欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 267-275.doi: 10.3724/SP.J.1006.2019.84075

• 耕作栽培·生理生化 • 上一篇    下一篇

青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析

李萍1,2,侯万伟1,2,刘玉皎1,2,*()   

  1. 1 青海大学农林科学院, 青海西宁 810000
    2青海大学省部共建三江源生态与高原农牧业国家重点实验室, 青海西宁 810000
  • 收稿日期:2018-05-29 接受日期:2018-10-08 出版日期:2019-02-12 网络出版日期:2018-11-03
  • 通讯作者: 刘玉皎
  • 基金资助:
    本研究由国家自然科学基金项目(31460377);国家现代农业产业技术体系建设专项资助(CARS-09)

Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China

Ping LI1,2,Wan-Wei HOU1,2,Yu-Jiao LIU1,2,*()   

  1. 1 Academy of Agriculture and Forestry Science of Qinghai University, Xining 810016, Qinghai, China
    2 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
  • Received:2018-05-29 Accepted:2018-10-08 Published:2019-02-12 Published online:2018-11-03
  • Contact: Yu-Jiao LIU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31460377);and the China Agriculture Research System(CARS-09)

摘要:

蛋白质组学研究在功能基因组时代发挥着越来越重要的作用, 利用双向电泳技术和质谱鉴定技术, 可大量研究作物逆境胁迫后蛋白质组的变化, 增加作物响应干旱胁迫机制的认识和理解。为探讨一种抗旱性蚕豆青海13号品种的耐旱机制, 本研究对其幼苗期进行干旱胁迫处理, 应用上述技术进行差异蛋白质组分析, 经t检验发现32个差异表达蛋白点, 部分呈现上调表达, 部分呈现下调表达, 还有7个消失蛋白点和1个新增蛋白点。采用MALDI-TOF/TOF鉴定和生物信息学分析发现, 成功鉴定的21个蛋白点按其所参与的代谢途径和生化功能可分为七大类, 参与信号转导的2个, 参与自由基清除的1个, 参与防卫反应的1个, 参与代谢的8个, 参与蛋白加工的1个, 参与光合的5个, 未知功能蛋白3个。22 kD干旱诱导蛋白、应激诱导蛋白、17.5 kD一级热激蛋白、超氧化物歧化酶是与抗旱性有直接关联的蛋白点, 其相对表达量的上调可能是青海13号蚕豆具有较强抗旱性的重要原因。

关键词: 蚕豆, 干旱胁迫, 蛋白质组, 差异表达, 功能分类

Abstract:

Proteomics is playing an increasingly important role in the functional genomics era. Two-dimensional electrophoresis and mass spectrometry can be used to study the changes of proteome of crop under stress and increase the recognization and comprehension of crop response to drought stress. In order to explore the mechanism of drought resistance of Vicia faba L. variety ‘Qinghai 13’, we treated the seedlings with three days for water stress and analyzed by two-dimensional gel electrophoresis combined with mass spectrometry analysis. By t-test, 32 differentially expressed proteins spots were detected between normal and drought-stress treatments, respectively, including up- and down-regulated proteins, seven disappear protein spots and a new protein spot. Twenty-one differentially expressed proteins in seven function categories were identified and confirmed by MALDI-TOF/TOF. Among them, two participated in information transfer, one in oxygen radical scavenging, one in protective response, eight in energy metabolism, one in protein processing, five in photosynthesis, and three unknown in function. These results indicate that drought-inducible 22 kD protein, stress-inducible protein, superoxide dismutase and 17.5 kD class HSP are directly related with drought resistance, which may be the important reasons for strong drought resistance of ‘Qinghai 13’.

Key words: faba bean, drought stress, proteomic, differential expression, functional classification

图1

不同梯度干旱胁迫下土壤含水量(SWC)和蚕豆叶片的相对含水量(RWC)变化 大写字母表示不同胁迫处理间0.01水平上显著性差异, 小写字母表示0.05水平上差异显著。DS1~DS9为不同梯度干旱胁迫处理, 从DS1到DS9干旱胁迫程度逐渐加强。"

图2

干旱胁迫下蚕豆叶片蛋白质组双向电泳图谱"

表1

干旱胁迫下蚕豆叶片中差异表达蛋白的MALDI-TOF/TOF鉴定结果"

蛋白点
Spot No.
登录号
Accession No.
分子量/等电点
Theoretical Mr (kD)/pI
序列覆盖率
Sequence coverage (%)
评分
Score
蛋白名称
Protein name
物种来源
Source of species
A, up-regulated protein spots
2705 gi|15667623 15.923/5.78 18 230 Drought inducible 22 kD protein 甘蔗Saccharum officinarum
3106 gi|380005612 20.731/5.79 31 717 Superoxide dismutase 蚕豆Vicia faba
3208 gi|83776798 16.256/5.82 19 332 17.5 kDa class I HSP, partial 花生Arachis hypogaea
3809 gi|308810206 85.783/8.69 1 54 Shikimate dehydrogenase substrate binding,N-terminal, partial (ISS) 绿藻类Ostreococcus tauri
5605 gi|357508933 39.616/5.91 9 158 O-acetylserine (thiol) lyase 蒺藜状苜蓿Medicago truncatula
5807 gi|357481949 65.668/5.7 5 237 Stress-inducible protein, putative 蒺藜状苜蓿Medicago truncatula
7206 gi|75220301 23.908/6.16 13 212 Full=Kunitz-type trypsin inhibitor-like 2 protein; 豌豆Pisum sativum
408 gi|571556750 21.914/4.36 35 493 Nascent polypeptide-associated complex subunit alpha-like protein 1 大豆Glycine max
B, down-regulated protein spots
1815 gi|3913031 56.446/5.34 13 387 Full=1,4-alpha-D-glucan maltohydrolase 紫花苜蓿Medicago sativa
2306 gi|115788 28.692/5.47 25 411 Full=Chlorophyll a-b binding protein AB80, chloroplastic; 豌豆Pisum sativum
2309 gi|115788 28.692/5.47 25 415 Full=Chlorophyll a-b binding protein AB80, chloroplastic; 豌豆Pisum sativum
2813 gi|1045394920 86.972/5.46 13 643 Hypothetical protein TSUD_183880 三叶草Trifolium subterraneum
3815 gi|528749836 55.812/5.22 20 659 ATP synthase CF1 alpha subunit (plastid) 蚕豆Vicia faba
3816 gi|528749836 55.812/5.22 20 760 ATP synthase CF1 alpha subunit (plastid) 蚕豆Vicia faba
4707 gi|75308025 43.565/5.5 17 323 Full=S-adenosylmethionine synthase 2; Short=AdoMet synthase 2; 茱萸Elaeagnus umbellata
5202 gi|217071344 31.249/6.59 8 309 Unknown 蒺藜状苜蓿Medicago truncatula
5314 gi|729390274 29.386/8.65 16 426 Chlorophyll a-b binding protein 8, chloroplastic-like 醉蝶花Tarenaya hassleriana
5808 gi|357445031 80.087/6 11 480 Plastid transketolase 蒺藜状苜蓿Medicago truncatula
5809 gi|357445031 80.087/5.78 11 532 Plastid transketolase 蒺藜状苜蓿Medicago truncatula
6303 gi|502090577 37.493/7.04 25 570 Carbonic anhydrase, chloroplastic isoform X1 鹰嘴豆Cicer arietinum
7005 gi|132097 20.402/9.24 39 354 Full=Ribulose bisphosphate carboxylase small chain 3C, chloroplastic; Short=RuBisCO small subunit 3C; AltName: Full=PSS15; Flags: Precursor 豌豆Pisum sativum
7307 gi|502090577 37.493/7.04 31 723 Carbonic anhydrase, chloroplastic isoform X1 鹰嘴豆Cicer arietinum
7311 gi|502090577 37.493/7.04 31 735 Carbonic anhydrase, chloroplastic isoform X1 鹰嘴豆Cicer arietinum
7608 gi|20729 43.696/8.93 24 847 Unnamed protein product 豌豆Pisum sativum
8004 gi|132097 20.402/9.24 31 448 Full=Ribulose bisphosphate carboxylase small chain 3C, chloroplastic; Short=RuBisCO small subunit 3C; AltName: Full=PSS15; Flags: Precursor 豌豆Pisum sativum
8010 gi|502082899 19.055/9.93 20 219 Photosystem II repair protein PSB27-H1, chloroplastic 鹰嘴豆Cicer arietinum
1404 gi|502133626 37.498/7.63 29 541 Haloacid dehalogenase-like hydrolase domain-containing protein At3g48420 鹰嘴豆Cicer arietinum

图3

蚕豆叶片中鉴定的21个差异蛋白的功能分类"

图4

差异蛋白GO功能分类"

[1] Pandey A, Chakraborty S, Datta A, Chakraborty N . Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics, 2008,7:88-107.
doi: 10.1023/B:COLL.0000023121.03238.e8 pmid: 17921517
[2] Marie P R, Vartavian N, Sallantin M . Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiol, 1992,100:1486-1493.
doi: 10.1104/pp.100.3.1486 pmid: 16653148
[3] Ingram J, Bartels D . The molecular basis of dehydration tolerance in plant. Annu Rev Plant Physoil Plant Mol Biol, 1996,47:377-403.
doi: 10.1146/annurev.arplant.47.1.377
[4] Levenfors J P, Wikstr M M, Persson L, Gerhardson B . Pathogenicity of aphanomyces spp from different leguminous crops in Sweden. Eur J Plant Pathol, 2003,10:535-543.
doi: 10.1023/A:1024711428760
[5] Agrawal G K, Pedreschi R, Barkla B J, Bindschedler L V, Cramer R, Sarkar A, Renaut J, Job D, Rakwal R . Translational plant proteomics: A perspective. J Proteomics, 2012,75:4588-4601.
doi: 10.1016/j.jprot.2012.03.055 pmid: 22516432
[6] DO Thanh-Trung, 李健, 张风娟, 杨丽涛, 李杨瑞, 邢永秀 . 甘蔗与抗旱性相关差异蛋白质组分析. 作物学报, 2017,43:1337-1346.
doi: 10.3724/SP.J.1006.2017.01337
DO T T, Li J, Zhang F J, Yang L T, Li Y R, Xing Y X . Analysis of differential proteome in relation to drought resistance in Sugarcane. Acta Agron Sin, 2017,43:1337-1346 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01337
[7] Mohammadi P P, Moieni A, Hiraga S, Komatsu S . Organ-specific proteomic analysis of drought-stressed soybean seedlings. J Proteomics, 2012,75:1906-1923.
doi: 10.1016/j.jprot.2011.12.041 pmid: 22245419
[8] Zadražnik T, Hollung K, Egge-Jacobsen W . Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics, 2013,78:254-272.
doi: 10.1016/j.jprot.2012.09.021 pmid: 23026550
[9] Badowiec A, Weidner S . Proteomic changes in the roots of germinating Phaseolus vulgaris seeds in response to chilling stress and post-stress recovery. J Plant Physiol, 2014,2:389-398.
doi: 10.1016/j.jplph.2013.10.020 pmid: 24594390
[10] 熊军波, 杨青川, 蔡化, 田宏, 张贺山, 刘洋 . 紫花苜蓿根响应盐胁迫的比较蛋白质组学分析. 湖北农业科学, 2015,54:5422-5428.
doi: 10.14088/j.cnki.issn0439-8114.2015.21.057
Xiong J B, Yang Q H, Cai H, Tian H, Zhang H S, Li Y . Comparative proteomic analysis of salt-stress response of alfalfa proteins in Root. J Hubei Agric Sci, 2015,54:5422-5428 (in Chinese with English abstract).
doi: 10.14088/j.cnki.issn0439-8114.2015.21.057
[11] 芮海云, 庄凯, 沈振国, 张芬琴 . 两个箭舌豌豆品种根响应镉胁迫的蛋白质组学分析. 植物生理学报, 2016,52:1089-1098.
Rui H Y, Zhuang K, Sheng Z G, Zhang F Q . Proteomics analysis of cadmium stress responses in the roots of two Vicia sativa varieties differing in Cd tolerance. Acta Phytophysiol Sin, 2016,52:1089-1098 (in Chinese with English abstract).
[12] 李萍, 张雁霞, 刘玉皎 . 干旱胁迫对抗旱性蚕豆幼苗生长特性影响及叶片差异蛋白质组学研究. 基因组学与应用生物学, 2017,36:340-351.
Li P, Zhang Y X, Liu Y J . Effects of drought stress on seeding growth characteristics of drought resistance faba bean (Vicia faba L.) and study on differential proteomics of leaves. J Genom Appl Biol, 2017,36:340-351 (in Chinese with English abstract).
[13] 张小静 . 马铃薯块茎蛋白质双向电泳技术体系建立及发育相关蛋白质的分析. 甘肃农业大学硕士学位论文,甘肃兰州, 2008.
doi: 10.7666/d.y1333475
Zhang X J . Establishment of Two-dimensional Electrophoresis System for Analysis of Proteins during Potato (Solanum tuberosum L.) Tuber Development. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu,China, 2008 (in Chinese with English abstract).
doi: 10.7666/d.y1333475
[14] Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U . Drought stress effects on rubisco in wheat: changes in the rubisco large subunit. Acta Physiol Plant, 2009,31:1129-1138.
doi: 10.1007/s11738-009-0331-2
[15] Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Benett J . Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002,2:1131-1145.
doi: 10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1
[16] Mohammadi P P, Moieni A, Hiraga S . Organ-specific proleomic analysis of drought-stressed soybean seedling. J Proteomics, 2012,75:1960-1923.
doi: 10.1016/j.jprot.2011.12.026 pmid: 22230808
[17] Mustafa G, Komatsu S . Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. Front Plant Sci, 2014,5:627.
doi: 10.3389/fpls.2014.00627 pmid: 4235293
[18] Ma H Y, Song L R, Huang Z G . Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EuPA Open Proteomics, 2014,4:40-57.
doi: 10.1016/j.euprot.2014.05.005
[19] Celis J E, Gromov P . 2D Protein electrophoresis: can it be perfected? Curr Opin Biotechnol, 1999,10:16-21.
doi: 10.1016/S0958-1669(99)80004-4 pmid: 10047502
[20] Desclos M, Dubousset L, Etienne P, Le Caherec F, Satoh H, Bonnefoy J, Ourry A, Avice J C . A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water- soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditons. Plant Physiol, 2008,147:1830-1844.
doi: 10.1104/pp.108.116905 pmid: 18552235
[21] Balestrasse K B, Gardey L, Gallego S M . Response of antioxidant defence systerm in soybean nodules and roots subjected to cadmium stress. Plant Physiol, 2001,28:497-453.
doi: 10.1071/PP00158
[22] Malgorzata G, Waldemar B . Effects of a short-term hypoxic treatment followed by re-aeration on free radicals level and anti-oxidative enzymes in lupine roots. Plant Physiol Biochem, 2004,42:233-240.
doi: 10.1016/j.plaphy.2004.01.005 pmid: 15051047
[23] Hernandez J A, Jimenez A, Mullineaux P, Sevilla F . Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ, 2000,23:853-862.
doi: 10.1046/j.1365-3040.2000.00602.x
[24] 严顺平 . 水稻响应盐胁迫和低温胁迫的蛋白质组研究. 中国科学院博士学位论文,上海, 2006.
Yan S P . Proteomic Analysis of Salt Stress Responsive and Chilling Stress Response in Rice. PhD Dissertation of Graduate University of the Chinese Academy of Sciences, Shanghai,China, 2006 (in Chinese with English abstract).
[25] Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian S Y, Ober E S, Salekdeh G H . Proteome analysis of sugar beet leaves under drought stress. Proteomics, 2005,5:950-960.
doi: 10.1002/pmic.200401101 pmid: 15712235
[26] Wang W, Vinocur B, Shoseyov O, Altman A . Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 2004,9:244-252.
doi: 10.1016/j.tplants.2004.03.006 pmid: 15130550
[27] Sato Y, Yokoya S . Enhanced to tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep, 2008,27:329-334.
doi: 10.1007/s00299-007-0470-0 pmid: 17968552
[28] 丁伟 . 水稻干旱胁迫蛋白质组相关数据和生物信息分析研究. 华中农业大学硕士学位论文,湖北武汉, 2009.
doi: 10.7666/d.y1598163
Ding W . Analysis of Bioinformation and Data Related to Proteome of Rice under Drought Stress. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2009 (in Chinese with English abstract).
doi: 10.7666/d.y1598163
[29] 舒烈波 . 水稻叶片响应干旱和渗透胁迫的蛋白质组学研究. 华中农业大学博士学位论文,湖北武汉, 2010.
doi: 10.7666/d.y2004679
Shu L B . Proteomic Analysis of Rice Leaves in Response to Drought and Osmotic Stress. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei,China, 2010 (in Chinese with English abstract).
doi: 10.7666/d.y2004679
[30] 李丽芳, 罗晓芳, 王华芳 . 植物抗旱基因工程研究进展. 西北林学院学报, 2004,19:53-57.
doi: 10.3969/j.issn.1001-7461.2004.03.018
Li L F, Luo X F, Wang H F . Advances in the studies of gene engineering on plant drought-resistance. J Northwest For Univ, 2004,19:53-57 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7461.2004.03.018
[31] Weaver L M, Herrmann K M . Dynamics of the shikimate pathway in plants. Trends Plant Sci, 1997,2:346-351.
doi: 10.1016/S1360-1385(97)84622-5
[32] Diaz J, Bernal A, Pomar F, Merino F . Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci, 2001,161:179-188.
doi: 10.1016/S0168-9452(01)00410-1
[33] Rospert S, Dubaquie Y, Gautschi M . Nascentpolypeptide-associated complex. Cell Mol Life Sci, 2002,59:1632-1639.
doi: 10.1007/PL00012490
[34] Chaves M M, Flexas J, Pinheiro C . Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann Bot, 2009,103:551-560.
doi: 10.1093/aob/mcn125
[35] Reddy A R, Chaitanya K V, Vivekanandan M . Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 2004,161:1189-1202.
doi: 10.1016/j.jplph.2004.01.013
[36] Thomashow M F . Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physoil Plant Mol Biol, 1999,50:571-599.
doi: 10.1146/annurev.arplant.50.1.571 pmid: 15012220
[37] Li X J, Yang M F, Chen H, Qu L Q, Chen F, Shen S H . Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim Biophys Acta, 2010,1804:929-940
doi: 10.1016/j.bbapap.2010.01.004 pmid: 20079886
[1] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[2] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[3] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[4] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[5] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[6] 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030.
[7] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[8] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[9] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[10] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[11] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[12] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[13] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[14] 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282.
[15] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!