欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (3): 440-447.doi: 10.3724/SP.J.1006.2020.94080

• 耕作栽培·生理生化 • 上一篇    下一篇

高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制

刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华()   

  1. 扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2019-05-27 接受日期:2019-09-26 出版日期:2020-03-12 网络出版日期:2019-10-14
  • 通讯作者: 陈德华
  • 作者简介:E-mail: 1127317278@qq.com
  • 基金资助:
    本研究由国家自然科学基金项目(31671613);国家现代农业产业技术体系棉花岗位专家项目(CARS-18-18);江苏省高等教育优势学科发展计划(PAPD)资助

Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton

Zhen-Yu LIU,Gui-Xia WANG,Li-Nan LI,Ze-Zhou CAI,Pan-Pan LIANG,Xin-Ling WU,Xiang ZHANG,De-Hua CHEN()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2019-05-27 Accepted:2019-09-26 Published:2020-03-12 Published online:2019-10-14
  • Contact: De-Hua CHEN
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31671613);the China Agriculture Research System (Cotton Post Expert Project)(CARS-18-18);the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

摘要:

以大面积生产应用的Bt棉常规种‘泗抗1号’和杂交种‘泗抗3号’为材料, 于扬州大学遗传生理重点实验室人工气候室, 以盆栽方式设计高温胁迫试验。2017年设蕾期38℃高温持续胁迫72 h终止、2018年设38℃高温持续胁迫96 h终止处理后不同时间(0、12、24、48、72和96 h)研究棉蕾Bt杀虫蛋白表达量变化及相关氮代谢生理。结果表明, 盛蕾期38℃持续胁迫72 h、96 h终止后棉蕾Bt杀虫蛋白表达量均能恢复到相应对照水平, 并且恢复所需时间随胁迫持续时间的延长而增加。胁迫72 h终止后, 常规种泗抗1号经72 h、杂交种泗抗3号经48 h蕾的Bt杀虫蛋白表达量与对照已无显著差异; 胁迫96 h终止后, 泗抗1号经96 h、泗抗3号经72 h, 棉蕾Bt杀虫蛋白表达量与对照已无显著差异。相关分析表明, 高温胁迫终止后, 蕾中可溶性蛋白表达量、谷氨酸丙酮酸转氨酶(GPT)活性、谷氨酸草酞乙酸转氨酶(GOT)活性与Bt杀虫蛋白表达量呈极显著正相关 (相关系数分别为0.964 **、0.981 **、0.971 **); 而游离氨基酸含量、蛋白酶和肽酶的活性与Bt杀虫蛋白表达量呈极显著负相关(相关系数分别为-0.894 **、-0.912 **、-0.834 **)。因此, 生产上可根据高温持续时间预测棉蕾Bt杀虫蛋白表达量的恢复程度, 合理防治棉铃虫等相关害虫。

关键词: Bt棉, 棉蕾, 高温胁迫, Bt杀虫蛋白, 氮代谢

Abstract:

The experiments were conducted at Key Laboratory of Genetics and Physiology of Yangzhou University. The conventional cultivar Sikang-1 and hybrid cultivar Sikang-3 were used as the experimental materials. The potted cotton at squaring stage was moved to artificial climatic chamber with 38℃ for 72 h , and 38℃ for 96 h respectively in 2017 and 2018 cotton growth season, and moved to natural conditions, then the squares were collected to measure the Bt protein concentration and nitrogen metabolic physiology at 0, 12, 24, 48, 72, 96 hours respectively after the high temperature termination. The square Bt insecticidal protein contents were able to recover to the corresponding control level, the time for the recovery was in need of longer as the stressed high temperature period increased. In 72 h high temperature treatment, the square Bt insecticidal protein content could recover to the corresponding control level at 72 h for Sikang-1 and at 48 h for Sikang-3. In 96 h high temperature treatment, the square Bt insecticidal protein content could recover to the corresponding control level at 96 h for Sikang-1 and at 72 h for Sikang-3. There were significantly positive correlations of Bt toxin content with soluble protein content, glutamate pyruvate transaminase activity and glutamate oxaloacetate transaminase activity (the correlation coefficients were 0.964 **, 0.981 **, and 0.971 **, respectively), and significantly negative correlations of Bt toxin content with free amino acid contents, and activitied of protease and peptidase (the correlation coefficients were -0.894 **, -0.912 **, and -0.834 **, respectively). Therefore, the recovery degree of Bt insecticidal protein content of cotton square can be predicted according to the duration of high temperature stress, reasonably controlling Helicoverpa armigera and related pests in production.

Key words: Bt cotton, square, high temperature stress, Bt protein, nitrogen metabolism

图1

高温持续胁迫72 h终止后棉蕾Bt蛋白表达量变化 不同小写字母表示0.05显著水平下相同品种、相同处理间与对照间的差异。T: 高温胁迫72 h; CK: 对照。"

图2

高温持续胁迫96 h终止后棉蕾Bt蛋白表达量变化 不同小写字母表示0.05显著水平下相同品种、相同处理间与对照间的差异。T: 高温胁迫96 h; CK: 对照。"

表1

高温持续胁迫终止后蕾中可溶性蛋白与游离氨基酸含量变化"

测定指标
Tested index
品种
Variety
处理
Treatment
恢复时间 Recovery time
0 h 12 h 24 h 48 h 72 h 96 h
可溶性蛋白含量
Soluble protein content
(mg g-1 FM)
SK-1 CK 10.19 a 10.25 a 10.25 a 10.19 a 10.16 a 10.26 a
38℃-72 h 4.77 d 5.12 d 6.45 c 8.56 b 10.36 a 10.36 a
38℃-96 h 4.15 e 4.44 e 5.43 d 6.86 c 8.47 b 10.09 a
SK-3 CK 12.10 a 12.20 a 12.27 a 12.25 a 12.18 a 12.24 a
38℃-72 h 6.26 d 7.42 c 9.17 b 12.05 a 12.23 a 12.27 a
38℃-96 h 5.93 e 6.80 d 7.88 c 10.89 a 12.02 a 12.23 a
游离氨基酸含量
Free amino acid content
(μmol g-1 FM)
SK-1 CK 255.21 a 250.16 a 249.88 a 251.92 a 253.55 a 249.60 a
38℃-72 h 747.74 a 693.73 b 626.64 c 476.67 d 240.14 d 243.28 d
38℃-96 h 974.31 a 923.16 b 854.25 c 689.28 d 500.86 e 252.38 e
SK-3 CK 277.06 a 273.20 a 281.32 a 277.44 a 275.88 a 272.99 a
38℃-72 h 681.54 a 607.52 b 520.30 c 286.08 d 279.63 d 272.75 d
38℃-96 h 905.24 a 829.97 b 742.43 c 346.71 d 273.32 e 274.59 e

表2

高温持续胁迫终止后蕾中GOT与GPT活性变化"

测定指标
Tested index
品种
Variety
处理
Treatment
恢复时间 Recovery time
0 h 12 h 24 h 48 h 72 h 96 h
GOT
(μmol g-1 h-1)
SK-1 CK 12.71 a 12.79 a 12.69 a 12.95 a 12.40 a 12.49 a
38℃-72 h 3.79 e 4.62 d 6.05 c 8.59 b 12.77 a 12.61 a
38℃-96 h 2.20 f 2.84 e 3.99 d 6.52 c 9.40 b 13.59 a
SK-3 CK 15.37 a 15.25 a 15.34 a 15.24 a 15.34 a 15.19 a
38℃-72 h 6.36 d 8.51 c 11.76 b 15.84 a 15.62 a 15.72 a
38℃-96 h 4.31 e 5.77 d 7.71 c 13.53 a 15.93 a 15.82 a
GPT
(μmol g-1 h-1)
SK-1 CK 14.19 a 14.24 a 14.35 a 14.19 a 14.25 a 14.30 a
38℃-72 h 4.73 e 5.78 d 7.14 c 9.72 b 14.35 a 14.61 a
38℃-96 h 3.30 f 4.09 e 5.08 d 7.42 c 10.54 b 14.21 a
SK-3 CK 17.05 a 16.63 a 17.57 a 17.07 a 17.60 a 17.34 a
38℃-72 h 6.45 d 8.88 c 11.59 b 17.57 a 17.30 a 17.25 a
38℃-96 h 4.81 e 5.86 d 8.17 c 14.64 a 17.20 a 17.49 a

表3

高温持续胁迫终止后蕾中蛋白酶与肽酶活性变化"

测定指标
Tested index
品种
Variety
处理
Treatment
恢复时间 Recovery time
0 h 12 h 24 h 48 h 72 h 96 h
蛋白酶活性
Protease activity
(μg g-1 h-1)
SK-1 CK 34.62 a 34.08 a 34.88 a 33.86 a 35.07 a 34.58 a
38℃-72 h 125.79 a 114.46 b 100.05 c 73.23 d 35.43 d 34.88 d
38℃-96 h 153.95 a 145.35 b 131.47 c 106.43 d 76.00 e 35.35 e
SK-3 CK 39.84 a 40.76 a 40.98 a 40.67 a 39.74 a 40.19 a
38℃-72 h 114.88 a 99.46 b 83.75 c 39.08 d 41.16 d 39.94 d
38℃-96 h 141.91 a 122.30 b 105.78 c 62.09 d 43.01 e 41.49 e
肽酶活性
Peptidase activity
(μmol g-1 h-1)
SK-1 CK 1.28 a 1.28 a 1.29 a 1.27 a 1.28 a 1.27 a
38℃-72 h 3.43 a 3.24 a 3.06 ab 2.46 b 1.26 d 1.27 d
38℃-96 h 4.07 a 3.91 b 3.72 c 3.15 d 2.50 e 1.30 f
SK-3 CK 1.64 a 1.61 a 1.62 a 1.62 a 1.61 a 1.60 a
38℃-72 h 3.20 a 2.77 b 2.32 c 1.56 d 1.62 d 1.59 d
38℃-96 h 3.79 a 3.48 b 3.11 c 2.07 d 1.59 e 1.59 e
[1] 郑志明, 黄磊, 袁连卿, 孙玉德 . 转基因抗虫棉的特性及病虫草害综合防治技术. 见: 陈汝涌, 赵永民, 韩吉宝, 李明远主编. 黄河三角洲棉花生产发展论坛论文集. 山东: 中国社会出版社, 2005. pp 231-235.
Zheng Z M, Huang L, Yuan L Q, Sun Y D. The characteristics of transgenic insect-resistant cotton and pests integrated control techniques. In: Chen R Y, Zhao Y M, Han J B, Li M Y, eds. Collected Papers of the Forum on Cotton Production and Development in the Yellow River Delt. Shandong: China Society Press, 2005. pp 231-235(in Chinese).
[2] 郭香墨, 范术丽, 王红梅, 严根土 . 我国棉花育种技术的创新与成就. 棉花学报, 2007,19:323-330.
Guo X M, Fan S L, Wang H M, Yan G T . Achievements of technical innovation about cotton genetics and breeding in China. Cotton Sci, 2007,19:323-330 (in Chinese with English abstract).
[3] 夏敬源, 邹奎, 马志强, 夏文省, 柏长青 . 国产转基因抗虫棉技术集成创新与推广应用. 中国棉花, 2006,33(10):2-5.
Xia J Y, Zou K, Ma Z Q, Xia W X, Bai C Q . Domestic transgenic cotton technology integration innovation and application. China Cotton, 2006,33(10):2-5 (in Chinese).
[4] 魏艳丽, 黄玉杰, 李红梅, 孙红星, 杨合同 . 棉花转基因技术研究. 山东科学, 2008,21(3):38-41.
Wei Y L, Huang Y J, Li H M, Sun H X, Yang H T . A survey of cotton transgene technology. Shandong Sci, 2008,21(3):38-41 (in Chinese with English abstract).
[5] 邢朝柱, 靖深蓉, 崔学芬, 郭立平, 王海林, 袁有禄 . 转Bt基因棉杀虫蛋白含量时空分布及对棉铃虫产生抗虫的影响. 棉花学报, 2011,13:11-15.
Xing C Z, Jing S R, Cui X F, Guo L P, Wang H L, Yuan Y L . The spatio-temporal distribution of Bt (Bacillus thuringiensis) insecticidal protein and the effect of transgenic Bt cotton on bollworm resistance. Cotton Sci, 2001,13:11-15 (in Chinese with English abstract).
[6] 温四民, 董合忠, 辛呈松 . Bt棉抗虫性差异表达的研究进展. 河南农业科学, 2007, ( 1):9-13.
Wen S M, Dong H Z, Xin C S . Research progress on the differential expression of insect resistance of Bt cotton. Henan Agric Sci, 2007, ( 1):9-13 (in Chinese).
[7] 王永慧, 陈建平, 高进, 张祥, 陈源, 陈德华 . 盐胁迫对Bt棉棉蕾杀虫蛋白表达的影响. 应用生态学报, 2018,29:3017-3023.
Wang Y H, Chen J P, Gao J, Zhang X, Chen Y, Chen D H . Effect of soil salinity on insecticidal protein expression in flower buds of Bt cotton. Chin J Appl Ecol, 2018,29:3017-3023 (in Chinese with English abstract).
[8] 赵红霞, 王士杰, 朱继杰, 李妙, 王国印 . 不同遗传背景转基因抗虫棉Bt蛋白表达与氮代谢关系研究. 棉花学报, 2018,30:498-504.
Zhao H X, Wang S J, Zhu J J, Li M, Wang G Y . Relationship between Bt protein expression and nitrogen metabolism in insect-resistant transgenic cotton lines with different genetic backgrounds. Cotton Sci, 2018,30:498-504 (in Chinese with English abstract).
[9] 肖海兵, 王鹏军, 李先锋, 董红强, 杨明禄 . 转Bt棉主茎叶Cry1Ab/c蛋白含量的时空分布分析. 生物技术通报, 2017,33(12):108-111.
Xiao H B, Wang P J, Li X F, Dong H Q, Yang M L . Tempo-spatial distribution of Cry1Ab/c protein in the main stem leaves of transgenic Bt cotton. Biotechnol Bull, 2017,33(12):108-111 (in Chinese with English abstract).
[10] Benedict J H, Altman D W, Deaton W R, Kohel R J, Ring D R, Berberich S A, Sachs E S . Field performance of cottons expressing transgenic CrylA insecticidal proteins for resistance to Helicoverpa. J Econ Entomol, 1996,89:230-238.
[11] Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K . The effect of high temperature on the insecticidal properties of Bt cotton. Environ Exp Bot, 2005,53:333-342.
[12] 王俊, Eltayib A, 花明明, 衡丽, 吕春花, 陈德华. 高温胁迫对Bt棉铃壳中Bt蛋白含量及氮代谢的影响. 应用生态学报, 2015,26:3202-3206.
Wang J, Eltayib A, Hua M M, Heng L, Lyu C H, Chen D H . Effects of high temperature on Bt protein content and nitrogen metabolic physiology in boll wall of Bt cotton. Chin J Appl Ecol, 2015,10:3202-3206 (in Chinese with English abstract).
[13] 王淑民 . 影响Bt转基因棉花抗虫效果因素. 棉花学报, 1999,11:336.
Wang S M . Factors affecting the insect resistance of Bt transgenic cotton. Cotton Sci, 1999,11:336 (in Chinese).
[14] Warren G W . Field evaluation of transgenic tobacco containing a Bt insecticial protein gene. J Econ Entomol, 1992,85:1651-1659.
[15] Fitt G P, Mares C L, Liewellyn D J . Field evaluation and potential ecologicalimpact of transgenic cottons in Australia. Biocontrol Sci Technol, 1994,4:535-548.
[16] Chen Y, Wen Y, Chen Y, Zhang X, Wang Y, Chen D . The recovery of Bt toxin content after temperature stress termination in transgenic cotton. Spanish J Agric Res, 2013,11:438-446.
[17] 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣 . 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997,13(3):27-29.
Chen S, Wu J Y, He X L, Huang J Q, Zhou B L, Zhang R X . Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect resistant cotton. Jiangsu J Agric Sci, 1997,13(3):27-29 (in Chinese with English abstract).
[18] 邵金良, 黎其万, 董宝生, 刘宏程, 束继红 . 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008, ( 2):162-165.
Shao J L, Li Q W, Dong B S, Liu H C, Shu J H . Determination of total free-amino acid in tea by Nihydrin colorimetry. China Food Additives, 2008, ( 2):162-165 (in Chinese with English abstract).
[19] 扬州大学农学院. 作物栽培生理研究法实验讲义. 扬州: 扬州大学出版社, 2007. pp 3-6.
Agricultural College, Yangzhou University. Crop Cultivation Physiological Study Lab Handouts. Yangzhou: Yangzhou University Press, 2007. pp 3-6(in Chinese).
[20] 吴良欢, 蒋式洪, 陶勤南 . 植物转氨酶(GOT 和 GPT)活度比色测定方法及其应用. 土壤通报, 1998,29(3):41-43.
Wu L H, Jiang S H, Tao Q N . Plant aminotransferase (GOT and GPT) determination method and its application of activity colorimetric. Chin J Soil Sci, 1998,29(3):41-43 (in Chinese).
[21] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000.
Zou Q. Experimental Guide of Plant Physiology. Beijing: China Agriculture Press, 2000 (in Chinese).
[22] 路献勇, 李淑英, 朱加保, 程福如, 刘方志, 於春 . 昼夜不同温度对2种Bt棉苗期叶片杀虫蛋白表达量和棉铃虫死亡率的影响. 中国农学通报, 2015,31(36):103-108.
Lu X Y, Li S Y, Zhu J B, Chen F R, Liu F Z, Yu C . Effects of alternating temperatures day and night on cotton bollworm mortality and insecticidal protein expression of two kinds of Bt cottons. Chin Agric Sci Bull, 2015,31(36):103-108 (in Chinese with English abstract).
[23] 陈源, 韩勇, 王俊, 花明明, 顾超, 李国生, 张祥, 陈德华 . 高温对Bt棉盛蕾期蕾中Bt蛋白表达及氮代谢生理的影响. 应用生态学报, 2014,25:2623-2628.
Chen Y, Han Y, Wang J, Hua M M, Gu C, Li G S, Zhang X, Chen D H . Effects of high temperature on Bt proteins expression and nitrogen metabolic physiology in square of Bt cotton at the peak squaring stage. Chin J Appl Ecol, 2014,25:2623-2628 (in Chinese with English abstract).
[24] 陈德华, 杨长琴, 陈源, 聂安全, 吴云康 . 高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究. 棉花学报, 2003,15:288-292.
Chen D H, Yang C Q, Chen Y, Nie A Q, Wu Y K . The effects of the high temperature stress on the leaf Bt protein content and nitrogen metabolism of Bt cotton. Cotton Sci, 2003,15:288-292 (in Chinese with English abstract).
[1] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[2] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[3] 罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响[J]. 作物学报, 2021, 47(4): 752-760.
[4] 吕腾飞, 谌洁, 代邹, 马鹏, 杨志远, 郑传刚, 马均. 缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响[J]. 作物学报, 2021, 47(10): 1966-1977.
[5] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[6] 邹京南,于奇,金喜军,王明瑶,秦彬,任春元,王孟雪,张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J]. 作物学报, 2020, 46(5): 745-758.
[7] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[8] 党科,宫香伟,陈光华,赵冠,刘龙,王洪露,杨璞,冯佰利. 糜子绿豆带状种植下糜子的氮素积累、代谢及产量变化[J]. 作物学报, 2019, 45(12): 1880-1890.
[9] 卢克欢,刘兴,杨怡,廖志华,吴能表. UV-B胁迫下Ca 2+对颠茄生理特性与次生代谢产物的调控研究[J]. 作物学报, 2018, 44(10): 1527-1538.
[10] 孙永健,孙园园,严奉君,杨志远,徐徽,李玥,王海月,马均. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响[J]. 作物学报, 2017, 43(03): 407-419.
[11] 宋航,周卫霞,袁刘正,靳英杰,李鸿萍,杨艳,尤东玲,李潮海*. 光、氮及其互作对玉米氮素吸收利用和物质生产的影响[J]. 作物学报, 2016, 42(12): 1844-1852.
[12] 衡丽,李亚兵,胡大鹏,王桂霞,吕春花,张祥,陈源,陈德华. 高温胁迫对Bt棉蕾中杀虫蛋白含量及氮代谢的影响[J]. 作物学报, 2016, 42(09): 1374-1380.
[13] 王亚梁**,张玉屏**,朱德峰*,向镜,武辉,陈惠哲,张义凯. 水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响[J]. 作物学报, 2016, 42(09): 1402-1410.
[14] 江文文,尹燕枰,王振林,李勇,杨卫兵,彭佃亮,杨东清,崔正勇,卢昆丽,李艳霞. 花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响[J]. 作物学报, 2014, 40(05): 942-949.
[15] 张祖建,王晴晴,郎有忠,王春哥,朱庆森,杨建昌. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响[J]. 作物学报, 2014, 40(02): 273-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!