欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1832-1840.doi: 10.3724/SP.J.1006.2019.91026

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通小麦‘Holdfast’条锈病成株抗性QTL定位

杨芳萍1,2,刘金栋2,3,郭莹1,贾奥琳2,闻伟鄂2,巢凯翔4,伍玲5,岳维云6,董亚超2,夏先春2,*()   

  1. 1 甘肃省农业科学院小麦研究所, 甘肃兰州 730070
    2 中国农业科学院作物科学研究所 / 国家小麦改良中心, 北京 100081
    3 中国农业科学院深圳农业基因组研究所, 广东深圳 518120
    4 西北农林大学植保学院, 陕西杨凌 712100
    5 四川省农业科学院作物研究所, 四川成都 610066
    6 天水农业科学研究所, 甘肃天水 741200
  • 收稿日期:2019-04-02 接受日期:2019-06-24 出版日期:2019-12-12 网络出版日期:2019-07-19
  • 通讯作者: 夏先春
  • 作者简介:杨芳萍, E-mail: yfp1023@163.com;|刘金栋, Liujindong_1990@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31360336);兰州市科技计划项目(2019-1-81);甘肃省农业科学院青年基金项目(2019GAAS41)

QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast

Fang-Ping YANG1,2,Jin-Dong LIU2,3,Ying GUO1,Ao-Lin JIA2,Wei-E WEN2,Kai-Xiang CHAO4,Ling WU5,Wei-Yun YUE6,Ya-Chao DONG2,Xian-Chun XIA2,*()   

  1. 1 Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Wheat Improvement Center, Beijing 100081, China
    3 Institute of Shenzhen Agricultural Genome, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
    4 College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China;
    5 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
    6 Tianshui Institute of Agricultural Sciences, Tianshui 741200, Gansu, China
  • Received:2019-04-02 Accepted:2019-06-24 Published:2019-12-12 Published online:2019-07-19
  • Contact: Xian-Chun XIA
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31360336);the Program of Science and Technology of Lanzhou(2019-1-81);the Youth Fund of Gansu Academy of Agricultural Sciences(2019GAAS41)

摘要:

Holdfast是来自英国的小麦品种, 多年来一直保持良好的条锈病持久抗性。本研究目的是发掘Holdfast的条锈病成株抗性基因及其紧密连锁的分子标记, 为小麦持久抗性品种选育提供材料和方法。利用铭贤169和Holdfast杂交后代重组自交系(recombinant inbred lines, RIL)群体, 于2014—2015和2015—2016年度在甘肃甘谷、甘肃中梁和四川成都进行条锈病成株抗性鉴定, 并统计最大严重度(maximum disease severity, MDS)。基于小麦660K SNP芯片和BSA (bulked segregant analysis)技术初步确定抗病基因所在的染色体后, 将目标区域的SNP标记转化为KASP (Kompetitive allele specific PCR)标记, 检测整个RIL群体, 进行基因型分析。最后进行RIL群体条锈病成株抗性的QTL分析, 在5AL和7AL染色体上发现了2个成株抗性QTL。5A染色体长臂上1个条锈病成株抗性QTL QYr.gaas- 5AL, 在所有环境下均存在, 可解释6.5%~9.3%的表型变异; QYr.gaas-5AL位于标记Ax-109948955Ax-108798241之间, 连锁距离分别为0.5 cM和1.1 cM。在7A染色体长臂上定位到1个条锈病成株抗性QTL QYr.gaas-7AL, 在2015年和2016年甘谷环境中均稳定存在, 分别解释6.2%和7.3%的表型变异; QYr.gaas-7AL位于标记Ax-110361069Ax-108759561之间, 连锁距离分别为0.5 cM和0.7 cM。携带QYr.gaas-5ALQYr.gaas-7AL抗病等位基因家系的MDS显著低于感病等位基因家系的MDS, 表明QYr.gaas-5ALQYr.gaas-7AL可有效降低条锈病严重度, 可应用于小麦抗条锈育种。

关键词: 普通小麦, 条锈病, 成株抗性, SNP标记, 连锁分析

Abstract:

Holdfast is an elite wheat cultivar from the United Kingdom with well durable resistance to stripe rust for many years. The aim of the present study was to identify adult-plant resistance (APR) genes to stripe rust in Holdfast and closely linked molecular markers to provide materials and methods for breeding wheat cultivars with durable resistance. A recombinant inbred lines (RIL) population, generated from the cross between Mingxian 169 (highly susceptible) and Holdfast, was planted in Zhongliang and Gangu of Gansu province, and Chengdu of Sichuan province during 2014-2015 and 2015-2016 cropping seasons for evaluating maximum disease severities (MDS) of stripe rust. The chromosomal locations of QTL were firstly determined based on the wheat 660K SNP array and bulked segregant analysis. Then kompetitive allele specific PCR (KASP) markers were developed to genotype the entire RIL population. Finally, the quantitative trait loci (QTLs) mapping of adult-plant resistance to stripe rust in the RIL population were performed, and two QTLs for APR to stripe rust were mapped on chromosomes 5AL and 7AL, respectively. The QTL on chromosome 5AL, designated QYr.gaas-5AL, was identified in all environments, including Zhongliang 2015, Chengdu 2015, Chengdu 2016, Gangu 2015, Gangu 2016, explaining phenotypic variances ranging from 6.5% to 9.3%. QYr.gaas-5AL was flanked by markers Ax-109948955 and Ax-108798241 with genetic distances of 0.5 cM and 1.1 cM, respectively. The 7AL QTL, designated QYr.gaas-7AL, was detected in two environments Gangu 2015 and Gangu 2016, explaining 6.2% and 7.3% of the phenotypic variances, respectively. QYr.gaas-7AL was mapped between markers Ax-110361069 and Ax-108759561 with genetic distances of 0.5 cM and 0.7 cM, respectively. The RILs containing the resistance allele at QYr.gaas-5AL and QYr.gaas-7AL loci were more resistant to stripe rust and had significantly lower MDS than those without the resistance alleles of QYr.gaas-5AL and QYr.gaas-7AL, indicating that QYr.gaas-5AL and QYr.gaas-7Al can effectively reduce stripe rust severities, thus may be used in wheat breeding for improvement of stripe rust resistance.

Key words: common wheat, stripe rust, adult-plant resistance, SNP markers, linkage analysis

表1

不同环境条锈病MDS相关系数"

环境
Environment
中梁2015
Zhongliang 2015
成都2015
Chengdu 2015
甘谷2015
Gangu 2015
成都2016
Chengdu 2016
成都2015 Chengdu 2015 0.40**
甘谷2015 Gangu 2015 0.29* 0.12
成都2016 Chengdu 2016 0.42** 0.56** 0.15
甘谷2016 Gangu 2016 0.56** 0.47** 0.27* 0.56**

图1

铭贤169/Holdfast RIL群体条锈病MDS频率分布 a: 中梁2015; b: 成都2015; c: 甘谷2015; d: 成都2016; e: 甘谷2016; f: 总平均。"

表2

铭贤169/Holdfast RIL群体小麦条锈病MDS方差分析"

变异来源
Source of variation
自由度
df
均方
MS
F
F-value
重复Replicate 2 7670 28.4**
环境 Environment (E) 4 46189 170.9**
基因型 Genotype (G) 287 1558 5.8**
基因型×环境 G×E 1148 459 1.7**
误差 Error 1435 270

图2

铭贤169/Holdfast RIL群体中多态性SNP在基因组中的分布"

图3

铭贤169/Holdfast RIL 群体条锈病成株抗性QTL (5AL和7AL)的LOD值曲线图"

图4

铭贤169/HoldfastRIL群体中Qyr.gaas-5AL和Qyr.gaas-7A L对条锈病抗性的等位基因效应 *显著性水平(P<0.05)。"

附表1

铭贤169/Holdfast RIL群体含有的等位基因数目及MDS值"

株系
Line
QYr.gaas-5AL
QYr.gaas-5AL
QYr.gaas-7AL
QYr.gaas-7AL
优异等位基因数目
No. of favorable alleles
最大严重度
MDS
HXF5-1 + + 2 39
HXF5-2 + - 1 63
HXF5-3 + + 2 40
HXF5-4 - + 1 82
HXF5-5 - H 0 46.5
HXF5-6 + H 1 54.5
HXF5-8 + H 1 42.5
HXF5-10 + - 1 46
HXF5-12 - - 0 32.5
HXF5-13 - - 0 75
HXF5-15 - - 0 71.5
HXF5-17 H + 1 47.5
HXF5-18 H + 1 50.5
HXF5-20 + H 1 37
HXF5-21 + + 2 63
HXF5-22 + - 1 42
HXF5-23 + + 2 62
HXF5-24 + H 1 49.5
HXF5-25 - - 0 61
HXF5-26 - - 0 63
HXF5-27 - H 0 65.5
HXF5-29 - + 1 55
HXF5-30 + + 2 73.5
HXF5-32 - - 0 69
HXF5-34 - - 0 62
HXF5-36 + - 1 60
HXF5-38 + - 1 46.5
HXF5-39 - H 0 73
HXF5-40 + - 1 66.5
HXF5-41 - H 0 54
HXF5-43 + H 1 61
HXF5-44 + - 1 51
HXF5-45 + - 1 59
HXF5-46 - + 1 51
HXF5-47 - + 1 57
HXF5-48 - + 1 56.5
HXF5-49 + + 2 47.5
HXF5-50 - + 1 70
HXF5-52 - H 0 69
HXF5-53 H + 1 35.5
HXF5-54 - - 0 38
HXF5-57 - H 0 52.5
HXF5-58 - + 1 34.4
HXF5-60 - - 0 67.5
HXF5-62 + - 1 68
HXF5-63 - - 0 75.5
HXF5-64 + - 1 59.5
HXF5-65 - - 0 76.5
HXF5-67 + - 1 67.5
HXF5-68 + - 1 58
HXF5-69 - - 0 72.5
HXF5-71 - + 1 67.5
HXF5-73 - H 0 66.5
HXF5-74 - H 0 59
HXF5-76 - - 0 63.5
HXF5-77 + - 1 63
HXF5-78 + H 1 64.5
HXF5-79 H - 0 79.5
HXF5-81 + - 1 64
HXF5-82 + + 2 35
HXF5-83 H - 0 72
HXF5-84 + - 1 56.5
HXF5-85 + H 1 63.5
HXF5-86 + - 1 55
HXF5-87 - + 1 65.5
HXF5-88 - + 1 87.5
HXF5-89 + + 2 56.5
HXF5-90 + + 2 49
HXF5-94 + - 1 37
HXF5-98 - + 1 63
HXF5-99 - - 0 62
HXF5-100 H - 0 63.5
HXF5-101 - + 1 77
HXF5-102 - H 0 66
HXF5-103 - H 0 58
HXF5-104 - + 1 59.5
HXF5-106 + + 2 60.5
HXF5-107 - - 0 72.5
HXF5-108 + H 1 71
HXF5-109 + + 2 53.5
HXF5-110 + + 2 75
HXF5-111 + + 2 54
HXF5-114 - + 1 87
HXF5-115 - + 1 77
HXF5-119 + - 1 34.5
HXF5-120 - + 1 55
HXF5-121 - H 0 55
HXF5-124 + + 2 56.5
HXF5-125 H H 0 48.5
HXF5-126 + + 2 56.5
HXF5-127 + + 2 47
HXF5-128 + - 1 60.5
HXF5-130 - - 0 65
HXF5-131 - - 0 75
HXF5-132 + + 2 65
HXF5-135 - - 0 77
HXF5-136 - - 0 72
HXF5-138 - - 0 48
HXF5-141 - + 1 69
HXF5-142 + + 2 58
HXF5-143 - - 0 53
HXF5-144 + - 1 46
HXF5-145 - - 0 70.5
HXF5-147 - + 1 65
HXF5-150 H - 0 48
HXF5-151 + - 1 54.5
HXF5-152 - + 1 62.5
HXF5-153 + - 1 69
HXF5-156 + + 2 61.5
HXF5-157 - - 0 52.3
HXF5-158 - + 1 78.5
HXF5-159 - - 0 61
HXF5-160 - - 0 82
HXF5-161 - + 1 73.5
HXF5-162 - + 1 65.5
HXF5-163 H - 0 50.5
HXF5-164 H - 0 64
HXF5-165 - - 0 69
HXF5-166 + - 1 54
HXF5-167 - + 1 60.5
HXF5-168 + + 2 51.7
HXF5-171 - - 0 70.5
HXF5-173 - - 0 72.5
HXF5-174 - - 0 69.5
HXF5-175 + - 1 58.5
HXF5-176 - + 1 70
HXF5-177 - - 0 72
HXF5-178 + - 1 80
HXF5-179 + + 2 48.5
HXF5-180 H + 1 75.5
HXF5-181 + - 1 56.5
HXF5-182 - - 0 41.5
HXF5-183 + + 2 46
HXF5-184 + - 1 57
HXF5-185 + + 2 61.5
HXF5-186 - + 1 70.5
HXF5-187 + + 2 59
HXF5-189 - - 0 69
HXF5-191 + - 1 57
HXF5-192 + + 2 36.5
HXF5-193 - - 0 52.5
HXF5-194 + + 2 75.5
HXF5-195 - + 1 59
HXF5-196 + - 1 47.5
HXF5-200 - - 0 66.5
HXF5-201 + - 1 33
HXF5-201 + + 2 31
HXF5-202 - - 0 64
HXF5-204 + - 1 53
HXF5-208 + - 1 72
HXF5-210 - - 0 70.5
HXF5-211 + - 1 70
HXF5-212 + - 1 88.5
HXF5-212 - - 0 88.5
HXF5-212 - + 1 88.5
HXF5-213 - - 0 79
HXF5-214 + + 2 81
HXF5-216 - - 0 78.5
HXF5-218 - - 0 132
HXF5-220 H + 1 54.5
HXF5-221 + - 1 59
HXF5-222 - - 0 69.5
HXF5-223 - - 0 78.5
HXF5-224 + + 2 45
HXF5-227 H - 0 68
HXF5-228 - - 0 66
HXF5-229 - + 1 43
HXF5-230 + - 1 54
HXF5-231 + - 1 29.6
HXF5-232 H + 1 73
HXF5-234 - - 0 63
HXF5-235 + + 2 51
HXF5-236 - - 0 65
HXF5-238 + + 2 50
HXF5-239 - - 0 54
HXF5-240 + + 2 57
HXF5-241 - - 0 65
HXF5-242 + - 1 56
HXF5-243 - - 0 77
HXF5-244 - - 0 79
HXF5-245 + - 1 76.5
HXF5-246 + - 1 62.5
HXF5-247 - + 1 55
HXF5-248 - - 0 69.5
HXF5-249 + + 2 57
HXF5-250 - - 0 60.5
HXF5-251 + + 2 43.5
HXF5-252 + - 1 44
HXF5-253 + + 2 66
HXF5-254 - - 0 68.5
HXF5-255 - - 0 68
HXF5-256 - - 0 64
HXF5-257 + + 2 61
HXF5-258 H - 0 63
HXF5-260 - - 0 52.5
HXF5-261 - - 0 72.5
HXF5-262 - - 0 70.5
HXF5-263 - + 1 63.5
HXF5-264 + + 2 55
HXF5-267 - + 1 63.5
HXF5-268 - - 0 83.5
HXF5-271 - - 0 55
HXF5-273 + + 2 49.5
HXF5-274 + + 2 42.5
HXF5-275 - + 1 66
HXF5-276 + + 2 62
HXF5-277 + - 1 65
HXF5-278 + - 1 64
HXF5-279 - - 0 63
HXF5-283 - + 1 79
HXF5-284 - - 0 71
HXF5-285 H - 0 78
HXF5-286 + + 2 50
HXF5-287 - - 0 59.5
HXF5-288 + + 2 66
HXF5-289 - - 0 71.5
HXF5-290 + - 1 55.5
HXF5-291 + - 1 49.5
HXF5-292 + - 1 80.5
HXF5-293 - + 1 66.5
HXF5-294 + - 1 69
HXF5-295 + - 1 68.5
HXF5-296 + - 1 69.5
HXF5-297 - - 0 80.5
HXF5-299 - - 0 73
HXF5-301 - - 0 60.5
HXF5-302 - - 0 53.5
HXF5-303 H - 0 70.5
HXF5-304 + + 2 57
HXF5-305 - - 0 52.5
HXF5-306 + - 1 60
HXF5-307 + - 1 72
HXF5-308 - + 1 63.5
HXF5-309 - - 0 59.5
HXF5-310 + - 1 59.5
HXF5-312 - + 1 59
HXF5-313 - - 0 68
HXF5-315 - - 0 35
HXF5-316 + - 1 64
HXF5-317 - - 0 71
HXF5-319 + + 2 44.5
HXF5-320 - + 1 62
HXF5-321 - - 0 80.5
HXF5-322 - - 0 88
HXF5-323 - + 1 49
HXF5-324 + + 2 58
HXF5-325 - + 1 82.5
HXF5-326 - - 0 66
HXF5-327 - - 0 67
HXF5-328 - + 1 75
HXF5-329 - - 0 66.5
HXF5-330 + - 1 66.5
HXF5-331 + - 1 68
HXF5-332 - - 0 66.5
HXF5-333 - - 0 67.5
HXF5-334 - - 0 77.5
HXF5-335 - + 1 84.5
HXF5-336 + - 1 62.5
HXF5-337 - - 0 57.5
HXF5-338 + - 1 54.5
HXF5-340 + - 1 66.5
HXF5-341 - - 0 63
HXF5-342 - - 0 66.5
HXF5-343 - - 0 56
HXF5-344 - - 0 54.5
HXF5-346 + - 1 74.5
HXF5-347 + - 1 62.5
HXF5-349 - - 0 80.5
HXF5-350 + - 1 68.5
HXF5-351 - - 0 53.5
HXF5-352 - + 1 59.5
HXF5-353 - - 0 56.5
HXF5-354 + - 1 47
HXF5-355 - - 0 67.5
HXF5-356 - - 0 57.5
HXF5-357 + - 1 52
HXF5-358 - + 1 38.5
HXF5-359 - - 0 56
HXF5-361 + + 2 69
HXF5-362 + - 1 66
HXF5-363 + - 1 64
HXF5-364 + + 2 55
HXF5-365 - - 0 61
HXF5-366 - - 0 73.5
HXF5-367 - - 0 74.5
HXF5-370 + + 2 45
HXF5-371 + - 1 78.5
HXF5-886 + - 1 69

附图1

铭贤169/Holdfast RIL群体MDS分布趋势"

附图2

KASP标记Ax-109948955(5A) (a)和Ax-110361069(7A) (b)的基因分型 红色点表示与感病亲本铭贤169一样的纯合基因型,蓝色点代表与抗病亲本Holdfast相同的纯合基因型,黑色圆点表示空白对照,绿色圆点表示杂合基因型"

[1] Wellings C R . Global status of stripe rust: a review of historical and current threats. Euphytica, 2011,179:129-141.
doi: 10.1007/s10681-011-0360-y
[2] Singh R P, Huerta-Espino J, William H M . Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For, 2005,29:121-127.
[3] Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains N S, Goel R K, Keller B, Dhaliwal H S, Singh K . Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet, 2008,116:313-324.
doi: 10.1007/s00122-007-0668-0
[4] Lu Y M, Lan C X, Liang S S, Zhou X C, Liu D, Zhou G, Lu L Q, Jing J X, Wang M N, Xia X C, He Z H . QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet, 2009,119:1349-1359.
doi: 10.1007/s00122-009-1139-6
[5] Bennett F . Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol, 1984,33:297-300.
[6] Liu W, Frick M, Huel R, Nykiforuk C L, Wang X M, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z S, Laroche A . The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant, 2014,7:1740-1755.
doi: 10.1093/mp/ssu112
[7] Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B . A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009,323:1360-1363.
doi: 10.1126/science.1166453
[8] McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C . Catalogue of gene symbols for wheat: 2015-2016 (Supplement). ( ).
[9] Nsabiyera V, Bariana H S, Qureshi N, Wong D, Hayden M J, Bansal U K . Characterization and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet, 2018,131:1459-1467.
doi: 10.1007/s00122-018-3090-x
[10] Marchal C, Zhang J P, Zhang P, Fenwick P, Steuernagel B, Adamski N M, Boyd L, McIntosh R, Wulff B B H, Berry S, Lagudah E , Uauy C . ED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants, 2018,9:662-668
[11] Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S S, Feng L H, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen M J, Schudoma C, Lars P, Laine P, Bariana H, Sela H, Saleem K, Sørensen C K, Hovmøller M S, Distelfeld A, Chalhoub B, Dubcovsky J, Korol A B, Schulman A H, Fahima T . Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun, 2018,9:3735.
doi: 10.1038/s41467-018-06138-9
[12] Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B . Gene-specific markers for the wheat gene Lr34/Yr18/ Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009,119:889-898.
doi: 10.1007/s00122-009-1097-z
[13] Fu D L, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X M, Sela H N, Fah T . A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 2009,323:1357-1360.
doi: 10.1126/science.1166289
[14] Veldboom L R, Lee M . Genetic mapping of quantitative trait loci in maize in stress and non-stress environments: I. Grain yield and yield components. Crop Sci, 1996,36:1310-1319.
doi: 10.2135/cropsci1996.0011183X003600050040x
[15] 仝淑玫, 蔺瑞明, 何月秋, 徐世昌 . 小麦抗源Holdfast和Flinor抗条锈病主效、微效基因的遗传分析. 中国农业科学, 2006,39:2243-2249.
Tong S M, Lin R M, He Y Q, Xu S C . Genetic analysis of major and minor gene(s) resistant to stripe rust in resource wheat cultivars Holdfast and Flinor. Sci Agric Sin, 2006,39:2243-2249 (in Chinese with English abstract).
[16] 张振羽, 冯晶, 白玉路, 蔺瑞明, 彭云良, 徐世昌 . 小麦重要抗源Holdfast抗条锈性遗传分析. 中国农业大学学报, 2011,16(5):1-5.
Zhang Z Y, Feng J, Bai Y L, Lin R M, Peng Y L, Xu S C . Genetic analysis of resistance to stripe rust in wheat cultivar Holdfast. J China Agric Univ, 2011,16(5):1-5 (in Chinese with English abstract).
[17] 孙建鲁, 王吐虹, 冯晶, 蔺瑞明, 王凤涛, 姚强, 郭青云, 徐世昌 . 100个小麦品种资源抗条锈性鉴定及重要抗条锈病基因的SSR检测. 植物保护, 2017,43(2):64-72.
Sun J L, Wang T H, Feng J, Lin R M, Wang F T, Yao Q, Guo Q Y, Xu S C . Identification of resistance to wheat stripe rust and detection of known resistance genes in 100 wheat cultivars with SSR markers. Plant Prot, 2017,43(2):64-72 (in Chinese with English abstract)
[18] Peterson R F, Campbell A B, Hannah A E . A diagrammatic scale of estimating rust intensity on leaves and stems of cereals. Can J Res, 1948,26:496-500.
[19] Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M . Utilization of a Wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017,3788:1-12.
[20] 陆宁海, 郑文明, 王建峰, 詹刚明, 黄丽丽, 康振生 . 陇南地区小麦条锈菌群体遗传多样性SSR分析. 中国农业科学, 2009,42:2763-2770.
Lu N H, Zheng W M, Wang J F, Zhan G M, Huang L L, Kang Z S . SSR Analysis of population genetic diversity of Puccinia striiformis f. sp. tritici in Longnan region of Gansu, China. Sci Agric Sin, 2009,42:2763-2770 (in Chinese with English abstract).
[21] 周祥椿, 吴立人, 宋建荣, 金社林 . 陇南小麦条锈病的品种遗传多样性控制. 植物保护学报, 2008,35(2):97-101.
Zhou X C, Wu L R, Song J R, Jin S L . Control of wheat stripe rust based on genetic diversity of cultivars in Longnan. Acta Phytophyl Sin, 2008,35(2):97-101 (in Chinese with English abstract).
[22] Line R F, Chen X M . Success in breeding for and managing durable resistance to wheat rusts. Plant Dis, 1995,79:1254-1255.
[23] Chen X M, Line R F . Gene action in wheat cultivars for durable high-temperature adult-plant resistance and interactions with race-specific, seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology, 1995,85:567-572.
doi: 10.1094/Phyto-85-567
[24] Bariana H S, Kailasapillai S, Brown G N, Sharp P J. Marker assisted identification of Sr2 in the National Cereal Rust Control Program in Australia. In: Slinkard A E. Proceedings of 9th International Wheat and Genetic Symposium. University of Saskatchewan, Saskatoon: University of Extension Press, 1998,3:83-91.
[25] Keller M, Keller B, Schachermayr G, Winzeler M, Schmid J E, Stamp P, Messmer M M . Quantitative trait loci for resistance against powdery mildew in a segregating wheat×spelt population. Theor Appl Genet, 1999,98:903-912.
doi: 10.1007/s001220051149
[26] Boukhatem N, Baret P V, Mingeot D, Jacquemin J M . Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet, 2002,104:111-118.
doi: 10.1007/s001220200013
[27] Singh R P, Rajaram S . Genetics of adult-plant resistance to leaf rust in ‘Frontana’ and three CIMMYT wheats. Genome, 1992,35:24-31.
doi: 10.1139/g92-004
[28] William H M, Singh R P, Huerta-Espino J, Ortiz-Islas S, Hoisington D . Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 2003,93:153-159.
doi: 10.1094/PHYTO.2003.93.2.153
[29] 何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春 . 小麦条锈病和白粉病成株抗性研究进展与展望. 中国农业科学, 2011,44:2193-2215.
doi: 10.3864/j.issn.0578-1752.2011.11.001
He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C . Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agric Sin, 2011,44:2193-2215 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.11.001
[30] 刘金栋, 杨恩年, 肖永贵, 陈新民, 伍玲, 白斌, 李在峰, Garry M, Rosewarne G M, 夏先春, 何中虎 . 兼抗型成株抗性小麦品系的培育、鉴定与分子检测. 作物学报, 2015,41:1472-1480.
doi: 10.3724/SP.J.1006.2015.01472
Liu J D, Yang E N, Xiao Y G, Chen X M, Wu L, Bai B, Li Z F, Rosewarne G M, Xia X C, He Z H . Development, field and molecular characterization of advanced lines with pleiotropic adult-plant resistance in common wheat. Acta Agron Sin, 2015,41:1472-1480 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.01472
[31] 宋建荣, 岳维云, 吕莉莉, 张耀辉, 刘鸿燕, 王娜, 南海, 周喜旺 . 抗条锈丰产冬小麦新品种——中梁30号. 麦类作物学报, 2011,31:186.
doi: 10.7606/j.issn.1009-1041.2011.01.033
Song J R, Yue W Y, Lyu L L, Zhang Y H, Liu H Y, Wang N N, Nan H, Zhou X W . Zhongliang 30: a new cultivar of winter wheat with resistance to stripe rust and high yield. J Triticeae Crops, 2011,31:186 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2011.01.033
[32] Bariana H S, Parry N, Barclay I R, Loughman R, McLean R J, Shankar M, Wilson R E, Willey N J, Francki M . Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet, 2006,112:1143-1148.
[33] Lowe I, Jankuloski L, Chao S, Chen X M, See D, Dubcovsky J . Mapping and validation of QTL which confer partial resistance to broadly virulant post-2000 North American races of stripe rust in hexapliod wheat. Theor Appl Genet, 2011,123:143-157
doi: 10.1007/s00122-011-1573-0
[34] Lan C X, Liang S S, Zhou X C, Liu D, Zhou G, Lu Q L, Xia X C, He Z H . Quantitative trait loci mapping for adult-plant resistance against stripe rust in Chinese wheat cultivar Pingyuan 50. Phytopathology, 2010,100:313-318.
doi: 10.1094/PHYTO-100-4-0313
[35] Qureshi N, Bariana H S, Zhang P, McIntosh R, Bansal U K . Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis, 2018,102:413-420.
doi: 10.1094/PDIS-08-17-1144-RE
[36] Maccaferri M, Ricci A, Salvi S, Milner S G, Noli E, Martelli P L, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo A M, Morgante M, Pozniak C, N’Diaye A, Xu S, Tuberosa R . A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J, 2015,13:648-663.
doi: 10.1111/pbi.2015.13.issue-5
[37] Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J . Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology, 2009,99:969-973.
[38] Zwart R S, Thompson J P, Milgate A W, Bansal U K, Williamson P M, Raman H, Bariana H S . QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed, 2010,26:107-124.
doi: 10.1007/s11032-009-9381-9
[39] Rosewarne G, Singh R, Huerta-Espino J, Herrera-Foessel S, Forrest K, Hayden M, Rebetzke G . Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet, 2012,124:1283-1294.
doi: 10.1007/s00122-012-1786-x
[40] Liu W Z, Maccaferri M, Chen X M, Laghetti G, Pignone D, Pumphrey M, Tuberosa R . Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum). Theor Appl Genet, 2017,130:2249-2270.
doi: 10.1007/s00122-017-2957-6
[41] 白斌 . 普通小麦条锈病成株抗性QTL定位与白粉病成株抗性QTL聚合. 西北农林科技大学博士论文, 陕西杨凌, 2014.
Bai B . Mapping of QTLs for Adult-plant Resistance to Stripe Rust and Pyramiding of QTLs for Adult-plant Resistance to Powdery Mildew in Common Wheat. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2014 (in Chinese with English abstract).
[42] 吴建辉 . 基于BSR-Seq和芯片技术的抗条锈基因Yr26候选基因分析及普通小麦成株期抗条锈QTL定位. 西北农林科技大学博士学位论文, 2017, 陕西杨凌.
Wu J H . QTL Mapping for Adult-plant Resistance to Stripe Rust in Common Wheat and Candidate Gene Analysis of Yr26 Based on BSR-Seq and SNP Array. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract).
[1] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[2] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[3] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[4] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[5] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[6] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[7] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[8] 刘畅, 孟云, 刘金栋, 王雅美, Guoyou Ye. 结合QTL-seq和连锁分析发掘水稻中胚轴伸长相关QTL[J]. 作物学报, 2021, 47(10): 2036-2044.
[9] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063.
[10] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[11] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[12] 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749.
[13] 孙程明,陈锋,陈松,彭琦,张维,易斌,张洁夫,傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析[J]. 作物学报, 2020, 46(01): 147-153.
[14] 孙程明,陈松,彭琦,张维,易斌,张洁夫,傅廷栋. 甘蓝型油菜角果长度性状的全基因组关联分析[J]. 作物学报, 2019, 45(9): 1303-1310.
[15] 白彦明,李龙,王绘艳,柳玉平,王景一,毛新国,昌小平,孙黛珍,景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析[J]. 作物学报, 2019, 45(10): 1468-1477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!