欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (5): 680-689.doi: 10.3724/SP.J.1006.2020.94096

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析

张卫娜,范艳玲,康益晨,杨昕宇,石铭福,要凯,赵章平,张俊莲,秦舒浩()   

  1. 甘肃农业大学园艺学院, 甘肃兰州 730070
  • 收稿日期:2019-06-28 接受日期:2019-12-26 出版日期:2020-05-12 网络出版日期:2019-10-11
  • 通讯作者: 秦舒浩
  • 作者简介:E-mail:844741204@qq.com
  • 基金资助:
    本研究由甘肃农业大学园艺学科建设基金项目(GAU-XKJS-2018-225);国家自然科学基金项目(31260311);甘肃省自然科学基金项目(1606RJZA034);中国博士后科学基金项目(2012M512042);中国博士后科学基金项目(2014T70942);国家现代农业产业技术体系(马铃薯)建设专项资助(CARS-09-P14)

Genome wide identification and expression analysis of CRK gene family in response to fungal pathogen signals in potato

Wei-Na ZHANG,Yan-Ling FAN,Yi-Chen KANG,Xin-Yu YANG,Ming-Fu SHI,Kai YAO,Zhang-Ping ZHAO,Jun-Lian ZHANG,Shu-Hao QIN()   

  1. College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2019-06-28 Accepted:2019-12-26 Published:2020-05-12 Published online:2019-10-11
  • Contact: Shu-Hao QIN
  • Supported by:
    This study was supported by the Discipline Construction Fund Project of Gansu Agricultural University(GAU-XKJS-2018-225);the National Natural Science Foundation of China(31260311);the Natural Science Foundation of Gansu Province(1606RJZA034);the China Postdoctoral Science Foundation(2012M512042);the China Postdoctoral Science Foundation(2014T70942);the China Agriculture Research System (Potato)(CARS-09-P14)

摘要:

富含半胱氨酸的类受体激酶(cysteine-rich receptor-like kinase, CRK)在植物生长发育和环境适应过程中发挥重要的作用。本研究鉴定了马铃薯CRK (StCRK)家族成员, 并对其理化性状、进化特征、亚细胞定位、染色体位置和表达模式进行分析。鉴定获得8个StCRKs, 其氨基酸序列大小为459~686 aa, 分子量介于50.75~77.50 kD, 等电点介于5.84~8.75, 主要位于质膜。进化分析将来自马铃薯、拟南芥、香蕉、苹果、水稻、番茄和棉花的CRKs分为9个亚组, 2号、3号和5号染色体上的StCRKs分布于亚组I (6个成员)和VI (2个成员); 存在2个串联重复基因簇, 包含4个成员。StCRKs启动子区域存在多种顺式调控元件, 主要响应激素、低温、防卫和逆境等信号。接种晚疫病菌(Phytophthora infestans, Pi)和干腐病菌(Fusarium sulphureum, Fs)后, 分别发现8个和6个StCRKs为差异表达。其中, StCRK4和StCRK8响应PiFs信号, 在接种以上2种病原菌后, 表达量上调8倍以上, 推测其响应多个真菌信号, 可能在马铃薯对真菌病害的广谱抗性中起重要作用, 可作为进一步抗病研究和功能分析的候选基因。

关键词: CRK, 顺式表达元件, 生物信息学分析, 硫色镰刀菌, 马铃薯晚疫病菌

Abstract:

Cysteine-rich receptor-like kinase (CRK) plays an important role in plant growth and environmental adaptation. In this study, potato CRK (StCRK) family members were identified, and their physical and chemical characteristics, evolutionary characteristics, subcellular location, chromosome location and expression patterns were analyzed. Eight StCRK members were identified, with amino acid size from 459 to 686 aa, molecular weight of 50.75-77.50 kD, and isoelectric point of 5.84-8.75. StCRKs were mainly located on plasma membrane. CRKs from potato (Solanum tuberosum), apple (Malus pumila Mill.), Thale Cress (Arabidopsis thaliana), rice (Oryza sativa), cotton (G. hirsutum), banana (Musa acuminata), and tomato (Solanum lycopersicum) could be divided into nine subgroups, and StCRKs were belonged to subgroups I (6 members) and VI (2 members). Moreover, StCRKs distributed on chromosomes 2, 3, and 5, contained two tandem repeat gene clusters, including four members. There were many cis-regulated elements in the StCRKs promoter region, which mainly respond to hormones, low temperature, defense and stress signals. After inoculating Phytophthora infestans (Pi) and Fusarium sulphureum (Fs), eight and six StCRKs gene differentially expressed, among them, StCRK4 and StCRK8 had the expression levels by more than eight times. It is speculated that they may respond to multiple fungal signals, and play an important role in potato's broad-spectrum resistance to fungal diseases, and can be used as candidate genes for further needed on disease resistance and functional analysis.

Key words: CRK, cis-elements, bioinformatic analysis, Fusarium sulphureum (Fs), Phytophthora infestans (Pi)

表1

马铃薯CRKs引物"

基因登录号
Gene accession number
上游引物
Forward primer (5′-3′)
下游引物
Reverse prime (5′-3′)
AB061263 ATTGGAAACGGATATGCTCCA TCCTTACCTGAACGCCTGTCA
PGSC0003DMG402000515 ACTCTGGCTCTCTACTACAAACAGT CTTCCACACCTGAAACCAAAATGAC
PGSC0003DMG400021394 AAGAGTCCCCTTGTATACAGAACCA ATCGAATTCATACAAGAGGTCCAGC
PGSC0003DMG400013525 CAACACAACCACCATTCCTCAATTC AAGATTGTGTAGAGGAGCTTGGTTG
PGSC0003DMG400018101 CTCCTCCAGATACAAGCAGTTCATC TCACCTGATTGAGAGCTAGAAATGC
PGSC0003DMG400006912 TCGTGTTCAAGAGTTATGTCACCAG AATTCCAAGCAAGTCGAAGTCAGAT
PGSC0003DMG400013524 CATATGTAGTACGCAACCTGAGCAT CTTCAGCATAGCATAGGACACAGTC
PGSC0003DMG400015170 TCATGATCAGACTGTTGACTTCGTC AAGCAGTGAATGGAGCAACAAAATC
PGSC0003DMG400015171 TACAAAAGCCAGTGAAGGAGAAGAC TATAATTGCCTGTTTCTTGAGCGGA

表2

马铃薯CRKs"

基因登录号Gene accession number 基因编号
Genetic code
氨基酸数
AA size
分子量
Molecular weight (kD)
等电点
Isoelectric point
亚细胞定位
Subcellular localization
Gene ID# STWG 1.0b
PGSC0003DMG402000515 PGSC0003DMP400001023/
PGSC0003DMP400001024
StCRK1 616 67.40 8.53 PMa, Chlob
PGSC0003DMG400021394 PGSC0003DMP400037082 StCRK2 608 67.23 8.07 PMa, Chlob
PGSC0003DMG400013525 PGSC0003DMP400023929 StCRK3 656 72.73 8.75 PMa, Chlob
PGSC0003DMG400018101 PGSC0003DMP400031539 StCRK4 681 75.52 6.37 PMa, Chlob
PGSC0003DMG400006912 PGSC0003DMP400012233/
PGSC0003DMP400012234/
PGSC0003DMP400012235
StCRK5 668 75.21 5.84 PMa, Vacub
PGSC0003DMG400013524 PGSC0003DMP400023928/
PGSC0003DMP400023926
StCRK6 656 73.21 6.42 PMa,b
PGSC0003DMG400015170 PGSC0003DMP400026615/
PGSC0003DMP400026616/
PGSC0003DMP400026617
StCRK7 459 50.75 7.27 PMa, Cytob
PGSC0003DMG400015171 PGSC0003DMP400026620 StCRK8 686 77.50 7.23 PMa, b

图1

马铃薯、拟南芥、香蕉、苹果、水稻、番茄和棉花CRK家族进化树分析"

图2

马铃薯CRKs染色体定位 *代表串联重复基因簇。"

图3

马铃薯CRKs的基因结构和蛋白功能结构域分析 A: 马铃薯CRKs进化树; B: 马铃薯CRKs基因结构; C: 马铃薯CRK蛋白的功能结构域。"

图4

预测马铃薯CRKs启动子中顺式调控元件 A和B: 脱落酸响应元件; C: GARE-motif; D和E: 赤霉素响应元件; F和G: 生长素响应元件; H: 茉莉酸甲酯响应元件; I: 水杨酸响应元件; J: 玉米醇溶蛋白代谢调控元件; K: 厌氧诱导响应元件; L: 缺氧响应元件; M: 防御和压力响应元件; N: 黄酮类代谢响应元件; O: 低温响应元件。"

图5

SA和JA处理后6个马铃薯CRKs的表达情况"

图6

马铃薯CRKs响应晚疫病菌侵染的表达分析"

图7

马铃薯CRKs响应干腐病菌侵染的表达分析"

[1] Sakamoto T, Deguchi M, Brustolini O J, Santos A A, Silva F F, Fontes E P . The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol, 2012,12:229.
doi: 10.1186/1471-2229-12-229 pmid: 23198823
[2] Walker J C, Zhang R . Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature, 1990,345:743-746.
doi: 10.1038/345743a0 pmid: 2163028
[3] Shiu S H, Bleecker A B . Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001,98:10763-10768.
doi: 10.1073/pnas.181141598 pmid: 11526204
[4] Shiu S H, Karlowski W M, Pan R, Tzeng Y, Mayer K F, Li W . Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell, 2004,16:1220-1234.
doi: 10.1105/tpc.020834 pmid: 15105442
[5] Lehti-Shiu M D, Zhou C, Shiu S H . Origin, diversity, expansion history, and functional evolution of the plant receptor-like kinase/pelle family. In: Receptor-like kinases in plants. Berlin Heidelberg: Springer, 2012. pp 1-22.
[6] Walker J C . Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol, 1994,26:1599-1609.
doi: 10.1007/bf00016492 pmid: 7858206
[7] Wang G, Ellendorff U, Kemp B, Mansfield J W, Forsyth A, Mitchell K, Bastas K K, Liu C, Woodstor A, Zipfel C, De Wit P J G M, Jones J D G, Tor M, Thomma B P . A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol, 2008,147:503-517.
doi: 10.1104/pp.108.119487 pmid: 18434605
[8] Chen Z . A superfamily of proteins with novel cysteine-rich repeats. Plant Physiol, 2001,126:473-476.
doi: 10.1104/pp.126.2.473 pmid: 11402176
[9] Wrzaczek M, Brosche M, Salojarvi J, Kangasjarvi S, Idanheimo N, Mersmann S, Robatzek S, Karpinski S, Karpinska B, Kangasjarvi J . Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol, 2010,10:95.
doi: 10.1186/1471-2229-10-95 pmid: 20500828
[10] 张中起, 王娇, 靳炜, 葛冬冬, 刘康, 吕芬妮, 孙敬 . 陆地棉CRK基因家族的鉴定及其表达分析. 中国农业科学, 2018,51:2442-2461.
doi: 10.3864/j.issn.0578-1752.2018.13.002
Zhang Z Q, Wang J, Jin W, Ge D D, Liu K, Lyu F N, Sun J . Identification and expression analysis of CRK gene family in upland cotton. Sci Agric Sin, 2018,51:2442-2461 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.13.002
[11] Bourdais G, Burdiak P, Gauthier A, Nitsch L, Salojarvi J, Rayapuram C, Idanheimo N, Hunter K, Kimura S, Merilo E, Vaattovaara A, Oracz K, Kaufholdt D, Pallon A, Anggoro D T, Glow D, Lowe J, Zhou J, Mohammadi O, Puukko T, Albert A, Lang H, Ernst D, Kollist H, Brosche M, Durner J, Borst J W, Collinge D B, Karpinski S, Lyngkjaer M F, Robatzek S, Wrzaczek M, Kangasjarvi J . Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. PLoS Genet, 2015,11:e1005373.
doi: 10.1371/journal.pgen.1005373 pmid: 26197346
[12] Xu X, Yu T, Xu R, Shi Y, Lin X, Xu Q, Qi X, Weng Y, Chen, X, . Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes. Theor Appl Genet, 2016,129:507-516.
doi: 10.1007/s00122-015-2644-4 pmid: 26660669
[13] Yeh Y, Chang Y, Huang P, Huang J, Zimmerli L . Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front Plant Sci, 2015,6:322.
doi: 10.3389/fpls.2015.00322 pmid: 26029224
[14] Lee D S, Kim Y C, Kwon S J, Ryu C, Park O K . The Arabidopsis cysteine-rich receptor-like kinase CRK36 regulates immunity through interaction with the cytoplasmic kinase BIK1. Front Plant Sci, 2017,8:1856.
doi: 10.3389/fpls.2017.01856 pmid: 29163585
[15] Chen K, Fan B, Du L, Chen Z . Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Mol Biol, 2004,56:271-283.
doi: 10.1007/s11103-004-3381-2 pmid: 15604743
[16] Acharya B R, Raina S, Maqbool S B, Jagadeeswaran G, Mosher S, Appel H M, Schultz J C, Klessig D F, Raina R . Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J, 2007,50:488-499.
doi: 10.1111/j.1365-313X.2007.03064.x pmid: 17419849
[17] Chen K, Du L, Chen Z . Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol, 2003,53:61-74.
doi: 10.1023/B:PLAN.0000009265.72567.58
[18] Ederli L, Madeo L, Calderini O, Gehring C, Moretti C, Buonaurio R, Paolocci F, Pasqualini S . The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. J Plant Physiol, 2011,168:1784-1794.
doi: 10.1016/j.jplph.2011.05.018
[19] Chern M, Xu Q, Bart R, Bai W, Ruan D, Szeto W H, Canlas P E, Jain R, Chen X, Ronald P C . A genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity. PLoS Genet, 2016,12:e1006049.
doi: 10.1371/journal.pgen.1006049 pmid: 27176732
[20] Rayapuram C, Jensen M K, Maiser F, Shanir J V, Hornshoj H, Rung J H, Gregersen P, Schweizer P, Collinge D B, Lyngkjaer M F . Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol, 2012,13:135-147.
doi: 10.1111/j.1364-3703.2011.00736.x pmid: 21819533
[21] Liu R H, Meng J L . MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas, 2003,25:317-321.
pmid: 15639879
[22] Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G . The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997,25:4876-4882.
doi: 10.1093/nar/25.24.4876 pmid: 9396791
[23] 蒋锐 . 马铃薯晚疫病广谱抗性QTL dPI09c的精细定位及抗性基因克隆. 华中农业大学博士学位论文, 湖北武汉, 2017.
Jiang R . Fine Mapping,Cloning and Function Dissection of the Gene Conferring Durable Late Blight Resistance of QTL dPI09c in Potato. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei,China, 2017 (in Chinese with English abstract).
[24] 巩檑, 甘晓燕, 张丽, 陈虞超, 聂峰杰, 石磊, 郭志乾, 宋玉霞 . 马铃薯StNAC72基因克隆及表达分析. 分子植物育种, 2016,14:2589-2595.
Gong L, Gan X Y, Zhang L, Chen Y C, Nie F J, Shi L, Guo Z Q, Song Y X . Cloning and function analysis of the StNAC72 gene from potato ( Solanum tuberosum). Mol Plant Breed, 2016,14:2589-2595 (in Chinese with English abstract).
[25] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Miyakawa T, Miyazono K, Sawano Y, Hatano K, Tanokura M . Crystal structure of ginkbilobin-2 with homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Proteins, 2009,77:247-251.
doi: 10.1002/prot.22494 pmid: 19603485
[27] Xu G, Guo C, Shan H, Kong H . Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012,109:1187-1192.
doi: 10.1073/pnas.1109047109 pmid: 22232673
[28] Xu W R, Yu Y H, Ding J H, Hua Z Y, Wang Y J . Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta, 2010,231:475-487.
doi: 10.1007/s00425-009-1062-8 pmid: 19937257
[29] Rushton P J, Torres J T, Parniske M, Wernert P, Hahlbrock K, Somssich I E . Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J, 1996,15:5690-5700.
pmid: 8896462
[30] Diazdeleon F, Klotz K L, Lagrimini L M . Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiol, 1993,101:1117-1118.
doi: 10.1104/pp.101.3.1117 pmid: 8310051
[31] Urao T, Yamaguchishinozaki K, Urao S, Shinozaki K . An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993,5:1529-1539.
doi: 10.1105/tpc.5.11.1529 pmid: 8312738
[32] Yamaguchishinozaki K, Shinozaki K . Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol, 1993,101:1119-1120.
doi: 10.1104/pp.101.3.1119 pmid: 8310052
[33] White A J, Dunn M A, Brown K, Hughes M A . Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot, 1994,45:1885-1892.
[34] Vidhyasekaran P . Plant hormone signaling systems in plant innate immunity. Dordrecht: Springer, 2015. pp 1-458.
[1] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[2] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[3] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[4] 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801.
[5] 苏亚春,黄珑,凌辉,王竹青,刘峰,苏炜华,黄宁,吴期滨,高世武,阙友雄. 甘蔗CDK基因的cDNA全长克隆与表达分析[J]. 作物学报, 2017, 43(01): 42-50.
[6] 刘芳,刘睿洋,彭烨,官春云. 甘蓝型油菜BnFAD2-C1基因全长序列的克隆、表达及转录调控元件分析[J]. 作物学报, 2015, 41(11): 1663-1670.
[7] 朱晓玲,陈海峰,王程,郝青南,陈李淼,郭丹丹,伍宝朵,陈水莲,沙爱华,周蓉,周新安. 大豆钾转运体基因GmKT12的克隆和信息学分析[J]. 作物学报, 2013, 39(09): 1701-1709.
[8] 吴娟娟, 吴倩, 喻德跃. 大豆丙二烯氧化物合酶基因(GmAOS)及其启动子的克隆与分析[J]. 作物学报, 2011, 37(02): 216-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!