欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (11): 1715-1724.doi: 10.3724/SP.J.1006.2019.91004

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦小穗不同粒位粒重形成的生理特性差异

李艳霞1,杨卫兵1,2,尹燕枰1,郑孟静1,陈金1,杨东清1,骆永丽1,庞党伟1,李勇1,*(),王振林1,*()   

  1. 1 山东农业大学作物生物学国家重点实验室, 山东泰安 271018
    2 北京市农林科学院 / 北京杂交小麦工程技术研究中心, 北京 100097
  • 收稿日期:2019-01-10 接受日期:2019-06-22 出版日期:2019-11-12 网络出版日期:2019-07-15
  • 通讯作者: 李勇,王振林
  • 作者简介:E-mail: liyanxia429@126.com
  • 基金资助:
    本研究由国家自然科学基金项目(31271661);本研究由国家自然科学基金项目(30871477);国家重点基础研究发展计划(973计划)项目(2015CB150404);国家重点基础研究发展计划(973计划)项目(2015CB150404)(2015CB150404);北京市农林科学院青年基金(QNJJ201629);国家重点研发计划项目(2016YFD0300400);山东省高等学校科技计划项目(J14LF12);山东省泰山产业领军人才项目和山东省农业重大应用技术创新课题项目资助

Difference of physiological characteristics of grain weight at various kernel positions in wheat spikelets

LI Yan-Xia1,YANG Wei-Bing1,2,YIN Yan-Ping1,ZHENG Meng-Jing1,CHEN Jin1,YANG Dong-Qing1,LUO Yong-Li1,PANG Dang-Wei1,LI Yong1,*(),WANG Zhen-Lin1,*()   

  1. 1 Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;
    2 Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Hybrid Wheat, Beijing 100097, China
  • Received:2019-01-10 Accepted:2019-06-22 Published:2019-11-12 Published online:2019-07-15
  • Contact: Yong LI,Zhen-Lin WANG
  • Supported by:
    The work was supported by the National Nature Science Foundation of China(31271661);The work was supported by the National Nature Science Foundation of China(30871477);the National Basic Research Program of China(2015CB150404);the National Basic Research Program of China(973 Program)(2015CB150404);the Youth Fund Project from Beijing Academy of Agricultural and Forestry Sciences(QNJJ201629);the National Key Research and Development Plan(2016YFD0300400);the Shandong Province Higher Educational Science and Technology Plan(J14LF12);the Shandong Province Mount Tai Industrial Talents Program, and Shandong Province Key Agricultural project for Application Technology Innovation

摘要:

为探明小麦小穗上不同粒位籽粒粒重形成的生理机制, 明确限制小穗上位弱势粒充实的主要原因, 本试验选用大穗型小麦品种泰农18 (TN18)和多穗型小麦品种山农20 (SN20)为材料, 调查检测了灌浆过程中小穗上不同粒位籽粒内源激素、可溶性糖、全氮含量的动态变化以及籽粒与籽粒柄连接处横面的组织结构与不同粒位籽粒粒重的关系。花后籽粒灌浆过程中灌浆速率与籽粒内GA和IAA含量呈极显著或显著相关, 小穗基部籽粒中较高的GA和IAA含量可使蔗糖向淀粉转化开始早, 籽粒分化快, 灌浆速率高, 是小穗基部籽粒粒重高的生理机制; 扫描电镜图显示小麦籽粒灌浆初期小穗基部籽粒柄维管束横面面积明显大于上位籽粒, 微观空隙小且排列较整齐, 有利于同化物和生理活性物质的运输, 是小穗基部籽粒粒重增长快、灌浆速率高的解剖学基础;

关键词: 粒位, 粒重, 内源激素, 可溶性糖, 全氮含量

Abstract:

The object of the experiment was to explore the main physiological mechanism of heterogeneous development of grains located at the various kernel positions in wheat spikelets, further to reveal the factors restricting grain filling of inferior grains located on the distal kernel positions. Two varieties with different spike sizes of winter wheat (a large-spike cultivar Tainong 18 and a multiple-spike cultivar Shannong 20) were used to as the experimental materials. We have studied the dynamic changes of concentrations of endogenous hormones, soluble sugar and total nitrogen in grains located at different kernel positions in wheat spikelets during grain-filling period, and the microstructure of vascular bundle junction on kernel handle and kernel weight. Correlation analysis showed that the grain filling rate was significantly correlated with the contents of GA and IAA in grains. Higher GA and IAA contents in proximal kernels could make the conversion from sucrose to starch start earlier, the seed differentiate rapidly and the grain-filling rate higher, which is the physiological mechanism of the higher weight of proximal kernel in wheat spikelets. The micrograph showed that the cross-sectional area of vascular bundle of seed stalk on proximal kernels at the early stage of grain-filling period was significantly larger than that of distal kernels, and the microcosmic space was small and orderly, which is conducive to the transport of assimilates and physiological active substances, showing an anatomical basis for the rapid increase of seed weight and higher grain-filling rate in the proximal kernels of spikelets.

Key words: kernel position, kernel weight, endogenous hormone, soluble sugar, total nitrogen content

图1

2014-2015年花后小穗上不同粒位籽粒粒重和灌浆速率 1 2: 小穗基部第1位和第2位籽粒; 3: 小穗基部第3位籽粒; 4 5: 小穗基部第4位和第5位籽粒。"

图2

2013-2014和2014-2015年成熟期小麦小穗上不同粒位籽粒单粒重 1 2: 小穗基部第1位和第2位籽粒; 3: 小穗基部第3位籽粒; 4 5: 小穗基部第4位和第5位籽粒。"

图3

2013-2014不同穗型小麦小穗上不同粒位籽粒灌浆期可溶性总糖和可溶性蔗糖含量变化 1 2: 小穗基部第1位和第2位籽粒; 3: 小穗基部第3位籽粒; 4 5: 小穗基部第4位和第5位籽粒。"

图4

2013-2014年花后小穗上不同粒位籽粒全氮含量的变化 1 2: 小穗基部第1位和第2位籽粒; 3: 小穗基部第3位籽粒; 4 5: 小穗基部第4位和第5位籽粒。"

图5

2014-2015年籽粒灌浆过程中不同粒位籽粒内源激素含量的变化 1 2: 小穗基部第1位和第2位籽粒; 3: 小穗基部第3位籽粒; 4 5: 小穗基部第4位和第5位籽粒。"

图6

TN18和SN20小麦小穗上不同粒位籽粒柄与籽粒连接处横切面的扫描电镜照片 1: 小穗基部第1位籽粒; 3: 小穗基部第3位籽粒; 4: 小穗基部第4位籽粒。从左到右依次放大50×、150×、500×、1500×。"

表1

小麦籽粒灌浆过程中灌浆速率与籽粒中碳水化合物及内源激素的相关性"

籽粒灌浆速率
Grain-filling rate
可溶性总糖
Soluble suger content
蔗糖
Sucrose content
内源激素 Hormone content
GA ZR ABA IAA
山农20 SN20 0.46 0.57 0.40 0.49 0.29 0.68*
泰农18 TN18 0.18 0.56* 0.74** 0.08 0.11 0.81**
[1] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H . Pre-anthesis nonstructural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011,123:170-182.
[2] Jiang D, Cao W, Dai T, Jing Q . Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regul, 2003,41:247-257.
[3] Mohapatra P K, Patel R, Sahu S K . Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Aust J Plant Physiol, 1993,20:231-242.
[4] 梁太波, 尹燕枰, 蔡瑞国, 闫素辉, 李文阳, 耿庆辉, 王平, 王振林 . 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较. 作物学报, 2008,34:150-156.
Liang T B, Yin Y P, Cai R G, Yan S H, Li W Y, Geng Q H, Wang P, Wang Z L . Starch accumulation and related enzyme activities in superior and inferior grains of large spike wheat. Acta Agron Sin, 2008,34:150-156 (in Chinese with English abstract).
[5] Yang J. C . Abscises acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Physiol, 2006,171:293-303.
[6] Zhu J X, Jang D, Cao W X, Dong T B . Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statuses. Plant Growth Regul, 2003,41:117-127.
[7] Liu Y E, Liu P D, Zhang S T, Wang J . Hormonal changes caused by the Xenia effect during grain filling of normal corn and high-oil corn crosses. Crop Sci, 2010,50:215-221.
[8] 王瑞英, 于振文, 潘庆民, 许玉敏 . 小麦籽粒发育过程中激素含量变化. 作物学报, 1999,25:227-232.
Wang R Y, Yu Z W, Pan Q M, Xu Y M . Changes of endogenous plant hormone contents during grain development in wheat. Acta Agron Sin, 1999,25:227-232 (in Chinese with English abstract).
[9] 杨建昌, 刘立军, 王志琴, 郎有忠, 朱庆森 . 稻穗颖花开花时间对胚乳发育的影响及其生理机制. 中国农业科学, 1999,32:44-51.
Yang J C, Liu L J, Wang Z Q, Lang Y Z, Zhu Q S . Effects of flowering time of spikelets on endosperm development in rice and its physiological mechanism. Sci Agric Sin, 1999,32:44-51 (in Chinese with English abstract)
[10] 杨卫兵, 王振林, 尹燕枰, 李文阳, 李勇, 陈晓光, 王平, 陈二影, 郭俊祥, 蔡铁, 倪英丽 . 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011,44:2673-2682.
Yang W B, Wang Z L, Yin Y P, Li W Y, Li Y, Chen X G, Wang P, Chen E Y, Guo J X, Cai T, Ni Y L . Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains. Sci Agric Sin, 2011,44:2673-2682 (in Chinese with English abstract).
[11] 戴忠民 . 喷施6BA和ABA对小麦籽粒胚乳细胞增殖及淀粉积累动态的影响. 麦类作物学报, 2008,28:484-489.
Dai Z M . Effects of 6BA and ABA on endosperm cell propagation and starch accumulation in grains of winter wheat. J Triticeae Crops, 2008,28:484-489 (in Chinese with English abstract).
[12] Travaglia C, Cohen A C, Reinoso H, Castillo C, Bottini R . Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. Plant Growth Regul, 2007,26:285-289.
[13] 张晓融, 王世之 . 小麦穗、小穗及籽粒差异的解剖结构及生理原因的研究. 作物学报, 1993,19:103-109.
Zhang X R, Wang S Z . Studies on the anatomical and physiological factors influencing the unbalanced development of the spikes and grains of wheat. Acta Agron Sin, 1993,19:103-109 (in Chinese with English abstract).
[14] Wang E T, Wang J N, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H . Control of rice grain-flling and yield by a gene with a potential signature of domestication. Nat Genet, 2008,40:1370-1374.
[15] Murty P, Murty K . Spikelet sterility in relation to nitrogen and carbohydrate contents in rice. Indian J Plant Physiol, 1982,25:40-48.
[16] 姜东, 于振文, 李永庚, 余松烈 . 高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化. 中国农业科学, 2002,35:378-383.
Jiang D, Yu Z W, Li Y K, Yu S L . Dynamic changes of enzyme activities involving in starch synthesis in superior and inferior grains of high-yield winter wheat. Sci Agric Sin, 2002,35:378-383 (in Chinese with English abstract).
[17] Richards F J . A flexible growth function for empirical use. J Exp Bot, 1959,10:290-301.
[18] Fales F . The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem, 1959,10:290-301.
[19] Daniel J M, Gustavo A S . Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crops Res, 1995,43:55-62.
[20] Walley F, Pennock D, Solohub M . Hnatowich. Spring wheat (Triticum aestivum) yield and grain protein responses to N fertilizer in topographically defined landscape positions. Can J Soil Sci, 2001,81:505-514.
[21] Chen Y, Yuan L P, Wang X H, Zhang D Y, Chen J, Deng Q Y, Zhao B R, Xu D Q . Relationship between grain yield and leaf photosynthetic rate in super hybird rice. J Plant Physiol Mol Biol, 2007,33:235-243.
[22] Mohapatra P K, Patel R, Sahu S K . Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Aust J Plant Physiol, 1993,20:231-242.
[23] Whingwiri E E, Kuo J, Stern W R . The vascular system in the rachis of a wheat ear . Ann Bot, 1981,48:189-202.
[24] 郭文善, 彭永欣, 封超年, 严六零, 高年春 . 小麦不同花位籽粒重差异及其原因分析. 江苏农学院学报, 1992,13(3):1-7.
Guo W S, Peng Y X, Feng C N, Yan L L, Gao N C . Weight differences of grains at different positions and Its reason. J Jiangsu Agric Coll, 1992,13(3):1-7.
[25] 黄升谋, 邹应斌 . 亚种间杂交水稻5460S/广抗粳2号充实度的研究. 中国农学通报, 2002,18(5):11-15.
Huang S M, Zou Y B . Study on grain-filling rate of intersubspecific hybird combination 5460S/Guangkanggeng 2. Chin Agric Sci Bull, 2002,18(5):11-15 (in Chinese with English abstract).
[26] Shininger T L . The control of vascular development. Ann Rev Physiol, 1979,30:313-332.
[27] 李明慧, 张庆琛, 李刚, 沈光辉, 徐士库, 刘亚平, 韩战敏 . 小麦穗与小穗及籽粒差异的解剖结构和生理原因研究. 安徽农业科学, 2008,36:938-940.
Li M H, Zhang Q S, Li G, Shen G H, Xu S K, Liu Y P, Han Z M . Research on the relationship between the development imbalance of wheat ear, Spikelet and grain and vascular bundle system and Its physiological reason. J Anhui Agric Sci, 2008,36:938-940 (in Chinese with English abstract).
[28] Pinthus M J, Sar-shalom Y . Day matter accumulation in the grains of wheat (Triticum aestivum L.) cultivars differing in grains weight. Ann Bot, 1978,42:469-471.
[29] Sayed H I, Gadallah A M . Variation in day matter and grain filling characteristics in wheat cultivars. Field Crops Res, 1983,7:61-71.
[30] 顾自奋, 李金诚, 翁训珠 . 灌浆强度和时间对大麦籽粒增重的影响. 作物学报, 1987,13:288-295.
Gu Z F, Li J C, Weng X Z . Effect of filling intensity and duration on increasing grain-weight in barley. Acta Agron Sin, 1987,13:288-295 (in Chinese with English abstract).
[31] 田淑兰, 王熹 . IAA与亚种间杂交稻籽粒发育的关系及烯效唑的调节. 中国水稻科学, 1998,12:99-104.
Tian S L, Wang X . The relationship between IAA and grain development of indica-japonica hybrid rice and regulation with S-07. Chin J Rice Sci, 1998,12:99-104 (in Chinese with English abstract).
[32] 刘仲齐, 吴兆苏, 俞世蓉 . 吲哚乙酸和脱落酸对小麦子粒淀粉积累的影响. 南京农业大学学报, 1992,15(1):7-12.
Liu Z Q, Wu Z S, Yu S R . Effects of IAA and ABA on starch accumulation in wheat grain. J Nanjing Agric Univ, 1992,15(1):7-12 (in Chinese with English abstract).
[33] Radley M . Effect of abscisic and gibberellic acid on grain set in wheat. Ann Appl Biol, 1980,95:409-414.
[34] Sehussler J R, Brenner M L, Brun W A . Abscisic acid and its relationship to seed filling in soybeans. J Plant Physiol, 1984,76:301-306.
[35] 柏新付, 蔡永萍, 聂凡 . 脱落酸与稻麦子粒灌浆的关系. 植物生理学通讯, 1989, ( 3):40-41.
Bai X F, Cai Y P, Nie F . Relationship between absciaic acid and grain filling of rice and wheat. Plant Physiol Commun, 1989, ( 3):40-41 (in Chinese with English abstract).
[1] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[2] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[3] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507-519.
[4] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[5] 雷维, 王瑞莉, 王刘艳, 袁芳, 孟丽姣, 邢明礼, 徐璐, 唐章林, 李加纳, 崔翠, 周清元. 甘蓝型油菜容重及其相关性状的全基因组关联分析[J]. 作物学报, 2021, 47(11): 2099-2110.
[6] 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133.
[7] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[8] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[9] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525.
[10] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[11] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[12] 司文洁,吴林楠,郭利建,周梦蝶,刘香利,马猛,赵惠贤. 小麦粒重相关基因TaCYP78A5功能标记开发及验证[J]. 作物学报, 2019, 45(12): 1905-1911.
[13] 袁莉民, 展明飞, 章星传, 王志琴, 杨建昌. 水稻穗上不同粒位籽粒胚乳结构及其结实期灌溉方式对它的调控作用[J]. 作物学报, 2018, 44(02): 245-259.
[14] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[15] 张海燕,段文学,解备涛,董顺旭,汪宝卿,史春余,张立明. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系[J]. 作物学报, 2018, 44(01): 126-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!