-348
doi: 10.3969/j.issn.0513-353X.2014.02.016
Liu F, Xie L L, Mi B B, Ouyang X, Mao Z C, Zou X X, Xie B Y . SNP mining in pepper transcriptome and the polymorphism analysis. Acta Hortic Sin, 2014,41:343-348 (in Chinese with English abstract)
doi: 10.3969/j.issn.0513-353X.2014.02.016
[16] Tirosh I, Reikhav S, Levy A A . A yeast hybrid provides insight into the evolution of gene expression. Science, 2009,324:659-662
doi: 10.1126/science.1169766 pmid: 19407207
[17] Zhang X, Borevitz J O . Global analysis of allele-specific expression in Arabidopsis thaliana. Genetics, 2009,182:943-954
doi: 10.1534/genetics.109.103499 pmid: 19474198
[18] Zhai R, Feng Y, Wang H . Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics, 2013,16:19
doi: 10.1186/1471-2164-14-19 pmid: 23324257
[19] Zhang M, Li N, He W . Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. Plant J, 2016,85:424-436
doi: 10.1111/tpj.13116 pmid: 26718755
[20] 逯晓萍, 云锦凤, 肖宇红, 米福贵, 李美娜, 尹利 . 高丹草( 高粱×苏丹草)产量及其构成因素的QTL分析. 华北农学报, 2007,22(4):80-85
doi: 10.7668/hbnxb.2007.04.019
Lu X P, Yun J F, Xiao Y H, Mi F G, Li M N, Yin L . QTL localization and analysis on yield and related factors of Sorghum×Sudan grass. Acta Agric Boreali-Sin, 2007,22(4):80-85 (in Chinese with English abstract)
doi: 10.7668/hbnxb.2007.04.019
[21] 逯晓萍, 刘丹丹, 王树彦, 米福贵, 韩平安, 吕二锁 . 高丹草遗传效应与杂种表现预测模型. 作物学报, 2014,40:466-475
Lu X P, Liu D D, Wang S Y, Mi F G, Han P A, Lyu E S . Genetic effects and heterosis prediction model of Sorghum bicolor × S. sudanense grass. Acta Agron Sin, 2014,40:466-475 (in Chinese with English abstract)
[22] 董婧, 逯晓萍, 米福贵, 王树彦, 何丽君, 韩平安, 薛春雷, 丛梦露, 李俊伟 . 高丹草杂种和亲本叶片基因差异表达研究. 植物遗传资源学报, 2016,17:738-747
doi: 10.13430/j.cnki.jpgr.2016.04.020
Dong J, Lu X P, Mi F G, Wang S Y, He L J, Han P A, Xue C L, Cong M L, Li J W . Relationship between differential gene expression patterns in leaves of the hybrids and their parents of Sorghum sudanense. J Plant Genet Resour, 2016,17:738-747 (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.04.020
[23] Han P A, Lu X P, Mi F G, Dong J, Xue C L, Li J K, Han B, Zhang X Y . Proteomic analysis of heterosis in the leaves of Sorghum-Sudan grass hybrids. Acta Biochim Biophys Sin, 2016,48:161-173
doi: 10.1093/abbs/gmv126 pmid: 26792642
[24] Kim D, Pertea G, Trapnell C . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 2013,14:R36
doi: 10.1186/gb-2013-14-4-r36 pmid: 4053844
[25] McKenna A, Hanna M, Banks E . The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010,20:1297-1303
doi: 10.1101/gr.107524.110 pmid: 20644199
[26] Altschul S F, Madden T L, Zhang J . Gapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucl Acids Res, 1997,25:3389-3402
doi: 10.1093/nar/25.17.3389 pmid: 9254694
[27] Ashburner M, Ball C A, Blake J A . Gene ontology: tool for the unification of biology. Nat Genet, 2000,25:25-29
doi: 10.1038/75556
[28] Kanehisa M, Goto S, Kawashima S . The KEGG resource for deciphering the genome. Nucl Acids Res, 2004,32:277-280
doi: 10.1093/nar/gkh063
[29] Tatusov R L, Galperin M Y, Natale D A . The COG database: a tool for genome scale analysis of protein functions and evolution. Nucl Acids Res, 2000,28:33-36
doi: 10.1093/nar/28.1.33 pmid: 102395
[30] 杨侃侃 . 基于RNA-seq技术对西瓜果皮色泽差异表达基因的分析. 江西农业大学硕士学位论文,江西南昌, 2015
Yang K K . Analysis of Genes Differentially Expressed in Watermelon Rind Color Based on RNA-seq. MS Thesis of Jiangxi Agricultural University, Nanchang,China, 2015 ( in Chinese with English abstract)
[31] 杜玮南, 孙红霞, 方德福 . 单核苷酸多态性的研究进展. 中国医学科学院学报, 2000,22:392-394
Du W N, Sun H X, Fang D F . The research development of single nucleotide polymorphism. Acta Acad Med Sin, 2000,22:392-394 (in Chinese with English abstract)
[32] Bransteitter R, Pham P, Scharff M D . Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Nat Acad Sci USA, 2003,100:4102-4107
doi: 10.1073/pnas.0730835100
[33] Chodavarapu R K, Feng S, Ding B . Transcriptome and methylome interactions in rice hybrids. Proc Nat Acad Sci USA, 2012,109:12040-12045
doi: 10.1073/pnas.1209297109
[34] Morgan H D, Dean W, Coker H A . Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem, 2004,279:52353-52360
doi: 10.1074/jbc.M407695200
[35] Yebra M J, Bhagwat A S . A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine. Biochemistry, 1995,34:14752-14757
doi: 10.1021/bi00045a016 pmid: 7578083
[36] He G M, Zhu X P, Elling A A . Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell, 2010,22:17-33
doi: 10.1105/tpc.109.072041 pmid: 20086188
[37] Guo M, Rupe M A, Zinselmeier C . Allelic variation of gene expression in maize hybrids. Plant Cell, 2004,16:1707-1716
doi: 10.1105/tpc.022087
[38] Zhuang Y, Adams K L . Extensive allelic variation in gene expression in populus F1 hybrids. Nat Genet, 2007,177:1987-1996
doi: 10.1534/genetics.107.080325
[39] 翟荣荣 . 超级稻协优9308根系杂种优势的转录组分析. 中国农业科学院博士学位论文,北京, 2013
Zhai R R . Transcriptome Analysis of Root Heterosis in a Super Hybrid Rice Xieyou 9308 by RNA-Seq. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2013 ( in Chinese with English abstract)
[40] Springer N M, Stupar R M . Allelic-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell, 2007,19:2391-2402
doi: 10.1105/tpc.107.052258 pmid: 17693532
[41] Wittkopp P J, Haerum B K, Clark A G . Evolutionary changes in cis and trans gene regulation. Nature, 2004,430:85-88
[42] Shen Y, Catchen J, Garcia T . Identification of transcriptome SNPs between Xiphophorus lines and species for assessing allele specific gene expression within F1 interspecies hybrids. Comp Biochem Physiol C Toxicol Pharmacol, 2012,155:102-108
doi: 10.1016/j.cbpc.2011.03.012 pmid: 3178741
[1] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[2] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[3] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[4] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[5] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[6] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[7] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[8] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[9] 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133.
[10] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[11] 陶爱芬,游梓翊,徐建堂,林荔辉,张立武,祁建民,方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996.
[12] 彭勃,赵晓雷,王奕,袁文娅,李春辉,李永祥,张登峰,石云素,宋燕春,王天宇,黎裕. 玉米叶向值的全基因组关联分析[J]. 作物学报, 2020, 46(6): 819-831.
[13] 王瑞莉,王刘艳,叶桑,郜欢欢,雷维,吴家怡,袁芳,孟丽姣,唐章林,李加纳,周清元,崔翠. 铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL定位[J]. 作物学报, 2020, 46(6): 832-843.
[14] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[15] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块[J]. 作物学报, 2020, 46(3): 385-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!