欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (6): 869-877.doi: 10.3724/SP.J.1006.2020.94110

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

高抗黑胫病烤烟BAC文库的构建及分析

董庆园1,4,马德清1,4,杨学2,刘勇1,黄昌军1,袁诚1,方敦煌1,于海芹1,童治军1,沈俊儒3,许银莲5,罗美中2,李永平1,曾建敏1,*()   

  • 收稿日期:2019-07-29 接受日期:2020-01-15 出版日期:2020-06-12 网络出版日期:2020-01-24
  • 通讯作者: 曾建敏
  • 作者简介:董庆园, E-mail: BlueSkies183@163.com|马德清, E-mail: 1847494695@qq.com|杨学, E-mail: 919231424@qq.com
  • 基金资助:
    中国烟草总公司云南省公司科技项目(2017YN04);中国烟草总公司云南省公司科技项目(2019530000241004)

Construction and characterization of a BAC library for flue-cured tobacco line with high resistance to blank shank

DONG Qing-Yuan1,4,MA De-Qing1,4,YANG Xue2,LIU Yong1,HUANG Chang-Jun1,YUAN Cheng1,FANG Dun-Huang1,YU Hai-Qin1,TONG Zhi-Jun1,SHEN Jun-Ru3,XU Yin-Lian5,LUO Mei-Zhong2,LI Yong-Ping1,ZENG Jian-Min1,*()   

  • Received:2019-07-29 Accepted:2020-01-15 Published:2020-06-12 Published online:2020-01-24
  • Contact: Jian-Min ZENG
  • Supported by:
    Grants of Yunnan Province Tobacco Company(2017YN04);Grants of Yunnan Province Tobacco Company(2019530000241004)

摘要:

烟草是重要的模式植物。本研究利用pIndigoBAC536-S载体及Hind III限制性内切酶酶解烟草基因组DNA的方法, 构建了烟草新品系14-60的细菌人工染色体(BAC)文库。该文库共包含414,720个克隆, 保存在1080块384板中。随机挑选的120个烟草BAC克隆检测结果表明, 外源插入片段大小为97.0~145.5 kb, 平均约为123 kb, 空载率极低(0), 覆盖烟草基因组11倍。用烟草hemA基因、eIF4E-1基因、NtFT基因的特异引物进一步验证, 该文库质量高、可用性强, 为烟草黑胫病抗性基因的克隆以及其他重要农艺性状和品质性状等功能基因克隆研究提供了基础资源。

关键词: 烟草, 基因组DNA, 细菌人工染色体(BAC), 基因筛选

Abstract:

Tobacco (N. tabacum) is an important model crop in molecular biology research. In this study, a bacterial artificial chromosome (BAC) library of a flue-cured tobacco line 14-60 with high blank shank resistance and good quality was constructed. High molecular weight DNA was isolated using intact nuclei from tobacco, partially cleaved with Hind III and cloned into the pIndigoBAC536-S vector. The BAC library consisted of 414,720 clones arrayed in one thousand and eighty 384-microtite plates, with an average insert size of 123 kb ranging from 97.0-145.5 kb. No empty insert clone was found. Based on an estimated genome size of 4500 Mb for common tobacco, the BAC library was estimated to cover 11 times of genome equivalents. The utility of the library was further confirmed by screening the library with the primers of tobacco hemA, NtFT, and eIF4E-1 genes. The high capacity library will serve as a giant genomic resource for map-based cloning of quantitative trait loci or genes associated with important agronomic and smoking quality traits or resistance to blank shank, physical mapping and comparative genome analysis.

Key words: tobacco, genomic DNA, bacterial artificial chromosome (BAC), gene screening

图1

烟草plug DNA部分酶切 图中第1泳道为λ ladder PFG Marker, 2~9泳道分别为半块plug的酶切条带。酶浓度依次为0、0.3、0.5、1.0、1.5、2.0、4.0、10.0 U μL-1。酶切时间为15 min。"

图2

烟草基因组DNA的第1次筛选 1%琼脂糖胶脉冲场电泳条件为0.5×TBE, 1 s-50 s, 120°, 6 V cm-1, 14℃, 18 h。Marker为λ ladder PFG。"

图3

烟草基因组DNA的第2次筛选 1%琼脂糖胶脉冲场电泳条件为0.5×TBE, 14℃, 18 h, 4 s-4 s, 120°, 6 V cm-1。"

图4

洗脱产物DNA的浓度检测 λDNA标准液1 μL, 浓度分别为1、2、3、4 ng μL-1; a1、a2、b1、b2电洗脱产物各1 μL。"

表1

烟草BAC文库统计分析"

名称
Name
指标
Index
克隆数 Total clones 414720
384孔板数 Total 384-well plates 1080
载体 BAC vector pIndigoBAC536-S
感受态细胞 Competent cell DH10B
平均插入片段大小 Average insert size (kb) 123
烟草基因组覆盖度 Tobacco genome equivalent 11×
空载率 Insert-empty BACs (%) 0

图5

烟草BAC文库随机克隆的插入片段检测(部分) 为部分随机挑选的40个克隆的插入片段检测图片。Marker为λ ladder PFG。"

图6

一级混合池2号板132~166编号的PCR筛选结果(hemA) Marker为Trans2K DNA marker, 从上到下依次是2000、1000、50、500、250、100 bp。"

图7

一级混合池2号板161~190编号的PCR筛选结果(eIF4E-1) Marker为Trans2K DNA marker, 从上到下依次是2000、1000、750、500、250、100 bp。"

图8

一级混合池9号板898~927编号PCR筛选结果(NtFT) Marker为Trans2K DNA marker, 从上到下依次是2000、1000、750、500、250、100 bp。"

[1] Liao L J, Liu L F, Lai K L . Somatic hybridization in the genus nicotiana: N. sylvestris and N. tomentosiformis. Memoirs College Agric Natl Taiwan Univ, 1990,30:73-82.
[2] Goodspeed, Harper T . The genus nicotiana. Soil Sci, 1955,80:250.
[3] Kenton A, Parokonny A S, Gleba Y Y, Bennett M D . Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet, 1993,240:159-169.
doi: 10.1007/BF00277053
[4] Gazdová B, Siroky J, Fajkus J, Brzobohaty B, Kenton A, Parokonny A, Heslop-Harrison J S, Palme K, Bezděk M . Characterization of a new family of tobacco highly repetitive DNA, GRS, specific for the Nicotiana tomentosiformis genomic component. Chromosome Res, 1995,3:245-254.
doi: 10.1007/BF00713050
[5] Ma J K, Drossard J, Lewis D, Altmann F, Boyle J, Christou P, Cole T, Dale P, van Dolleweerd C J, Isitt V, Katinger D, Lobedan M, Mertens H, Paul M J, Rademacher M, Hundleby P A G, Stiegler T, Stoger E, Twyman R M, Vcelar B, Fischer R, Cole T, . Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J, 2015,13:1106-1120.
doi: 10.1111/pbi.12416
[6] Tusé D, Tu T, McDonald K A, . Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. BioMed Res Int, 2014,2014:1-16.
[7] Vanhercke T, El Tahchy A, Liu Q, Zhou X R, Shrestha P, Divi U K, Ral J P, Mansour M P, Nichols P D, James C N, Horn P J, Chapman K D, Beaudoin F, Ruiz-López N, Larkin P J, de Feyter R C, Singh S P, Petrie J R, . Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J, 2014,12:231-239.
doi: 10.1111/pbi.12131
[8] Vasil V, Hildebrandt A C . Differentiation of tobacco plants from single, isolated cells in microcultures. Science, 1965,150:889-892.
doi: 10.1126/science.150.3698.889
[9] Hoekema A, Hirsch P R, Hooykaas P J J, Schilperoot R A, . A binary plant vector strategy based on separation of vir- and T-region of the agrobacterium tumefaciens Ti-plasmid. Nature, 1983,303:179-180.
doi: 10.1038/303179a0
[10] Sierro N, Battey J N, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch M C, Ivanov N V . Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol, 2013,14:R60.
doi: 10.1186/gb-2013-14-6-r60
[11] Sierro N, Battey J N, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch M C, Ivanov N V . The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun, 2014,5:1-9.
[12] Edwards K D, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans A D, Bombarely A, Allen F, Hurst R, White B, Kernodle S P, Bromley J R, Sanchez-Tamburrino J P, Lewis R S, Mueller L A . A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 2017,18:448.
doi: 10.1186/s12864-017-3791-6
[13] Chen M, Presting G, Barbazuk W B, Goicoechea J L, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman M A, Tomkins J P, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh N K, Tyagi A K, Soderlund C, Dean R A, Wing R A . An integrated physical and genetic map of the rice genome. Plant Cell, 2002,14:537-545.
doi: 10.1105/tpc.010485
[14] Mueller L A, Tanksley S D, Giovannoni J J, van Eck J, Stack S, Choi D, Kim B D, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh N K, Stiekema W, Lindhout P, Jesse T, Lankhorst R K, Bouzayen M, Shibata D, Tabata S, Granell A, Botella M A, Giuliano G, Frusciante L, Causse M, Zamir D . The tomato sequencing project, the first cornerstone of the international solanaceae project (SOL). Comp Funct Genomics, 2005,6:153-158.
doi: 10.1002/cfg.468
[15] Luo M, Gu Y Q, You F M, Deal K R, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen C M, Zhang Y, McGuire P E, Pasternak S, Stein J C, Ware D, Kramer M, McCombie W R, Kianian S F, Martis M M, Mayer K F, Sehgal S K, Li W, Gill B S, Bevan M W, Simková H, Dolezel J, Weining S, Lazo G R, Anderson O D, Dvorak J . A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA, 2013,110:7940-7945.
doi: 10.1073/pnas.1219082110
[16] Edwards D, Batley J, Snowdon R J . Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet, 2013,126:1-11.
doi: 10.1007/s00122-012-1964-x
[17] Wang X, Liu Q, Wang H, Luo C X, Wang G, Luo M . A BAC based physical map and genome survey of the rice false smut fungus Villosiclava virens. BMC Genomics, 2013,14:883.
doi: 10.1186/1471-2164-14-883
[18] Spirhanzlova P, Dhorne-Pollet S, Fellah J S, Da Silva C, Tlapakova T, Labadie K, Weissenbach J, Poulain J, Jaffredo T, Wincker P, Krylov V, Pollet N . Construction and characterization of a BAC library for functional genomics in Xenopus tropicalis. Dev Biol, 2017,426:255-260.
doi: 10.1016/j.ydbio.2016.05.015
[19] Liu Y, Zhang B, Wen X, Zhang S, Wei Y, Lu Q, Liu Z, Wang K, Liu F, Peng R . Construction and characterization of a bacterial artificial chromosome library for Gossypium mustelinum. PLoS One, 2018,13:e0196847.
doi: 10.1371/journal.pone.0196847
[20] Zhang J, Chen L L, Xing F, Kudrna D A, Yao W, Copetti D, Mu T, Li W, Song J M, Xie W, Lee S, Talag J, Shao L, An Y, Zhang C L, Ouyang Y, Sun S, Jiao W B, Lv F, Du B, Luo M, Maldonado C E, Goicoechea J L, Xiong L, Wu C, Xing Y, Zhou D X, Yu S, Zhao Y, Wang G, Yu Y, Luo Y, Zhou Z W, Hurtado B E, Danowitz A, Wing R A, Zhang Q . Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc Natl Acad Sci USA, 2016,113:E5163-E5171.
doi: 10.1073/pnas.1611012113
[21] Ammiraju J S, Luo M, Goicoechea J L, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros N B, Blackmon B, Fang E, Tomkins J B, Brar D, MacKill D, McCouch S, Kurata N, Lambert G, Galbraith D W, Arumuganathan K, Rao K, Walling J G, Gill N, Yu Y, SanMiguel P, Soderlund C, Jackson S, Wing R A . The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res, 2006,16:140-147.
doi: 10.1101/gr.3766306
[22] Janda J, Safár J, Kubaláková M, Bartos J, Kovárová P, Suchánková P, Pateyron S, Cíhalíková J, Sourdille P, Simková H, Faivre-Rampant P, Hribová E, Bernard M, Lukaszewski A, Dolezel J, Chalhoub B . Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. Plant J, 2006,47:977-986.
doi: 10.1111/tpj.2006.47.issue-6
[23] Wang C, Shi X, Liu L, Li H, Ammiraju J S, Kudrna D A, Xiong W, Wang H, Dai Z, Zheng Y, Lai J, Jin W, Messing J, Bennetzen J L, Wing R A, Luo M . Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives. Genetics, 2013,195:723-737.
doi: 10.1534/genetics.113.157115
[24] Wu C, Nimmakayala P, Santos F, Springman R, Scheuring C, Meksem K, Lightfoot D, Zhang H . Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theor Appl Genet, 2004,109:1041-1050.
doi: 10.1007/s00122-004-1712-y
[25] Frary A, Hamilton C M . Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res, 2001,10:121-132.
doi: 10.1023/A:1008924726270
[26] Schulte D, Ariyadasa R, Shi B, Fleury D, Saski C, Atkins M, Pieter D, Wu C, Andreas G, Peter L, Nils S . BAC library resources for map-based cloning and physical map construction in barley ( Hordeum vulgare L.) . BMC Genomics, 2011,12:247.
doi: 10.1186/1471-2164-12-247
[27] Woo S S, Jiang J, Gill B S, Paterson A H, Wing R A . Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res, 1994,22:4922-4931.
doi: 10.1093/nar/22.23.4922
[28] Allouis S, Qi X, Lindup S, Gale M, Devos K . Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet, 2001,102:1200-1205.
doi: 10.1007/s001220100559
[29] 高晓明, 陈艳玲, 刘贯山, 李凤霞, 王卫峰, 任媛媛, 孙玉合 . 绒毛状烟草BAC文库的构建. 中国烟草科学, 2012,33(3):68-71.
Gao X M, Chen Y L, Liu G S, Li F X, Wang W F, Ren Y Y, Sun Y H . BAC library construction of villi tobacco ( Nicotiana tomentosiforis). Chin Tob Sci, 2012,33(3):68-71 (in Chinese with English abstract).
[30] Sierro N, van Oeveren J, van Eijk M J, Martin F, Stormo K E, Peitsch M C, Ivanov N V . Whole genome profiling physical map and ancestral annotation of tobacco Hicks Broadleaf. Plant J, 2013,75:880-889.
doi: 10.1111/tpj.12247
[31] Nagaki K, Shibata F, Suzuki G, Kanatani A, Ozaki S, Hironaka A, Kashihara K, Murata M . Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres. Chrom Res, 2011,19:591-605.
doi: 10.1007/s10577-011-9219-2
[32] 李永平, 王颖宽, 马文广, 谭彩兰 . 烤烟新品种云烟87的选育及特征特性. 中国烟草科学, 2001,22(4):38-42.
Li Y P, Wang Y K, Ma W G, Tan C L . Breeding and selecting of a new flue-cured tobacco variety Yunyan 87 and its characteristics. Chin Tob Sci, 2001,22(4):38-42 (in Chinese with English abstract).
[33] 谭彩兰, 李永平, 王颖宽, 马文广, 雷永和 . 烤烟新品种云烟85的选育及其特征特性. 中国烟草科学, 1997,18(1):7-10.
Tan C L, Li Y P, Wang Y K, Ma W G, Lei Y H . Breeding and selecting a new flue-cured tobacco of Yunyan 85 and its characteristics. Chin Tob Sci, 1997,18(1):7-10 (in Chinese with English abstract).
[34] 李永平, 肖炳光, 焦芳婵, 张谊寒, 于海芹, 卢秀萍 . 烤烟新品种云烟97的选育及其特征特性. 中国烟草科学, 2012,33(4):28-31.
Li Y P, Xiao B G, Jiao F C, Zhang Y H, Yu H Q, Lu X P . Breeding and characteristics of a new flue-cured tobacco variety Yunyan 97. Chin Tob Sci, 2012,33(4):28-31 (in Chinese with English abstract).
[35] Lucas G B . Diseases of tobacco. Quarterly Rev Biol, 1965,4548:1421.
[36] 朱贤朝, 王彦亭, 王智发 . 中国烟草病害. 北京: 中国农业出版社, 2002. pp 21-22.
Zhu X C, Wang Y T, Wang Z F. Tobacco Diseases of China. Beijing: China Agriculture Press, 2002. pp 21-22(in Chinese).
[37] Chaplin J F . Transfer of black shank resistance from Nicotiana plumbaginifolia to flue-cured N. tabacum. Tob Sci, 1962,6:184-189.
[38] Valleau W D, Stokes G W, Johnson E M . Nine years’ experience with the Nicotiana longiflora factor for resistance to Phytophthora parasitica var. nicotianae in the control of black shank. Tob Sci, 1960,4:92-94.
[39] Sullivan M J, Melton T A, Shew H D . Managing the race structure of Phytophthora parasitica var. nicotianae with cultivar rotation. Plant Dis, 2005,89:1285-1294.
doi: 10.1094/PD-89-1285
[40] Drake K E, Lewis R S . An introgressed Nicotiana rustica genomic region confers resistance to Phytophthora nicotianae in cultivated tobacco. Crop Sci, 2013,53:1366-1374.
doi: 10.2135/cropsci2012.10.0605
[41] Zeng J M, Nifong J, Liu Y, Huang C J, Fang D H, Lewis R S, Li Y P . Evaluating diverse systems of tobacco genetic resistance to Phytophthora nicotianae in Yunnan, China. Plant Pathol, 2019,68, 1616-1623.
doi: 10.1111/ppa.v68.9
[42] Drake K E, Moore J M, Bertrand P, Fortnum B, Peterson P, Lewis R S . Black shank resistance and agronomic performance of flue-cured tobacco lines and hybrids carrying the introgressed region Wz. Crop Sci, 2015,55:1-8.
doi: 10.2135/cropsci2014.03.0249
[43] Shi X, Zeng H, Xue Y, Luo M . A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange. Plant Methods, 2011,7:33.
doi: 10.1186/1746-4811-7-33
[44] Luo M, Wang Y H, Frisch D, Joobeur T, Wing R A, Dean R A . Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium Wilt (Fom-2). Genome, 2001,44:154-162.
doi: 10.1139/g00-117
[45] Luo M, Wing R A . An improved method for plant BAC library construction. Methods Mol Biol, 2003,236:3.
[46] 刘家栋, 王革娇, 罗美中 . 阿维链霉菌BAC文库的构建及分析. 华中农业大学学报, 2016,35(5):45-50.
Liu J D, Wang G J, Luo M Z . Construction and analysis of a BAC library of Streptomyces avermitilis genome. J Huazhong Agric Univ, 2016,35(5):45-50 (in Chinese with English abstract).
[47] Thorsen J, Zhu B, Frengen E, Osoegawa K, de Jong P J, Koop B F, Davidson W S, Høyheim B . A highly redundant BAC library of Atlantic salmon ( Salmo salar): an important tool for salmon projects. BMC Genomics, 2005,6:50.
doi: 10.1186/1471-2164-6-50
[48] Kim U J, Birren B W, Slepak T, Mancino V, Boysen C, Kang H L, Simon M I, Shizuya H . Construction and characterization of a human bacterial artificial chromosome library. Genomics, 1996,34:213-218.
doi: 10.1006/geno.1996.0268
[49] Osoegawa K, Woon P Y, Zhao B, Frengen E, Tateno M, Catanese J J, de Jong P J . An improved approach for construction of bacterial artificial chromosome libraries. Genomics, 1998,52:1-8.
doi: 10.1006/geno.1998.5423
[50] 刘庆丽, 王晓明, 王革娇, 罗朝喜, 谭新球, 罗美中 . 稻曲病菌UV-2 菌株细菌人工染色体文库构建及分析. 微生物学通报, 2013,40:1715-1722.
Liu Q L, Wang X M, Wang G J, Luo C X, Tan X Q, Luo M Z . Construction of a bacterial artificial chromosome library of Villosiclava virens UV-2 genome. Microbiol China, 2013,40:1715-1722 (in Chinese with English abstract).
[51] Asakawa S, Abe I, Kudoh Y, Kishi N, Wang Y, Kubota R, Kudoh J, Kawasaki K, Minoshima S, Shimizu N . Human BAC library: construction and rapid screening. Gene, 1997,191:69-79.
doi: 10.1016/S0378-1119(97)00044-9
[52] Lewis R S, Kernodle S P . A method for accelerated trait conversion in plant breeding. Theor Appl Genet, 2009,118:1499-1508.
doi: 10.1007/s00122-009-0998-1
[53] Noguchi S, Tajima T, Yamamoto Y, Ohno T, Kubo T . Deletion of a large genomic segment in tobacco varieties that are resistant to potato virus Y (PVY). Mol Gen Genet, 1999,262:822-829.
doi: 10.1007/s004380051146
[54] Liu Y, Zeng J, Yuan C, Guo Y, Yu H, Li Y, Huang C . Cas9-PF, an early flowering and visual selection marker system, enhances the frequency of editing event occurrence and expedites the isolation of genome-edited and transgene-free plants. Plant Biotechnol J, 2019,17:1191-1193.
doi: 10.1111/pbi.2019.17.issue-7
[55] Richter A S, Banse C, Grimm B . The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. eLife, 2019,8:e46300.
doi: 10.7554/eLife.46300
[1] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[2] 王瑞莉,王刘艳,叶桑,郜欢欢,雷维,吴家怡,袁芳,孟丽姣,唐章林,李加纳,周清元,崔翠. 铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL定位[J]. 作物学报, 2020, 46(6): 832-843.
[3] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[4] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[5] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[6] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[7] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[8] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[9] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
[10] 钟思荣,陈仁霄,陶瑶,龚丝雨,何宽信,张启明,张世川,刘齐元. 耐低氮烟草基因型的筛选及氮效率分析[J]. 作物学报, 2017, 43(07): 993-1002.
[11] 赵佩,腾丽杰,王轲,杜丽璞,任贤,佘茂云,叶兴国. 小麦TaVIP1家族基因克隆、分子特性及功能分析[J]. 作物学报, 2017, 43(02): 201-209.
[12] 姚新转,刘洋,赵德刚. 高粱Na+转运蛋白基因SbSKC1的克隆及其在烟草中的抗盐功能鉴定[J]. 作物学报, 2017, 43(02): 190-200.
[13] 陶瑶,王瑜,钟思荣,吴凌敏,谢丽娟,聂亚平,周玮,王建革,刘齐元. 烟草ATP合酶F0部分4个亚基基因转录本编辑位点分析[J]. 作物学报, 2016, 42(12): 1743-1753.
[14] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
[15] 贺晓岚,王建伟,李文旭,陈真真,赵继新,武军,王中华,陈新宏. 大赖草6-SFT基因的克隆及其转基因烟草抗旱和抗寒性分析[J]. 作物学报, 2016, 42(03): 389-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!