作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1353-1360.doi: 10.3724/SP.J.1006.2015.01353
胡茂龙, 浦惠明*, 龙卫华, 高建芹, 戚存扣, 张洁夫, 陈松
HU Mao-Long, PU Hui-Ming*, LONG Wei-Hua, GAO Jian-Qin, QI Cun-Kou, ZHANG Jie-Fu, CHEN Song
摘要: 在对油菜抗咪唑啉酮类除草剂基因BnALS1R克隆与功能验证基础上, 为比较抗性基因编码的乙酰乳酸合酶突变体S638N酶学特性及其对ALS类除草剂抗性与野生型的差异, 构建基因原核表达载体, 在大肠杆菌中表达S638N和野生型的重组融合蛋白。SDS-PAGE和Western blot分析表明, S638N和野生型均能表达出约74 kD的特异性重组蛋白。纯化目的蛋白, 在不同温度和pH条件下, 测定S638N和野生型的酶活性。结果显示, 温度和pH对突变酶活性的影响与野生型相同, 表现为先升后降, 在37℃、pH 7.0条件下催化活性均最高。同时, 该突变酶的酶学动力学参数Km和Vmax与野生型没有显著差异, 其对3个辅助因子的响应曲线也与野生型类似, 缺少其中任何一个辅助因子均使突变酶S638N基本都没有活性。然而, 突变酶S638N对IMI类除草剂抗性显著高于野生型, 而对Su类除草剂敏感性和野生型相同。因此, 突变酶S638N具有对IMI类除草剂的专一抗性, 但未改变酶学反应特征。
[1] McCourt J A, Duggleby R G. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids , 2006, 31: 173-210 [2] Tan S, Evans R R, Dahmer M L, Bijay K S, Dale L S. Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci , 2005, 61: 246-257 [3] McCourt J A, Pang S S, King-Scott J, Guddat L W, Duggleby R G. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA , 2006, 103: 569-573 [4] Chipman D M, Duggleby R G, Tittmann K. Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol , 2005, 9: 475-481 [5] Chipman D, Barak Z, Schloss J V. Biosynthesis of 2-aceto-2- hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta , 1998, 1385: 401-419 [6] Duggleby R G. Domain relationships in thiamine diphosphate- dependent enzymes. Acc Chem Res , 2006, 39: 550-557 [7] Lee H, Sachin R, Neeraj K, Burkea I, Yenisha J P, Gilla K S, Wettsteina D V, Steven E U. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci USA , 2011, 108: 8909-8913 [8] Carlos A S, Mariano B, Mariel E, Sherry R, Ascenzi W R. Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theor Appl Genet , 2008, 118: 105-112 [9] Carlos A S, Mariano B. Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sun?ower. Theor Appl Genet , 2012, 124: 355-364 [10] Carlos A. S, Mariano B, Emiliano A, Brigitte W. Response to imazapyr and dominance relationships of two imidazolinone- tolerant alleles at the Ahasl1 locus of sun?ower. Theor Appl Genet , 2012, 124: 385-396 [11] Hattori J, Brown D, Mourad G, Labbe H, Ouellet T, Sunohara G, Rutledge R, King J, Miki B. An acetohydroxyacid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet , 1995, 246: 419-425 [12] 胡茂龙, 浦惠明, 高建芹, 龙卫华, 戚存扣, 张洁夫, 陈松. 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆. 中国农业科学, 2012, 45: 4326-4334 Hu M L, Pu H M, Gao J Q, Long W H, Qi C K, Zhang J F, Chen S. Inheritance and gene cloning of an ALS inhabiting herbicide-resistant mutant line M9 in Brassica napus . Sci Agric Sin , 2012, 45: 4326-4334 (in Chinese with English abstract) [13] Walter K L, Strachan S D, Ferry N M, Albert H H, Castle L A, Sebastian S A. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean. Pest Manag Sci , 2014, 70: 1831-1839 [14] Ghio C, Ramos M L, Altieri E, Bulos M, Sala C A. Molecular characterization of Als1 , an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean. Theor Appl Genet , 2013, 126: 2957-2968 [15] Li H, Li J, Zhao B, Wang J, Yi L, Liu C, Wu J, King G J, Liu K. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed ( Brassica napus ) for hybrid seed production using chemically induced male sterility. Theor Appl Genet , 2015, 128: 107-118 [16] Thompson C, Tar’an B. Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea ( Cicer arietinum L.). Theor Appl Genet , 2014, 127: 1583-1591 [17] Li D, Barclay I, Jose K, Stefanova K, Appels R. A mutation at the Ala122 position of acetohydroxyacid synthase (AHAS) located on chromosome 6D of wheat: improved resistance to imidazolinone and a faster assay for marker assisted selection. Mol Breed , 2008, 22: 217-225 [18] Duggleby R G, McCourt J A, Guddat L W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem , 2008, 46: 309-324 [19] Ott K H, Kwagh J G, Stockton G W, Sidorov V, Kakefuda G. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol , 1996, 263: 359-368 [20] Bernasconi P, Woodworth A R, Rosen B A, Subramanian M V, Siehl D L. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetohydroxyacid synthase. J Biol Chem , 1995, 270: 17381-17385 [21] Subramanian M V, Hung H Y, Dias J M, Miner V W, Butler J H, Jachetta J J. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol , 1990, 94: 239-244 [22] Chang A K, Duggleby R G. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J , 1998, 333: 765-777 [23] Lee Y T, Chang A K, Duggleby R G. Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett , 1999, 452: 341-345 [24] Chang A K, Duggleby R G. Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochem J , 1997, 327: 161-169 [25] 浦惠明, 高建芹, 龙卫华, 胡茂龙, 张洁夫, 陈松, 陈新军, 陈锋, 顾慧, 付三雄, 戚存扣. 油菜抗咪唑啉酮性状的遗传及其应用. 中国油料作物学报, 2011, 33: 15-19 Pu H M, Gao J Q, Long W H, Hu M L, Zhang J F, Chen S, Chen X J, Chen F, Gu H, Fu S X, Qi C K. Studies on inheritance of imidazolinones resistance in Brassica napus and its utilization. Chin J Oil Crop Sci , 2011, 33: 15-19 (in Chinese with English abstract) [26] 胡茂龙, 孔令娜, 龙卫华, 高建芹, 浦惠明, 戚存扣, 张洁夫, 陈松. 油菜乙酰羟基酸合酶基因 BnAHAS1 的克隆及其重组蛋白质的原核表达. 江苏农业学报, 2014, 30: 986-991 Hu M L, Kong L N, Long W H, Gao J Q, Pu H M, Qi C K, Zhang J F, Chen S. Cloning of the BnAHAS1 gene from Brassica napus and prokaryotic expression of its recombinant protein in Escherichia coli . Jiangsu J Agric Sci , 2014, 30: 986-991 (in Chinese with English abstract) [27] Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem , 1976, 72: 248-254 [28] Singh B K, Stidham M A, Shaner D L. Assay of acetohydroxyacid synthase. Ann Biochem , 1988, 171: 173-179 [29] Seefeldt S S, Jensen J E, Fuerst E P. Log-logistic analysis of herbicide dose response relationships. Weed Technol , 1995, 9: 218-227 [30] Esposito D, Chatterjee D K. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotech , 2006, 17: 353-358 [31] Waugh D S. Making the most of affinity tags. Trends Biotech , 2005, 23: 316-320 [32] Chong C K, Choi J D. Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem Biophys Res Commun , 2000, 279: 462-467 [33] 高建芹, 浦惠明, 戚存扣, 张洁夫, 龙卫华, 胡茂龙, 陈松, 陈新军, 陈锋, 顾慧. 抗咪唑啉酮油菜种质的发现与鉴定. 植物遗传资源学报, 2010, 11: 369-373 Gao J Q, Pu H M, Qi C K, Zhang J F, Long W H, Hu M L, Chen S, Chen X J, Chen F, Gu H. Identification of imidazolidone- resistant oilseed rape mutant. J Plant Genet Resour , 2010, 11: 369-373 (in Chinese with English abstract) [34] 胡茂龙, 龙卫华, 高建芹, 付三雄, 陈锋, 周晓婴, 彭琦, 张维, 浦惠明, 戚存扣, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因 BnALS1R 等位基因特异PCR标记的开发与应用. 作物学报, 2013, 39: 1711-1719 Hu M L, Long W H, Gao J Q, Fu S X, Chen F, Zhou X Y, Peng Q, Zhang W, Pu H M, Qi C K, Zhang J F, Chen S. Development and application of allele-specific PCR marker for the imidazolinone-resistant gene BnALS1R in Brassica napus . Acta Agron Sin , 2013, 39: 1711-1719 (in Chinese with English abstract) |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[4] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[5] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[9] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[10] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[11] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[13] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[14] | 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903. |
[15] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
|