欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1295-1302.doi: 10.3724/SP.J.1006.2019.93003

• 综述 •    下一篇

乙酰羟酸合酶抑制剂类除草剂的植物抗性机制

徐倩玉1,兰玉2,刘嘉欣2,周新宇3,张刚3,郑志富1,*()   

  1. 1 浙江农林大学农业与食品科学学院, 浙江杭州 311300
    2 浙江农林大学林业与生物技术学院, 浙江杭州 311300
    3 文登市佳禾种业有限公司, 山东威海 264400
  • 收稿日期:2019-01-02 接受日期:2019-05-22 出版日期:2019-09-12 网络出版日期:2019-06-05
  • 通讯作者: 郑志富
  • 基金资助:
    本研究由国家自然科学基金项目资助(31871660)

Mechanisms underlying plant resistance to the acetohydroxyacid synthase- inhibiting herbicides

XU Qian-Yu1,LAN Yu2,LIU Jia-Xin2,ZHOU Xin-Yu3,ZHANG Gang3,ZHENG Zhi-Fu1,*()   

  1. 1 School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China;
    2 School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China;
    3 Wendeng Jiahe Seed Corporation, Ltd., Weihai 264400, Shandong, China
  • Received:2019-01-02 Accepted:2019-05-22 Published:2019-09-12 Published online:2019-06-05
  • Contact: Zhi-Fu ZHENG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31871660)

摘要:

乙酰羟酸合酶(AHAS)抑制剂类除草剂已被广泛用于农业生产, 然而使用过程中可能对部分敏感农作物产生药害, 因此创制对不同类别除草剂具有抗性的一系列作物新品种至关重要。本文将从AHAS抑制剂类除草剂的类别与特点、AHAS靶酶的特性及其在支链氨基酸合成中的作用、除草剂的靶标抗性与非靶标抗性机制等方面分析国内外研究现状与未来发展动态, 以期为农作物除草剂抗性性状的遗传改良和开发应用提供参考。

关键词: 乙酰羟酸合酶, 除草剂, 靶标抗性, 非靶标抗性

Abstract:

The acetohydroxyacid synthase (AHAS)-inhibiting herbicides have been widely used in agricultural industry. However, the herbicides can sometimes cause phytotoxicity for those crops susceptible to them. Thus, it is important to create a series of new crop varieties resistant to different types of herbicides. This review presents our current understanding about the categories and characteristics of the AHAS-inhibiting herbicides, the properties of their respective target enzymes and their roles in the synthesis of branched chain amino acids, and the mechanisms underlying two types of plant resistance to the herbicides (namely, target- and non-target-site-based resistance), as well as our perspectives on the future trends in these research areas, which is expected to promote the research and development of herbicide-resistant crops.

Key words: acetohydroxyacid synthase, herbicide, target-site-based resistance, non-target-site-based resistance

[1] Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C . Food security: the challenge of feeding 9 billion people. Science, 2010,327:812-818.
[2] Tester M, Langridge P . Breeding technologies to increase crop production in a changing world. Science, 2010,327:818-822.
[3] Davis A S, Hill J D, Chase C A, Johanns A M, Liebman M . Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One, 2012,7:e47149, doi: 10.1371/journal.pone.0047149.
[4] Gianessi L P, Reigner N P . The value of herbicides in U.S. crop production. Weed Tech, 2007,21:559-566.
[5] Ding X X, Li P W, Zhou H Y, Li J, Bai Y Z . Comparative study on maximum residue limits standards of pesticides in peanuts. Chin J Oil Crop Sci, 2011,33:527-531 (in Chinese with English abstract).
[6] Jabusch T W, Tjeerdema R S . Chemistry and fate of triazolopyrimidine sulfonamide herbicides. Rev Environ Contamin Toxicol, 2008,193:31-52.
[7] Cui H L, Li X, Wang G, Wang J, Wei S, Cao H . Acetolactate synthase proline (197) mutations confer tribenuron-methyl resistance in Capsella bursa-pastoris populations from China. Pest Biochem Physiol, 2012,102:229-232.
[8] Han X J, Dong Y, Sun X N, Li X F, Zheng M Q . Molecular basis of resistance to tribenuron-methyl in Descurainia sophia(L.) populations from China. Pest Biochem Physiol, 2012,104:77-81.
[9] Lee H, Ullrich S E, Burke I C, Yenish J, Paulitz T C . Interactions between the root pathogen Rhizoctonia solani AG-8 and acetolactate-synthase-inhibiting herbicides in barley. Pest Manag Sci, 2012,68:845-852.
[10] Liu W, Bi Y, Li L, Yuan G, Wang J . Molecular basis of resistance to tribenuron in water starwort (Myosoton aquaticum) populations from China. Weed Sci, 2013,61:390-395.
[11] Yu H, Zhang F, Wang G, Liu Y, Liu D . Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis. J Exp Bot, 2013,64:599-612.
[12] Ouellet T, Rutledge R G, Miki B L . Members of the acetohydroxyacid synthase multigene family of Brassica napus has divergent patterns of expression. Plant J, 1992,2:321-330.
[13] Breccia G, Vega T, Felitti S A, Picardi L, Nestares G . Differential expression of acetohydroxyacid synthase genes in sunflower plantlets and its response to imazapyr herbicide. Plant Sci, 2013,208:28-33.
[14] Ochogavía A C, Breccia G, Vega T, Felitti S A, Picardi L A, Nestares G . Acetohydroxyacid synthase activity and transcripts profiling reveal tissue-specific regulation of ahas genes in sunflower. Plant Sci, 2014,224:144-150.
[15] Binder S . Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book, 2010,8:e0137, doi: 10.1199/tab. 0137.
[16] Pratelli R, Pilot G . Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot, 2014,65:5535-5556.
[17] Shaner D L, Anderson P C, Stidham M A . Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol, 1984,76:545-546.
[18] Duggleby R G, McCourt J A, Guddat L W . Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem, 2008,46:309-324.
[19] Subramanian M V, Gerwick B C . Inhibition of acetolactate synthase by triazolopyrimidines. A review of recent developments. ACS Symp Ser Am Chem Soc, 1989,398:277-288.
[20] Subramanian M V, Hung H Y, Dias J M, Miner V M, Butler J H, Jachetta J J . Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol, 1990,94:239-244.
[21] Singh B K, Shaner D L . Biosynthesis of branched chain amino acids: From test tube to field. Plant Cell, 1995,7:935-944.
[22] Lee H, Rustgi S, Kumar N, Burke I, Yenish J P, Gill K S, von Wettstein D, Ullrich S E . Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci USA, 2011,108:8909-8913.
[23] Hershey H P, Schwartz L J, Gale J P, Abell L M . Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia. Plant Mol Biol, 1999,40:795-806.
[24] Lee Y T, Duggleby R G . Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and reconstitution with its catalytic subunit. Biochemistry, 2001,40:6836-6844.
[25] Chen H, Saksa K, Zhao F, Qiu J, Xiong L . Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants. Plant J, 2010,63:573-583.
[26] Endo M, Shimizu T, Fujimori T, Yanagisawa S, Toki S . Herbicide-resistant mutations in acetolactate synthase can reduce feedback inhibition and lead to accumulation of branched-chain amino acids. Food Nutr Sci, 2013,4:522-528.
[27] Holmberg S, Petersen J G . Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Curr Genet, 1988,13:207-217.
[28] Gao J Q, Pu H M, Qi C K, Zhang J F, Long W H, Hu M L, Chen S, Chen X J, Chen F, Gu H . Identification of imidazolidone-resistant oilseed rape mutant. J Plant Genet Resour, 2010,11:369-373 (in Chinese with English abstract).
[29] Rajasekaran K, Grula J W, Anderson D M . Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci, 1996,199:115-124.
[30] Wright T R, Penner D . Cell selection and inheritance of imidazolinone resistance in sugar beet (Beta vulgaris). Theor Appl Genet, 1998,96:612-620.
[31] Kolkman J M, Slabaugh M B, Bruniard J M, Berry S, Bushman B S, Olungu C, Maes N, Abratti G, Zambelli A, Miller J F, Leon A, Knapp S J . Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor Appl Genet, 2004,109:1147-1159.
[32] Pozniak C J, Birk I T, O’Donoughue L S, Ménard C, Hucl P J, Singh B K . Physiological and molecular characterization of mutation-derived imidazolinone resistance in spring wheat. Crop Sci, 2004,44:1434-1443.
[33] Tan S, Evans R R, Dahmer M L, Singh B K, Shaner D L . Imidazolinone-tolerant crops: History, current status and future. Pest Manag Sci, 2005,61:246-257.
[34] Sala C A, Bulos M, Echarte M, Whitt S R, Ascenzi R . Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theor Appl Genet, 2008,118:105-112.
[35] Sala C A, Bulos M . Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower. Theor Appl Genet, 2012,124:355-364.
[36] Powles S B, Yu Q . Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol, 2010,61:317-347.
[37] Ghio C, Ramos M L, Altieri E, Bulos M, Sala C A . Molecular characterization of Als1, an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean. Theor Appl Genet, 2013,126:2957-2968.
[38] Walter K L, Strachan S D, Ferry N M, Albert H H, Castle L A, Sebastian S A . Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean. Pest Manag Sci, 2014,70:1831-1839.
[39] Tranel P J, Wright T R . Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Sci, 2002,50:700-712.
[40] Bernasconi P, Woodworth A R, Rosen B A, Subramanian M V, Siehl D L . A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J Biol Chem, 1995,270:17381-17385.
[41] Jander G, Baerson S R, Hudak J A, Gonzalez K A, Gruys K J, Last R L . Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol, 2003,131:139-146.
[42] Haughn G W, Smith J, Mazur B, Somerville C . Transformation with a mutant Arabidopsis acetolactate synthase allele renders tobacco resistant to sulfonylureas. Mol Gen Genet, 1988,211:266-271.
[43] Lee K Y, Townsend J, Tepperman J, Black M, Chui C F, Mazur B, Dunsmuir P, Bedbrook J . The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J, 1988,7:1241-1248.
[44] Liu W, Yuan G, Du L, Guo W, Li L, Bi Y, Wang J . A novel Pro197Glu substitution in acetolactate synthase (ALS) confers broad-spectrum resistance across ALS inhibitors. Pestic Biochem Physiol, 2015,117:31-38.
[45] Ntoanidou S, Kaloumenos N, Diamantidis G, Madesis P, Eleftherohorinos I . Molecular basis of Cyperus difformis cross- resistance to ALS-inhibiting herbicides. Pestic Biochem Physiol, 2016,127:38-45.
[46] Deng W, Yang Q, Zhang Y, Jiao H, Mei Y, Li X, Zheng M . Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation. Pestic Biochem Physiol, 2017,136:41-45.
[47] Rey-Caballero J, Menéndez J, Osuna M D, Salas M, Torra J . Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas. Pestic Biochem Physiol, 2017,138:57-65.
[48] Hattori J, Brown D, Mourad G, Labbé H, Ouellet T, Sunohara G, Rutledge R, King J, Miki B . An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet, 1995,246:419-425.
[49] Li J, Li M, Gao X, Fang F . A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Manag Sci, 2017,73:2538-2543.
[50] Pang S S, Guddat L W, Duggleby R G . Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J Biol Chem, 2003,278:7639-7644.
[51] Petit C, Duhieu B, Boucansaud K, Délye C . Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus. Plant Sci, 2010,178:501-509.
[52] Scarabel L, Pernin F, Délye C . Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Sci, 2015,238:158-169.
[53] Yang Q, Deng W, Li X, Yu Q, Bai L, Zheng M . Target-site and non-target-site based resistance to the herbicide tribenuron- methyl in flixweed (Descurainia sophia L.). BMC Genomics, 2016,17:551-563 .
[54] Mei Y, Si C, Liu M, Qiu L, Zheng M . Investigation of resistance levels and mechanisms to nicosulfuron conferred by non-target- site mechanisms in large crabgrass (Digitaria sanguinalis L.) from China. Pestic Biochem Physiol, 2017,141:84-89.
[55] Zhao B, Fu D, Yu Y, Huang C, Yan K, Li P, Shafi J, Zhu H, Wei S, Ji M . Non-target-site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population. Pestic Biochem Physiol, 2017,140:79-84.
[56] Chen G, Xu H, Zhang T, Bai C, Dong L . Fenoxaprop-P-ethyl resistance conferred by cytochrome P450s and target site mutation in Alopecurus japonicus. Pest Manag Sci, 2018. doi: 10.1002/ps.4863.
[57] Tehranchian P, Nandula V, Jugulam M, Putta K, Jasieniuk M . Multiple resistance to glyphosate, paraquat and ACCase-inhibiting herbicides in Italian ryegrass populations from California: confirmation and mechanisms of resistance. Pest Manage Sci, 2017, doi: 10.1002/ps.4774.
[58] Oliveira M C, Gaines T A, Dayan F E, Patterson E L, Jhala A J, Knezevic S Z . Reversing resistance to tembotrione in an Amaranthus tuberculatus(var. rudis) population from Nebraska, USA with cytochrome P450 inhibitors. Pest Manag Sci, 2017, doi: 10.1002/ps.4697.
[59] Siminszky B, Corbin F T, Ward E R, Fleischmann T J, Dewey R E . Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA, 1999,96:1750-1755.
[60] Saika H, Horita J, Taguchi-Shiobara F, Nonaka S, Nishizawa-Yokoi A, Iwakami S, Hori K, Matsumoto T, Tanaka T, Itoh T, Yano M, Kaku K, Shimizu T, Toki S . A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis. Plant Physiol, 2014,166:1232-1240.
[61] Yu Q, Powles S B . Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag Sci, 2014,70:1340-1350.
[62] Pan L, Gao H, Xia W, Zhang T, Dong L . Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance. J Exp Bot, 2016,67:1745-1757.
[63] Burns E E, Keith B K, Refai M Y, Bothner B, Dyer W E . Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L. Pestic Biochem Physiol, 2017,140:69-78.
[64] Burns E E, Keith B K, Refai M Y, Bothner B, Dyer W E . Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation. J Plant Physiol, 2018,220:105-114.
[65] Li Z, Liu Z B, Xing A, Moon B P, Koellhoffer J P, Huang L, Ward R T, Clifton E, Falco S C, Cigan A M . Cas9-guide RNA directed genome editing in soybean. Plant Physiol, 2015,169:960-970.
[66] Svitashev S, Young J K, Schwartz C, Gao H, Falco S C, Cigan A M . Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol, 2015,169:931-945.
[67] Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R . Programmable editing of a target base in genomic DNA without double stranded DNA cleavage. Nature, 2016,533:420-424.
[68] Chen Y, Wang Z, Ni H, Xu Y, Chen Q, Jiang L . CRISPR/Cas9- mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci, 2017,60:520-523.
[69] Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K . Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol, 2017,35:441-443.
[70] Li S, Li J, He Y, Xu M, Zhang J, Du W, Zhao Y, Xia L . Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nat Biotechnol, 2019, doi: 10.1038/s41587-019-0065-7.
[71] Zhao L, Deng L, Zhang Q, Jing X, Ma M, Yi B, Wen J, Ma C Z, Tu J X, Fu T D, Shen J X . Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 2018,14:702-714.
[72] Zhao L, Jing X, Chen L, Liu Y J, Su Y N, Liu T T, Gao C B, Yi B, Wen J, Ma C Z, Tu J, Zou J, Fu T D, Shen J X . Tribenuron- methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death. Mol Plant, 2015,8:1710-1724.
[1] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[2] 胡茂龙, 程丽, 郭月, 龙卫华, 高建芹, 浦惠明, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因标记的开发与应用[J]. 作物学报, 2020, 46(10): 1639-1646.
[3] 陈倩楠,王轲,汤沙,杜丽璞,智慧,贾冠清,赵宝华,叶兴国,刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究[J]. 作物学报, 2018, 44(10): 1423-1432.
[4] 王芳权, 杨杰, 范方军, 李文奇, 王军, 许扬, 朱金燕, 费云燕, 仲维功. 水稻抗咪唑啉酮类除草剂基因ALS功能标记的开发与应用[J]. 作物学报, 2018, 44(03): 324-331.
[5] 胡茂龙, 浦惠明, 龙卫华, 高建芹, 戚存扣, 张洁夫, 陈松. 油菜乙酰乳酸合酶突变体S638N的酶学特性及其对ALS类除草剂的抗性[J]. 作物学报, 2015, 41(09): 1353-1360.
[6] 于澄宇,何蓓如. 氨基酸合成抑制剂类除草剂诱导油菜雄性不育效果评价[J]. 作物学报, 2014, 40(02): 264-272.
[7] 胡茂龙,龙卫华,高建芹,付三雄,陈锋,周晓婴,彭琦,张维,浦惠明*,戚存扣,张洁夫,陈松. 油菜抗咪唑啉酮类除草剂基因BnALS1R等位基因特异PCR标记的开发与应用[J]. 作物学报, 2013, 39(10): 1711-1719.
[8] 惠国强, 杜何为, 杨小红, 刘光辉, 王振通, 张义荣, 郑艳萍, 严建兵, 张铭堂, 李建生. 不同除草剂加倍玉米单倍体的效率[J]. 作物学报, 2012, 38(03): 416-422.
[9] 彭永康;邹灵芝;王振英;金洪英; 冯正勇. 三氮苯类除草剂对水稻染色体结构、蛋白质含量及组分的影响[J]. 作物学报, 2006, 32(04): 497-502.
[10] 王才林;赵凌;宗寿余;吕川根;邹江石;何小兰;朱为民. 水稻抗除草剂基因bar的转育研究[J]. 作物学报, 2002, 28(03): 305-309.
[11] 牛玉红;黎裕;石云素;宋燕春;马峙英;王天宇;H Darmency. 谷子抗除草剂“拿捕净”基因的AFLP标记[J]. 作物学报, 2002, 28(03): 359-362.
[12] 王天宇;赵治海;闫洪波;闫洪波;黎裕;朱学海;石云素;宋燕春;马峙英;H.Darmency. 谷子抗除草剂基因从栽培种向其近缘野生种漂移的研究[J]. 作物学报, 2001, 27(06): 681-687.
[13] 葛永福; 钱存鸣;周朝飞; 陈志德;柏贵华. 小麦品种对绿麦隆反应敏感性的遗传研究[J]. 作物学报, 1992, 18(03): 230-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!