欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 55-69.doi: 10.3724/SP.J.1006.2019.84001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于iTRAQ技术的甘蔗受黑穗病菌侵染蛋白组分析

宋奇琦1(),Pratiksha SINGH2,Rajesh Kumar SINGH2,宋修鹏1,李海碧1,农友业2,杨丽涛1,2,*(),李杨瑞1,2,*()   

  1. 1 中国农业科学院甘蔗研究中心 / 广西壮族自治区农业科学院 / 农业部广西甘蔗生物技术与遗传改良重点实验室 / 广西甘蔗遗传改良重点实验室, 广西南宁530007
    2 广西大学农学院 / 亚热带农业生物保护与利用国家重点实验室, 广西南宁530005
  • 收稿日期:2018-01-04 接受日期:2018-08-20 出版日期:2018-09-26 网络出版日期:2018-09-26
  • 通讯作者: 杨丽涛,李杨瑞
  • 基金资助:
    本研究由广西八桂学者和特聘专家专项经费项目(GKAD17195100);广西科技基地和人才专项(桂科AD17195100);国家现代农业产业技术体系广西甘蔗创新团队项目(gjnytxgxcxtd-03-01);广西自然科学基金项目(2015GXNSFBA139060);广西甘蔗遗传改良重点实验室项目资助(16-K-02-01)

Proteomic analysis of sugarcane-Sporisorium scitamineum interaction based on iTRAQ technique

Qi-Qi SONG1(),SINGH Pratiksha2,Kumar SINGH Rajesh2,Xiu-Peng SONG1,Hai-Bi LI1,You-Ye NONG2,Li-Tao YANG1,2,*(),Yang-Rui LI1,2,*()   

  1. 1 Sugarcane Research Center, Chinese Academy of Agricultural Sciences / Guangxi Academy of Agricultural Sciences / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, Guangxi, China
    2 Agricultural College, Guangxi University / State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
  • Received:2018-01-04 Accepted:2018-08-20 Published:2018-09-26 Published online:2018-09-26
  • Contact: Li-Tao YANG,Yang-Rui LI
  • Supported by:
    This study was supported by the Guangxi Special Fund for Scientific Base and Talent(GKAD17195100);the Special Funds for Bagui Scholars and Distinguished Experts in Guangxi(桂科AD17195100);Guangxi Sugarcane Innovation Team of National Agricultural Industry Technology System(gjnytxgxcxtd-03-01);Guangxi Natural Science Fundation(2015GXNSFBA139060);Guangxi Key Laboratory of Sugarcane Genetic Improvement(16-K-02-01)

摘要:

黑穗病已成为影响甘蔗产量和含糖量的重要病害。为从蛋白质水平探讨甘蔗应答黑穗病菌的分子机制, 本实验选用抗黑穗病品种桂糖29号和感黑穗病品种崖城71-374, 处理组用浸渍法接种黑穗病菌, 对照组用无菌水模拟接菌, 在接种180 d后采取甘蔗叶片, 使用iTRAQ技术对蛋白质组进行研究。结果显示, 桂糖29号中有定量信息蛋白1429个, 差异表达蛋白290个, 其中上调表达蛋白153个, 下调表达蛋白137个; 崖城71-374中有定量信息蛋白1576个, 差异表达蛋白125个, 其中上调表达蛋白55个, 下调表达蛋白70个。抗病品种桂糖29号中差异表达蛋白数多于感病品种崖城71-374, 且桂糖29号在KEGG富集到的代谢通路也更多, 可能被侵染后抗病品种的免疫调节机制更为复杂, 涉及的调控通路网更广。经对光合作用、抗氧化系统、钙信号、苯丙烷类代谢、激素相关差异表达蛋白及共有差异表达蛋白分析, 发现光合作用通路、ROS、ABA、钙信号通路相关蛋白在2个品种中多为上调表达, 且桂糖29号的上调表达蛋白数多于崖城71-374, 可能参与甘蔗后期对黑穗病的应答。植物抗病是一个复杂的过程, 需要多种功能与途径参与调控。在本实验中没有发现苯丙烷类代谢途径及一些酶(谷胱甘肽过氧化物酶、抗坏血酸过氧化物酶、超氧化物歧化酶、谷胱甘肽硫转移酶、过氧化氢酶)、激素(生长素、乙烯、赤霉素)参与甘蔗的抗病过程, 可能与采样时间有关。

关键词: 甘蔗, 黑穗病, iTRAQ, 蛋白质组

Abstract:

Sugarcane smut has become an important disease affecting sugarcane yield and sugar content. In order to investigate the molecular mechanism of sugarcane responding to smut at protein level, the smut-resistant variety GT29 and the smut-susceptible variety Yacheng 71-374 were used in this study. Both varieties were inoculated with the teliospore suspension of smut pathogen by dipping method whereas the control was treated with sterile water. Leaf samples were collected and used for proteomic analysis by iTRAQ technique at 180 days after treatment. The that 1429 proteins presented in GT29 with quantitative information, including 290 differentially expressed proteins with 153 up-regulated and 137 down-regulated; while 1576 proteins in Yacheng 71-374 with quantitative information, including 125 differentially expressed proteins with 55 up-regulated and 70 down-regulated. The number of differentially expressed proteins in resistant variety was higher than that in susceptible variety, and GT29 enriched more metabolic pathways in KEGG, indicating that the immunomodulatory mechanism of the resistant variety may be more complicated, and the regulatory network involved in response was broader. Through the analysis of photosynthesis, antioxidant system, calcium signal, phenylpropane metabolism, hormone related differential expressed protein and co-owned differentially expressed protein, it was found that the photosynthesis pathway, ROS, ABA, calcium signal pathway related protein were up-regulated in both varieties. The up-regulated expressed proteins were more in GT29 than in Yacheng 71-374, which may be involved in resistance response in sugarcane against smut pathogen at later growth stage. Plant disease resistance is a complex process that requires multiple functions and pathways to participate in regulation. The phenylpropanoid metabolic pathway, enzymes GPX, APX, SOD, GST, and CAT, and hormones IAA, ETH, and GA were not found to be involved in the disease resistance process of sugarcane.

Key words: sugarcane, smut, iTRAQ, proteomics

图1

对照和接种黑穗病菌甘蔗DNA的PCR扩增产物电泳图 M: molecular size marker (100~5000 bp); P: 黑穗病孢子DNA正对照; N: 无菌水负对照; G(T): GT29处理; G(C): GT29 对照; Y(T): Yacheng 71-374处理; Y(C): Yacheng 71-374对照。"

表1

2个甘蔗品种中鉴定到的肽段和蛋白数"

品种
Variety
总谱图数
Total profiles
鉴定谱图数
Identified profiles
鉴定肽段数
Identified peptides
鉴定蛋白数
Identified proteins
定量蛋白数
Quantified proteins
GT29 112 817 8009 3512 1452 1429
Yacheng 71-374 114 550 8832 3990 1594 1576

图2

GO注释分析"

"

分类
Category
GO ID 功能类别
Functional group
P-value
生物过程
Biological process
GO:0019684 Photosynthesis, light reaction 0
GO:0009765 Photosynthesis, light harvesting 0.0002
GO:0015979 Photosynthesis 0.0002
GO:0009772 Photosynthetic electron transport in photosystem II 0.0156
GO:0009767 Photosynthetic electron transport chain 0.0167
GO:0006412 Translation 0.0233
GO:0006091 Generation of precursor metabolites and energy 0.0283
GO:0043043 Peptide biosynthetic process 0.0315
GO:0022900 Electron transport chain 0.0342
GO:0006518 Peptide metabolic process 0.0347
GO:0034645 Cellular macromolecule biosynthetic process 0.0375
GO:0009059 Macromolecule biosynthetic process 0.0375
GO:0043604 Amide biosynthetic process 0.0381
GO:0043603 Cellular amide metabolic process 0.0418
GO:0044267 Cellular protein metabolic process 0.0484
分子功能
Molecular function
GO:0004478 Methionine adenosyltransferase activity 0.0140
GO:0004857 Enzyme inhibitor activity 0.0140
GO:0016859 Cis-trans isomerase activity 0.0145
GO:0003755 Peptidyl-prolyl cis-trans isomerase activity 0.0145
GO:0051536 Iron-sulfur cluster binding 0.0216
GO:0051540 Metal cluster binding 0.0216
GO:0030234 Enzyme regulator activity 0.0367
GO:0098772 Molecular function regulator 0.0465
细胞组分
Cellular component
GO:0016020 Membrane 0.0024
GO:0043228 Non-membrane-bounded organelle 0.0386
GO:0043232 Intracellular non-membrane-bounded organelle 0.0386
GO:0031224 Intrinsic component of membrane 0.0410

"

分类
Category
GO ID 功能类别
Functional group
P-value
生物过程
Biological process
GO:0006979 Response to oxidative stress 0.0086
GO:0019222 Regulation of metabolic process 0.0094
GO:0006560 Proline metabolic process 0.0151
GO:0006561 Proline biosynthetic process 0.0151
GO:0060255 Regulation of macromolecule metabolic process 0.0244
GO:0031323 Regulation of cellular metabolic process 0.0301
GO:0055114 Oxidation-reduction process 0.0465
分子功能
Molecular function
GO:0004097 Catechol oxidase activity 0.0039
GO:0016841 Ammonia-lyase activity 0.0039
GO:0016682 Oxidoreductase activity, acting on diphenols and related
substances as donors, oxygen as acceptor
0.0039
GO:0004089 Carbonate dehydratase activity 0.0042
GO:0016684 Oxidoreductase activity, acting on peroxide as acceptor 0.0057
GO:0004601 Peroxidase activity 0.0057
GO:0016829 Lyase activity 0.0083
GO:0016491 Oxidoreductase activity 0.0107
GO:0016840 Carbon-nitrogen lyase activity 0.0113
GO:0016209 Antioxidant activity 0.0154
GO:0020037 Heme binding 0.0174
GO:0046872 Metal ion binding 0.0187
GO:0046914 Transition metal ion binding 0.0208
GO:0043169 Cation binding 0.0242
GO:0046906 Tetrapyrrole binding 0.0244
GO:0045735 Nutrient reservoir activity 0.0347
GO:0016679 Oxidoreductase activity, acting on diphenols and related
substances as donors
0.0347
GO:0004611 Phosphoenolpyruvate carboxykinase activity 0.0347
GO:0008964 Phosphoenolpyruvate carboxylase activity 0.0347
GO:0016835 Carbon-oxygen lyase activity 0.0385
细胞组分
Cellular component
GO:0009521 Photosystem 0.0195
GO:0034357 Photosynthetic membrane 0.0266
GO:0044436 Thylakoid part 0.0266
GO:0009522 Photosystem I 0.0281
GO:0009579 Thylakoid 0.0307
GO:0009538 Photosystem I reaction center 0.0357

表2

光合作用相关差异表达蛋白"

蛋白ID
Protein ID
蛋白名称
Protein name
差异倍数 Fold change
GT29 Yacheng 71-374
c54318_g1;orf1 光系统I反应中心亚基II Photosystem I reaction center subunit II 1.2995↑ 1.2562↑
c69501_g1;orf1 光系统I PsaH, 反应中心亚基III Photosystem I PsaH, reaction centre subunit III 1.9614↑ 0.9303
c48673_g1;orf1 光系统I反应中心亚基IV A Photosystem I reaction center subunit IV A 1.1149 1.3041↑
c56023_g1;orf1 光系统I反应中心亚基V Photosystem I reaction center subunit V 1.5387↑ 1.0456
c43081_g1;orf1 光系统I PsaH, 反应中心亚基VI Photosystem I PsaH, reaction centre subunit VI 0.8432 1.2040↑
c129327_g1;orf1 光系统I亚基VII Subunit VII of photosystem I 1.1871 1.2700↑
c55121_g1;orf1 光系统I反应中心亚基N Photosystem I reaction center subunit N 1.0602 1.4252↑
c56941_g1;orf1 光系统I反应中心亚基XI Photosystem I reaction center subunit XI 1.3609↑ 1.1204
c32636_g1;orf1 铁氧还蛋白[2Fe-2S] Ferredoxin[2Fe-2S] 0.7977↓ 1.0785
c70387_g2;orf1 光系统I组装蛋白ycf4 Photosystem I assembly protein ycf4 1.2823↑ 0.7661↓
c73345_g1;orf1 叶绿素a-b结合蛋白8 Chlorophyll a-b binding protein 8 0.8225↓ 1.1336
c99995_g1;orf1 叶绿素a-b结合蛋白CP26 Chlorophyll a-b binding protein CP26 0.9317 0.7892↓
c52958_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.3946↑ 1.2335↑
c66930_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.5718↑ 1.1641
c69028_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 2.4059↑ 1.1324
c51419_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.0915 1.3043↑
c55759_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.9421↑ 1.2397↑
c57415_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.3181↑ 1.0380
c69028_g3;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.8089↑ 1.0351
c55792_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.8236↑ 1.0311
c51241_g4;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.8423↑ 1.0049
c69028_g2;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.9144↑ 0.9817
c121256_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 2.4187↑ 0.8355
c73247_g2;orf1 光系统II蛋白D1 Photosystem II protein D1 3.4261↑ 0.9206
c78076_g1;orf1 光系统II蛋白D2 Photosystem II D2 protein 1.3682↑ 0.9089
c54219_g1;orf2 细胞色素b559亚基α Cytochrome b559 subunit α 1.6695↑ 0.7424↓
c77580_g1;orf1 光系统II CP43脱辅基蛋白 Photosystem II CP43 chlorophyll apoprotein 1.4055↑ 0.9421
蛋白ID
Protein ID
蛋白名称
Protein name
差异倍数 Fold change
GT29 Yacheng 71-374
c126236_g1;orf1 放氧增强蛋白1 Oxygen-evolving enhancer protein 1 1.0064 1.2372↑
c59540_g1;orf1 放氧增强蛋白3 Oxygen-evolving enhancer protein 3 0.8754 1.8631↑
c100226_g1;orf1 放氧增强蛋白 Oxygen-evolving enhancer protein 1.5306↑ 0.9906
c55903_g1;orf1 叶绿体放氧增强蛋白1 (部分) Chloroplast oxygen-evolving enhancer protein 1 (partial) 1.0456 1.2517↑
c51741_g1;orf1 光系统II PsbR Photosystem II PsbR 1.9037↑ 1.0547
c22663_g1;orf1 光系统II 47kDa蛋白 Photosystem II 47 kDa protein 1.7295↑ 0.9404
c56158_g2;orf1 细胞色素b6 (部分) Cytochrome b6 (partial) 1.4786↑ 1.0816
c72546_g2;orf1 细胞色素f Cytochrome f 1.2540↑ 0.9964
c67723_g1;orf1 ATP合成酶CF1α亚基 ATP synthase CF1 α subunit 1.3837↑ 1.0172
c57360_g1;orf2 ATP合成酶 ATP synthase 0.6735↓ 1.0127
c61429_g2;orf1 叶绿体Ptr-ToxA结合蛋白 Chloroplast Ptr ToxA-binding protein 1.4116↑ 0.9843
c54911_g1;orf1 16 kDa膜蛋白 16 kDa membrane protein 1.6364↑ 0.7557↓
c47557_g1;orf1 铜蛋白 Blue (type 1) Copper protein Blue (type 1) 1.1170 1.5826↑

表3

抗氧化相关差异表达蛋白"

蛋白ID
Protein ID
蛋白名称
Protein name
差异倍数 Fold change
GT29 Yacheng 71-374
过氧化物酶POD
c50862_g1;orf1 过氧化物酶-5 Peroxiredoxin-5 0.6309↓ 0.9930
c67975_g2;orf2 过氧化物酶54 Peroxidase 54 1.1999 2.0388↑
c59322_g3;orf1 过氧化物酶54前体 Peroxidase 54 precursor 1.4571↑ 1.5671↑
c67975_g1;orf1 过氧化物酶54前体 Peroxidase 54 precursor 1.4967↑ 2.0387↑
c66988_g1;orf1 过氧化物酶12前体 Peroxidase 12 precursor 1.5653↑ 1.0408
c53549_g1;orf1 过氧化物酶-2E-1 Peroxiredoxin-2E-1 0.8258↓ 0.9233
c59322_g4;orf1 过氧化物酶 Peroxidase 1.4017↑ 0.9072
c59146_g1;orf1 过氧化物酶 Peroxidase 0.7301↓ 0.6919↓
c72776_g2;orf1 过氧化物酶 Peroxidase 1.1594 0.6714↓
蛋白ID
Protein ID
蛋白名称
Protein name
差异倍数 Fold change
GT29 Yacheng 71-374
c58718_g1;orf1 过氧化物酶 Peroxidase 0.4462↓ 0.4493↓
c67818_g4;orf1 过氧化物酶 Peroxidase 1.3312↑ 1.6457↑
c64648_g9;orf1 过氧化物酶 Peroxidase 2.7030↑ 1.4510↑
c70898_g1;orf2 过氧化物酶 Peroxidase 1.2262↑ 1.3997↑
c50276_g1;orf1 过氧化物酶 Peroxidase 1.2289↑ 1.3558↑
c58269_g2;orf1 过氧化物酶 Peroxidase 1.4748↑ 1.2872↑
c46626_g1;orf1 过氧化物酶 Peroxidase 1.4542↑ 1.2559↑
c70898_g1;orf1 过氧化物酶 Peroxidase 1.3312↑ 1.2195↑
谷胱甘肽过氧化物酶GPX
c73435_g2;orf1 谷胱甘肽过氧化物酶 Glutathione peroxidase 0.8064↓ 1.0474
c55250_g2;orf1 磷脂氢过氧化物谷胱甘肽过氧化物酶6
Probable phospholipid hydroperoxide glutathione peroxidase 6
0.7848↓ 0.9799
抗坏血酸过氧化物酶APX
c79083_g1;orf1 L-抗坏血酸过氧化物酶 L-ascorbate peroxidase 0.7024↓ 0.9451
c113714_g1;orf1 APx1-细胞溶质抗坏血酸过氧化物酶 APx1-cytosolic Ascorbate Peroxidase 0.7028↓ 0.9186
c76142_g1;orf1 抗坏血酸过氧化物酶 Ascorbate peroxidase 0.7592↓ 0.9356
c64041_g1;orf1 抗坏血酸过氧化物酶 Ascorbate peroxidase 0.7935↓ 0.9019
c62865_g1;orf1 抗坏血酸过氧化物酶 Ascorbate peroxidase 0.9393 0.7810↓
超氧化物歧化酶SOD
c73325_g1;orf1 超氧化物歧化酶(Cu/Zn) Superoxide dismutase (Cu/Zn) 0.6040↓ 1.4209↑
c73325_g2;orf2 超氧化物歧化酶(Cu/Zn) Superoxide dismutase (Cu/Zn) 0.4810↓ 1.1765
c55722_g2;orf1 超氧化物歧化酶 Superoxide dismutase 0.5893↓ 1.0278
谷胱甘肽硫转移酶GST
c66937_g2;orf2 谷胱甘肽S-转移酶4 Glutathione S-transferase 4 0.4706↓ 1.0162
c71423_g2;orf2 谷胱甘肽S-转移酶F8 Glutathione S-transferase F8 0.7288↓ 1.3394↑
c57078_g1;orf1 谷胱甘肽S-转移酶GST 12 Glutathione S-transferase GST 12 1.0751 1.2122↑
c47481_g1;orf1 谷胱甘肽S-转移酶GST 14 Glutathione S-transferase GST 14 0.9491 1.3272↑
c49019_g1;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 0.9292 1.2484↑
c125211_g1;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 1.1719 1.2102↑
c67259_g1;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 0.6751↓ 1.0939
c66937_g2;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 0.5350↓ 0.9349
c65037_g3;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 1.2785↑ 0.9165
c66547_g1;orf2 蛋白IN2-1同系物B同型X2 Protein IN2-1 homolog B isoform X2 0.6158↓ 1.0739
过氧化氢酶CAT
c63190_g2;orf1 过氧化氢酶 Catalase-1-like 0.7984↓ 0.9734
c63190_g2;orf2 过氧化氢酶 Catalase-1-like 0.8116↓ 0.8982
c63190_g1;orf1 过氧化氢酶 Catalase 1.2415↑ 0.7038↓

图3

共有差异表达蛋白COG功能分类"

表4

在GT29中上调表达、在Yacheng 71-374中下调表达的共有差异表达蛋白"

蛋白ID
Protein ID
蛋白名称
Annotation
差异倍数 Fold change
GT29 Yacheng 71-374
c62874_g2;orf1 40S核糖体蛋白S5 40S ribosomal protein S5 1.4018↑ 0.8042↓
c60900_g1;orf1 40S核糖体蛋白S18 40S ribosomal protein S18 1.4850↑ 0.7965↓
c61922_g1;orf1 40S核糖体蛋白S10 40S ribosomal protein S10 2.3718↑ 0.7673↓
c53669_g1;orf1 60S核糖体蛋白L35 60S ribosomal protein L35 2.2003↑ 0.8276↓
c71804_g5;orf1 NAD(P)H-醌氧化还原酶亚基H NAD(P)H-quinone oxidoreductase subunit H 1.9719↑ 0.7819↓
c63190_g1;orf1 过氧化氢酶 Catalase 1.2415↑ 0.7038↓
c54219_g1;orf2 细胞色素b559亚基α Cytochrome b559 subunit α 1.6695↑ 0.7424↓
c70387_g2;orf1 光系统I组装蛋白ycf4 Photosystem I assembly protein ycf4 1.2823↑ 0.7661↓
c58104_g1;orf1 叶绿体光系统II 22kDa蛋白质 Chloroplast photosystem II 22 kDa protein 1.3253↑ 0.8263↓
c54911_g1;orf1 16 kDa膜蛋白 16 kDa membrane protein 1.6364↑ 0.7557↓
c42694_g1;orf1 C4磷酸烯醇式丙酮酸羧化酶 Putative C4 phosphoenolpyruvate carboxylase 1.5936↑ 0.7203↓
c42694_g2;orf1 C4磷酸烯醇式丙酮酸羧化 Putative C4 phosphoenolpyruvate carboxylase 1.4599↑ 0.7465↓
c53868_g3;orf1 C4磷酸烯醇式丙酮酸羧化酶 Putative C4 phosphoenolpyruvate carboxylase 1.3213↑ 0.7792↓
c107621_g1;orf1 2A型丝氨酸/苏氨酸蛋白磷酸酶65 kDa调节亚基Aβ亚型
Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform
1.3104↑ 0.8029↓
c68372_g4;orf1 γ-生育酚甲基转移酶 γ-tocopherol methyltransferase 1.2630↑ 0.7888↓
[1] Martinez M, Medina I, Naranjo S, Rodriguez C, Armas R, Pinon D, Vicente C, Legaz M E . Changes of some chemical parameters, involved in sucrose recovery from sugarcane juices, related to the susceptibility or resistance of sugarcane plants to smut (Ustilago scitaminea). Int Sugar J, 2000,102:445-448.
[2] Su Y C, Wang Z Q, Xu L P, Peng Q, Liu F, Li Z, Que Y X . Early selection for smut resistance in sugarcane using pathogen proliferation and changes in physiological and biochemical indices. Front Plant Sci, 2016,7:e84426.
doi: 10.3389/fpls.2016.01133 pmid: 4963460
[3] Lloyd H L . Chemical assay potentially suitable for determination of smut resistance of sugarcane cultivars. Plant Dis, 1983,67:1103-1105.
doi: 10.1094/PD-67-1103
[4] Singh A P, Lal R, Solomon S . Changes in ascorbic acid content in sugarcane affected with smut fungus (Ustilago scitaminea Syd.). Sugar Tech, 2002,4:72-73.
doi: 10.1007/BF02956886
[5] Santiago R, Quintana J, Rodríguez S, Díaz E M, Legaz M E, Vicente C . An elicitor isolated from smut teliospores (Sporisorium scitamineum) enhances lignin deposition on the cell wall of both sclerenchyma and xylem in sugarcane leaves. Pak J Bot, 2010,42:2867-2881.
[6] 莫凤连, 杨丽涛, 潘如科, 宋修鹏, 李杨瑞 . 甘蔗黑穗病菌胁迫对甘蔗内源激素含量的影响. 南方农业学报, 2012,43:1676-1681.
doi: 10.3969/j:issn.2095-1191.2012.11.1676
Mo F L, Yang L T, Pan R K, Song X P, Li Y R . Changes of endogenous hormone content in sugarcane under smut pathogen stress. J Sourhern Agric, 2012,43:1676-1681 (in Chinese with English abstract).
doi: 10.3969/j:issn.2095-1191.2012.11.1676
[7] 苏亚春 . 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文,福建福州, 2014.
Su Y C . Transcriptomics and Proteomics of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-Related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian,China, 2014 (in Chinese with English abstract).
[8] Leila P, Peters G, Carvalho M B, Vilhena S, Creste R A, Azevedo C B, Monteiro V . Functional analysis of oxidative burst in sugarcane smut-resistant and smut-susceptible genotypes. Planta, 2017,245:749-764.
doi: 10.1007/s00425-016-2642-z
[9] 宋修鹏 . 黑穗病菌侵染初期甘蔗幼苗光合生理变化及基因差异表达. 广西大学博士学位论文, 广西南宁, 2014.
doi: 10.7666/d.D523519
Song X P . Effects of Smut Pathogen on Photosynthetic Characteristics and Gene Differential Expression in Sugarcane at Seedling Stage. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2014 (in Chinese with English abstract).
doi: 10.7666/d.D523519
[10] Barnabas L, Ashwin N M R, Kaverinathan K . Proteomic analysis of a compatible interaction between sugarcane and Sporisorium scitamineum. Proteomics, 2016,16:1111-1122.
[11] Su Y C, Xu L P, Wang Z, Peng Q, Yang Y T, Chen Y, Que Y X . Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane . BMC Genomics, 2016,17:800.
doi: 10.1186/s12864-016-3146-8 pmid: 5062822
[12] Que Y X, Xu L P, Lin J W, Ruan M H, Zhang M Q, Chen R K . Differential protein expression in sugarcane during sugarcane-Sporisorium scitamineum interaction revealed by 2-de and maldi-tof-tof/ms. Comp Funct Genomics, 2011: 989016.
doi: 10.1155/2011/989016 pmid: 21822403
[13] 钟云 . Candidatus liberibacter asiaticus诱导的柑橘转录组学及蛋白组学研究. 湖南农业大学博士学位论文, 湖南长沙, 2012
Zhong Y . Proteomics of Citrus Induced by Candidatus liberibacter asiaticus. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2012 (in Chinese with English abstract)
[14] 唐成, 陈露, 安敏敏, 孟丹, 杨立明, 罗玉明 . 水稻幼苗叶片应答稻瘟病侵染的差异蛋白谱分析. 淮阴师范学院学报, 2014,13:322-328.
doi: 10.3969/j.issn.1671-6876.2014.04.009
Tang C, Chen L, An M M, Meng D, Yang L M, Luo Y M . Proteomic analysis reveals an intimate protein pathways provoked by blast in rice seedling leaves. J Huaiyin Teach Coll, 2014,13:322-328 (in Chinese with English abstract).
doi: 10.3969/j.issn.1671-6876.2014.04.009
[15] Marsh E, Alvarez S, Hicks L M, Barbazuk B W, Qiu W P, Kovacs L, Schachtman D . Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.). Proteomics, 2010,10:2057-2064.
doi: 10.1002/pmic.200900712 pmid: 20232356
[16] 张荣华, 何红, 张革民, 刘海斌, 李杨瑞, 方锋学, 宋焕忠, 方位宽, 闭少玲 . 宿根性特强甘蔗新品种桂糖29号的选育. 中国糖料, 2011, ( 1):1-4.
doi: 10.3969/j.issn.1007-2624.2011.01.001
Zhang R H, He H, Zhang G M, Liu H B, Li Y R, Fang F X, Song H Z, Fang W K, Bi S L . Breeding of new sugarcane variety Guitang 29 with high ratoon ability. Sugar Crops China, 2011, (1):1-4 (in Chinese with English abstract).
doi: 10.3969/j.issn.1007-2624.2011.01.001
[17] 高轶静, 张革民, 张荣华, 宋焕忠, 罗霆, 段维兴, 贤武, 廖江雄, 周会, 游建华 . 甘蔗优良新品种(系)的黑穗病抗性鉴定. 中国糖料, 2013, ( 2):25-26.
doi: 10.3969/j.issn.1007-2624.2013.02.008
Gao Y J, Zhang G M, Zhang R H, Song H Z, Luo T, Duan W X, Xian W, Liao J X, Zhou H, You J H . Evaluation of resistance to smut disease in new sugarcane varieties and breeding lines. Sugar Crops China, 2013, ( 2):25-26 (in Chinese with English abstract).
doi: 10.3969/j.issn.1007-2624.2013.02.008
[18] 熊国如, 张树珍 . 甘蔗黑穗病的研究. 农业灾害研究, 2012,2(4):8-10.
Xiong G R, Zhang S Z . Study on sugarcane smut. J Agric Catastrophol, 2012,2(4):8-10 (in Chinese with English abstract).
[19] 林丽, 张新成, 李杨瑞, 梁俊 . 甘蔗器官固氮酶活性及其对接种固氮菌的响应. 西北植物学报, 2008,28:2472-2477.
Lin L, Zhang X C, Li Y R, Liang J . Changes of nitrogenase activity in sugarcane (Saccharum officinarum L.) and its response to innoculate nitrogen fixation bacteria. Acta Bot Boreali-Occident Sin, 2008,28:2472-2477 (in Chinese with English abstract).
[20] 彭浩, 林文芳, 朱学艺 . 叶绿体蛋白质组研究进展. 西北植物学报, 2008,28:194-203.
Peng H, Lin W F, Zhu X Y . Research progress in chloroplast proteome. Acta Bot Boreali-Occident Sin, 2008,28:194-203 (in Chinese).
[21] 邱念伟, 王颖 . 光合作用光反应过程中的物质与能量转换. 生物学教学, 2011,36(2):71-74
doi: 10.3969/j.issn.1004-7549.2011.02.043
Qiu N W, Wang Y . Substance and energy conversion during photosynthesis photoreaction. Biol Teach, 2011,36(2):71-74 (in Chinese).
doi: 10.3969/j.issn.1004-7549.2011.02.043
[22] 苟萍, 索菲娅, 马东建 . 高等植物铁氧还蛋白的结构与功能. 生命的化学, 2007,27:51-53.
doi: 10.3969/j.issn.1000-1336.2007.01.021
Gou P, Suo F Y, Ma D J . Structure and function of ferredoxin in higher plants. Chem Life, 2007,27:51-53 (in Chinese).
doi: 10.3969/j.issn.1000-1336.2007.01.021
[23] 翟玉山, 邓宇晴, 董萌, 徐倩, 程光远, 彭磊, 林彦铨, 徐景升 . 甘蔗捕光叶绿素a/b结合蛋白基因ScLhca3的克隆及表达. 作物学报, 2016,42:1332-1341.
doi: 10.3724/SP.J.1006.2016.01332
Zhai Y S, Deng Y Q, Dong M, Xu Q, Cheng G Y, Peng L, Lin Y Q, Xu J S . Cloning and characterization of light harvesting chlorophyll a/b-binding protein coding gene(ScLhca3) in sugarcane. Acta Agron Sin, 2016,42:1332-1341 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01332
[24] Mayfield S P, Bennoun P, Rochaix J D . Expression of the nuclear encoded OEE1 protein is required for oxygen evolution and stability of photosystem II particles in Chlamydomonas reinhardtii. EMBO J, 1987,6:313-318.
doi: 10.1002/j.1460-2075.1987.tb04756.x pmid: 3556163
[25] Medentsev A G, Arinbasarova A I, Aimenko V K . Adaptation of the phytopathogenic fungus Fusarium decemcellulare to oxidative stress. Mikrobiologiia, 2001,70:34-38.
doi: 10.1023/A:1004832518783 pmid: 11338833
[26] 余晓丛, 娜仁, 张少英 . 钙信号在植物抗病性中的作用研究进展. 中国农学通报, 2012,28(3):12-16.
doi: 10.3969/j.issn.1000-6850.2012.03.003
Yu X C, Na R, Zhang S Y . Research progress about calcium signal involved in plant resistance to disease. Chin Agric Bull, 2012,28(3):12-16 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6850.2012.03.003
[27] 李丽花, 张瑞杰, 姚远丽, 朱璇 . 24-表油菜素内酯调控苯丙烷代谢增强杏果实抗病性的研究. 现代食品科技, 2017,33(9):71-76.
Li L H, Zhang R J, Yao Y L, Zhu X . 24-epibrassinolide enhances disease resistance in apricot fruits via regulation of phenylpropanoid metabolism. Mod Food Sci Technol, 2017, 33(9):71-76 (in Chinese with English abstract).
[28] 杜翔宇, 刘春燕, 吴琼, 蒋洪蔚, 辛大伟, 陈庆山, 胡国华 . 大豆苯丙氨酸代谢途径关键酶基因的挖掘定位及结构分析. 大豆科学, 2012,31:178-183.
doi: 10.3969/j.issn.1000-9841.2012.02.004
Du X Y, Liu C Y, Wu Q, Jiang H W, Xin D W, Chen Q S, Hu G H . Gene mining and structure analysis of key enzyme genes on phenylalanine acid metabolic pathway in soybean. Soybean Sci, 2012,31:178-183 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-9841.2012.02.004
[29] Liu D X, Fan C S, Tao J H . Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis. World J Gastroentero, 2004,10:3683-3687.
[30] 张烨 . 柠条锦鸡儿咖啡酰辅酶A-O-甲基转移酶基因cDNA和gDNA全长克隆及生物信息学分析. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2011.
Zhang Y . Full-length cDNA and Genomic DNA Cloning of Caffeoyl Coenzyme A-O-methyltransferase from Caragana Korshinkii Kom and Its Bioinformatics Analysis. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2011 (in Chinese with English abstract).
[31] 王志卫, 贝学军, 朱世平 . 植物激素在植物抗病过程中的作用研究进展. 安徽农业科学, 2011,39:9035-9038.
Wang Z W, Bei X J, Zhu S P . Recent advances in phytohormone regulated plant resistance to pathogens. J Anhui Agric Sci, 2011,39:9035-9038 (in Chinese with English abstract).
[32] 赵琴, 潘静, 曹兵, 宋丽华 . 气温升高与干旱胁迫对宁夏枸杞光合作用的影响. 生态学报, 2015,35:6016-6022.
doi: 10.5846/stxb201401090073
Zhao Q, Pan J, Cao B, Song L H . Effects of elevated temperature and drought stress on photosynthesis of Lycium barbarum. Acta Ecol Sin, 2015,35:6016-6022 (in Chinese with English abstract)
doi: 10.5846/stxb201401090073
[33] 庞杰, 张凤兰, 郝丽珍, 杨忠仁, 赵鹏 . 沙芥幼苗叶片解剖结构和光合作用对干旱胁迫的响应. 生态环境学报, 2013,22:575-581.
Pang J, Zhang F L, Hao L Z, Yang Z R, Zhao P . Effect of drought stress on anatomical structure and photosynthesis of Pugionium cornutum (L.) Gaertn. leaves in seedling. Ecol Environ Sci, 2013,22:575-581 (in Chinese with English abstract).
[34] 孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬 . 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012,45:3265-3272.
doi: 10.3864/j.issn.0578-1752.2012.16.005
Sun L, Zhou Y F, Li F X, Xiao M J, Tao Y, Xu W J, Huang R D . Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings. Sci Agric Sin, 2012,45:3265-3272 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2012.16.005
[35] 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波 . 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012,23:724-730.
Ma F J, Li D D, Cai J, Jiang D, Cao W X, Dai T B . Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chin J Appl Ecol, 2012,23:724-730 (in Chinese with English abstract).
[36] 徐田军, 董志强, 兰宏亮, 裴志超, 高娇, 解振兴 . 低温胁迫下聚糠萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响. 作物学报, 2012,38:352-359.
doi: 10.3724/SP.J.1006.2012.00352
Xu T J, Dong Z Q, Lan H L, Pei Z C, Gao J, Xie Z X . Effects of PASP-KT-NAA on photosynthesis and antioxidant enzyme activities of maize seedlings under low temperature stress. Acta Agron Sin, 2012,38:352-359 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00352
[37] 沈喜, 李红玉, 贾秋珍, 冯汉青, 李敏权, 梁厚果 . 条锈病对小麦(Triticum aestivum L.)叶片光合功能及光合功能蛋白D1表达的影响. 生态学报, 2008,8:669-676.
doi: 10.3321/j.issn:1000-0933.2008.02.027
Shen X, Li H Y, Jia Q Z, Feng H Q, Li M Q, Liang H G . Influence of wheat ( Triticum aestivum L.) stripe rust infection on photosynthetic function and expression protein D1 of what leaves. Acta Ecol Sin, 2008,8:669-676 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-0933.2008.02.027
[38] Medentsev A G, Aiu A, Aimenko V K . Adaptation of the phytopathogenic fungus Fusarium decemcellulare to oxidative stress. Microbiology, 2001,70:26-30.
doi: 10.1023/A:1004832518783 pmid: 11338833
[39] Mittle R, Vanderauwera S, Gollery M, Breusegem F V . Reactive oxygen gene network of plants. Trends Plant Sci, 2004,9:490-498.
doi: 10.1016/j.tplants.2004.08.009 pmid: 15465684
[40] 张永志, 赵首萍, 徐明飞, 王钢军, 郑纪慈 . Pb胁迫对番茄幼苗抗氧化酶系统的影响. 浙江农业科学, 2009,1:452-456
doi: 10.3969/j.issn.0528-9017.2009.03.005
Zhang Y Z, Zhao S P, Xu M F, Wang G J, Zheng J C . Effect of Pb stress on antioxidant enzyme system in tomato seedlings. Zhejiang Agric Sci, 2009,1:452-456 (in Chinese with English abstract).
doi: 10.3969/j.issn.0528-9017.2009.03.005
[41] Kazan K, Manners J M . Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci, 2009,14:373-382.
doi: 10.1016/j.tplants.2009.04.005 pmid: 19559643
[42] 朱海生, 李永平, 花秀凤, 温庆放 . 草莓9-顺式-环氧类胡萝卜素双加氧酶基因fanced的克隆及表达分析. 园艺学报, 2012,39:40-48.
Zhu H S, Li Y P, Hua X F, Wen Q F . Cloning and expression analysis of 9-cis-epoxycarotenoid dioxygenase gene fanced in strawberry. Acta Hortic Sin, 2012,39:40-48 (in Chinese with English abstract).
[43] 胡帅, 王芳展, 刘振宁, 刘亚培, 余小林 . PYR/PYL/RCAR蛋白介导植物ABA的信号转导. 遗传, 2012,34:560-572
doi: 10.3724/SP.J.1005.2012.00560
Hu S, Wang F Z, Liu Z N, Liu Y P, Yu X L . ABA signaling mediated by PYR/PYL/RCAR inplants. Hereditas, 2012,34:560-572 (in Chinese with English abstract).
doi: 10.3724/SP.J.1005.2012.00560
[44] Que Y X, Su Y C, Guo J L, Wu Q B, Xu L P . A global view of transcriptome dynamics during,Sporisorium scitamineum, challenge in sugarcane by RNA-seq. PLoS One, 2014,9:e106476.
[45] Ton J, Flors V, Mauchmani B . The multifaceted role of ABA in disease resistance. Trends Plant Sci, 2009,14:310-317.
doi: 10.1016/j.tplants.2009.03.006 pmid: 19443266
[46] Fraser R S S . Are ‘pathogenesis-related’ proteins involved in acquired systemic resistance of tobacco plants to tobacco mosaic virus. J Gen Virol, 1982,58:305-313.
doi: 10.1099/0022-1317-58-2-305
[47] Fujita M, Fujita Y, Noutoshi Y . Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006,9:436-442.
doi: 10.1016/j.pbi.2006.05.014 pmid: 16759898
[48] Koga H, Dohi K, Mori M . Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol, 2004,65:3-9.
doi: 10.1016/j.pmpp.2004.11.002
[49] 周金鑫, 胡新文, 张海文, 黄荣峰 . ABA在生物胁迫应答中的调控作用. 农业生物技术学报, 2008,16:169-174.
Zhou J X, Hu X W, Zhang H W, Huang R F . Regulatory role of ABA in plant response to biotic stresses. J Agric Biotechol, 2008,16:169-174 (in Chinese with English abstract).
[50] 钱万强 . 松材线虫侵染后马尾松体内的苯丙烷代谢研究. 中南林业科技大学硕士学位论文,湖南长沙, 2009.
doi: 10.7666/d.y1848918
Qian W Q . Phenylpropane Metabolic Research of Pinuus massoniana Infected by Bursaphelenchus xylophilus . MS Thesis of Central South University of Forestry and Technology, Changsha, Hunan, China, 2009 (in Chinese with English abstract).
doi: 10.7666/d.y1848918
[51] Wool I G . Extraribosomal functions of ribosomal proteins. Trends Biochem Sci, 1996,21:164-169.
doi: 10.1016/S0968-0004(96)20011-8 pmid: 8871397
[52] Vasiliou V, Ross D, Nebert D W . Update of the NAD(P)H: quinone oxidoreductase (NQO) gene family. Hum Genomics, 2006,2:329-335.
doi: 10.1186/1479-7364-2-5-329 pmid: 16595077
[53] 魏绍巍, 黎茵 . 植物磷酸烯醇式丙酮酸羧化酶的功能及其在基因工程中的应用. 生物工程学报, 2011,27:1702-1710.
Wei S W, Li Y . Functions of plant phosphoenolpyruvate carboxylase and its applications for genetic engineering. Chin J Biotechnol, 2011,27:1702-1710 (in Chinese with English abstract).
[54] Yu R M, Zhou Y, Xu Z F . Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Mol Biol, 2003,51:295-311.
doi: 10.1023/A:1022006023273 pmid: 12602862
[55] Dellapenna D, Pogson B J . Vitamin synthesis in plants: tocopherols and carotenoid. Annu Rev Plant Biol, 2006,57:711-738.
doi: 10.1146/annurev.arplant.56.032604.144301 pmid: 16669779
[56] 刘宾 . 玉米γ-生育酚甲基转移酶基因的分离及其功能分析. 河北大学硕士学位论文, 河北保定, 2007.
Liu B . Solating and Functional Analysis of γ-tocopherol Methytransferase Gene in Zea mays. MS Thesis of Hebei University, Baoding, Hebei, China, 2007 (in Chinese with English abstract).
[57] 关西贞, 张卫东, 田纪春 . 小麦近等基因系与白粉病菌互作的生理指标研究. 华北农学报, 2010,25(1):217-221.
doi: 10.7668/hbnxb.2010.01.044
Guan X Z, Zhang W D, Tian J C . Physiological indicators of near-isogenic wheat lines in interaction with powdery mildew. Acta Agric Boreali-Sin, 2010,25(1):217-221 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2010.01.044
[58] 刘守伟, 吴凤芝, 马艳玲 . 枯萎病菌对不同抗性黄瓜品种几种酶活性的影响. 植物保护, 2009,35(1):82-85.
Liu S W, Wu F Z, Ma Y L . Effects of fusarium wilt pathogen on the enzyme activity of cucumber cultivars of different resistance. Plant Prot, 2009,35(1):82-85 (in Chinese with English abstract).
[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[5] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[6] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[7] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[8] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[9] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[10] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[11] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[12] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[13] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[14] 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282.
[15] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!