欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (5): 759-771.doi: 10.3724/SP.J.1006.2020.93044

• 耕作栽培·生理生化 • 上一篇    下一篇

耕层构造对土壤三相比和春玉米根系形态的影响

白伟1,孙占祥1,*(),张立祯2,*(),郑家明1,冯良山1,蔡倩1,向午燕1,冯晨1,张哲1   

  1. 1辽宁省农业科学院耕作栽培研究所, 辽宁沈阳110161
    2中国农业大学资源与环境学院, 北京100193
  • 收稿日期:2019-08-05 接受日期:2019-12-26 出版日期:2020-05-12 网络出版日期:2020-01-16
  • 通讯作者: 孙占祥,张立祯
  • 作者简介:E-mail: libai200008@126.com
  • 基金资助:
    本研究由中国博士后科学基金项目(2017M620103);辽宁省“兴辽英才计划”项目(XLYC1807051);中央引导地方科技发展专项资金项目(2019040005-JH6/104);国家重点研发计划项目(2016YFD0300204);辽宁省自然科学基金计划重点项目(20180540004);辽宁省“百千万人才工程”项目项目(201746);辽宁省农业科学院学科建设计划项目(2019DD062010);农业科研杰出人才及其创新团队项目资助

Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China

Wei BAI1,Zhan-Xiang SUN1,*(),Li-Zhen ZHANG2,*(),Jia-Ming ZHENG1,Liang-Shan FENG1,Qian CAI1,Wu-Yan XIANG1,Chen FENG1,Zhe ZHANG1   

  1. 1Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
    2College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
  • Received:2019-08-05 Accepted:2019-12-26 Published:2020-05-12 Published online:2020-01-16
  • Contact: Zhan-Xiang SUN,Li-Zhen ZHANG
  • Supported by:
    This study was supported by the China Postdoctoral Science Fund(2017M620103);the Liaoning Revitalization Talents Program(XLYC1807051);the Central Government Guides Local Science and Technology Development Projects(2019040005-JH6/104);the National Key Research and Development Program of China(2016YFD0300204);the Liaoning Natural Science Foundation Project Key Projects(20180540004);the “Liaoning Bai-Qian-Wan Talent” Program(201746);the Liaoning Academy of Agricultural Sciences Discipline Construction Plan(2019DD062010);the Outstanding Talents in Agricultural Scientific Research and Their Team.

摘要:

建立适宜耕层构造是解决旱作农田耕层“浅”、“实”、“少”问题的重要技术措施之一, 对北方旱作农田具有重要意义。在国家农业环境阜新科学观测实验站利用长期定位试验, 设置虚实并存耕层(furrow loose and ridge compaction plough layer, FLRC)、全虚耕层(all loose plough layer, AL)、全实耕层(all compaction plough layer, AC)、上虚下实耕层(up loose and down compaction plough layer, ULDC, CK) 4种处理, 研究耕层构造对土壤三相比和春玉米根系形态的影响。耕层构造定位试验始于2009年, 本文利用2015年和2016年数据分析果表明, 虚实并存耕层能够优化土壤三相比(P < 0.05), 春玉米播种前0~10 cm土壤三相比以全实耕层构造为宜, 10~30 cm以虚实并存和全虚耕层构造为宜; 春玉米收获后20~30 cm土壤三相比的虚实并存和全虚耕层构造优于上虚下实耕层和全实耕层构造。虚实并存耕层构造能够增加春玉米吐丝期根重密度、根长密度、根表面积密度和根体积密度(P < 0.05); 其中春玉米根重密度增幅7.47%~97.09%, 根长密度增幅6.62%~112.04%, 根表面积密度增幅9.80%~125.07%, 根体积密度增幅40.11%~151.97%。虚实并存耕层可以显著增加春玉米籽粒产量(P < 0.05), 增幅18.19%~34.86%, 主要原因是行粒数的显著提高和秃尖的降低; 还增加群体生物产量(P < 0.05), 增幅5.18%~11.30%; 和提高收获指数(P < 0.05)。综合分析认为, 虚实并存耕层是改善土壤三相结构和优化春玉米根系形态的最优耕层结构, 在辽西旱作农田合理耕层构建中具有一定的应用价值。

关键词: 耕作, 耕层构造, 土壤三相比, 春玉米, 根系形态

Abstract:

Establishing reasonable plough layer construction is regarded as one of important methods for solving some rainfed farmland problems, which is of great significance in the dryland of northern China. The experiment was conducted with four tillage treatment, including furrow loose and ridge compaction plough layer (FLRC), all loose plough layer (AL), all compaction plough layer (AC), up loose and down compaction plough layer (ULDC, CK), at Fuxin National Agricultural Environmental Science Observation Experimental Station, at which the long-term plough layer construction position fixed experiment began in 2009. The data in 2015 and 2016 showed that the FLRC treatment optimized (P < 0.05) the soil three phase rate, which in 0-10 cm soil layer was optimized by AC treatment before spring corn sowing, while in 10-30 cm soil layer was optimized by FLRC and AL treatments. After the spring corn was harvested, the soil three phase’s rate in 20-30 cm soil layer in FLRC and AL treatments was better than that in ULDC and AC treatments. Compared with the ULDC treatment, FLRC treatment increased (P < 0.05) the root weight density by 7.47%-97.09%, the root length density by 6.62%-112.04%, the root surface area density by 9.80%-125.07%, and the root bulk density by 40.11%-151.97% at silking period in spring corn. The FLRC treatment significantly increased the yield of spring maize by 18.19%-34.86% (P < 0.05) due to the significant increase in number of grains and the decrease of baldness, increased the population biomass by 5.18%-11.30% (P < 0.05), and improved the harvest index (P < 0.05). In conclusion, the furrow loose and ridge compaction plough layer is the optimal construction for improving soil three phase rate and root morphology of spring maize, with certain application value in the construction of reasonable plough layer of dry farmland in northern China.

Key words: tillage, layer construction, soil three phase rate, spring maize, root morphology

图1

试验地点2015-2016年生育期内降雨量和平均温度"

表1

耕层构造对玉米产量及构成因素的影响"

处理
Treatment
成穗数
Ear number
(Ear hm-2)
穗行数
Kernel-row
number per ear
行粒数
Number of
kernels per row
秃尖长
Bare top
length (cm)
百粒重
100-kernel
weight (g)
籽粒产量(14%含水量)
Yield (14% moisture
content) (kg hm-2)
2015
CK 64939.18±7734.35 a 14.13±0.60 b 24.60±1.04 b 0.53±0.11 b 28.88±0.92 a 6436.52±412.46 b
FLRC 57854.14±8309.26 a 15.20±0.33 ab 31.07±1.49 a 0.40±0.11 b 32.40±1.36 a 8630.47±304.33 a
AL 57263.75±5567.11 a 15.20±0.43 ab 29.27±1.87 a 0.77±0.15 ab 30.32±1.50 a 7600.27±756.73 ab
AC 51158.35±3577.10 a 16.00±0.28 a 32.73±1.19 a 1.00±0.22 a 32.32±0.77 a 8601.47±388.18 a
2016
CK 54256.85±11273.36 a 14.20±0.46 a 32.87±2.20 b 0.15±0.08 a 38.33±0.87 a 9140.73±267.83 b
FLRC 54744.88±2891.83 a 15.60±0.35 a 36.80±1.13 ab 0.00±0.00 a 38.05±1.94 a 11865.41±318.71 a
AL 49325.71±1472.34 a 15.87±0.24 a 37.20±0.73 a 0.13±0.08 a 37.21±1.96 a 10803.56±410.85 a
AC 50291.29±3305.79 a 14.53±0.50 a 33.13±1.53 ab 0.20±0.10 a 37.98±0.91 a 9150.67±457.96 b
PP-value
处理 Treatment (T) 0.549 0.004 0.002 0.087 0.500 0.000
年份 Year (Y) 0.225 0.776 0.000 0.000 0.000 0.000
处理×年份 T×Y 0.861 0.051 0.031 0.009 0.480 0.022

图2

耕层构造对春玉米生物产量及收获指数的影响 标以不同字母的柱值在P < 0.05水平上差异显著。处理缩写同表1。 "

表2

春玉米播种前耕层构造对土壤三相比的影响"

土层
Soil layer (cm)
处理
Treatment
固相
Solid phase (%)
液相
Liquid phase (%)
气相
Gas phase (%)
GSSI STPSD
2015
0-10 CK 45.41±0.25 b 12.29±0.16 b 42.30±0.16 b 83.14±0.24 b 9.43±0.29 a
FLRC 42.01±0.67 c 12.17±0.73 b 45.82±1.37 a 78.68±2.61 c 9.62±1.19 a
AL 41.64±0.33 c 11.75±0.14 b 46.62±0.21 a 77.30±0.19 c 10.34±0.06 a
AC 50.06±0.25 a 14.52±0.31 a 35.42±0.55 c 91.20±0.66 a 10.58±0.11 a
10-20 CK 50.44±0.25 ab 16.35±0.60 a 33.21±0.69 b 94.23±0.89 a 9.29±0.64 a
FLRC 49.69±0.33 b 17.03±0.56 a 33.29±0.81 b 94.80±0.85 a 7.52±0.46 a
AL 46.42±0.22 c 15.58±0.62 a 38.00±0.83 a 93.95±1.17 a 4.85±1.05 b
AC 51.32±0.44 a 17.17±0.31 a 31.51±0.57 b 95.63±0.40 a 9.89±0.70 a
20-30 CK 52.08±0.87 a 19.51±0.23 a 28.42±0.67 b 98.03±0.09 a 9.39±1.69 a
FLRC 50.82±0.33 ab 19.10±0.82 a 30.08±1.05 ab 97.42±0.79 a 7.60±0.54 ab
AL 49.43±0.22 b 18.66±0.19 a 31.90±0.11 a 97.65±0.82 a 5.08±0.73 b
AC 51.32±0.22 a 20.23±0.57 a 28.45±0.70 b 98.47±0.40 a 7.73±0.39 ab
2016
0-10 CK 46.04±0.58 b 14.33±1.39 b 39.63±1.94 a 87.58±2.92 b 6.63±1.92 a
FLRC 44.28±0.25 c 14.57±0.15 b 41.15±0.13 a 86.60±0.12 b 5.59±0.32 a
AL 43.14±0.45 c 14.26±0.69 b 42.59±0.47 a 84.56±0.96 b 6.10±1.11 a
AC 50.82±0.50 a 17.26±0.50 a 31.92±0.23 b 95.57±0.46 a 8.95±1.24 a
10-20 CK 51.07±0.33 a 18.88±1.22 a 30.05±1.51 b 97.12±1.06 a 8.33±0.47 a
FLRC 47.42±0.33 b 16.63±0.91 a 35.95±1.11 a 97.49±0.39 a 3.96±1.64 b
AL 48.55±0.67 b 18.83±1.11 a 32.62±1.75 ab 96.09±1.34 a 3.04±0.73 b
AC 51.95±0.33 a 18.83±0.41 a 29.22±0.72 b 92.79±1.39 b 9.74±0.36 a
20-30 CK 53.08±0.50 a 21.06±1.37 a 25.85±1.86 a 98.53±0.68 a 10.78±0.31 a
FLRC 52.45±0.22 a 21.22±0.67 a 26.33±0.81 a 99.03±0.26 a 9.41±0.36 a
AL 52.45±0.33 a 21.16±0.27 a 27.39±0.14 a 99.09±0.12 a 7.37±0.82 b
AC 53.46±0.45 a 21.23±0.62 a 25.31±1.07 a 98.85±0.06 a 11.20±0.60 a
PP-value
处理 Treatment (T) 0.000 0.424 0.015 0.060 0.000
年份 Year (Y) 0.145 0.007 0.033 0.043 0.102
处理×年份 T×Y 0.923 0.920 0.922 0.896 0.376

表3

春玉米收获后耕层构造对土壤三相比的影响"

土层
Soil layer (cm)
处理
Treatment
固相
Solid phase (%)
液相
Liquid phase (%)
气相
Gas phase (%)
GSSI STPSD
2015
0-10 CK 51.82±0.33 b 11.98±0.50 b 36.20±0.81 a 86.79±1.29 b 14.92±0.20 a
FLRC 50.31±0.55 c 12.75±0.56 ab 36.93±0.98 a 87.80±1.37 ab 12.62±0.53 b
AL 51.07±0.33 bc 14.40±0.60 a 34.53±0.91 ab 91.39±1.14 a 11.93±0.23 b
AC 53.46±0.33 a 13.52±0.38 ab 33.02±0.18 b 90.57±0.67 ab 15.56±0.68 a
10-20 CK 55.72±0.67 a 16.33±0.76 a 27.95±1.42 a 94.74±0.68 a 16.91±0.59 a
FLRC 54.34±0.44 a 15.10±0.47 a 30.56±0.81 a 93.32±0.75 a 15.65±0.47 a
AL 55.47±0.22 a 16.96±0.74 a 27.56±0.59 a 95.60±0.75 a 16.18±0.64 a
AC 54.97±0.33 a 16.66±0.46 a 28.37±0.79 a 95.37±0.51 a 15.61±0.23 a
20-30 CK 56.98±0.44 a 19.86±0.23 a 23.16±0.34 a 97.14±0.29 a 17.27±0.71 a
FLRC 55.60±0.13 c 18.96±1.64 a 25.44±1.74 a 96.77±1.03 a 15.62±0.50 a
AL 55.72±0.45 bc 20.17±0.28 a 24.11±0.19 a 97.87±0.30 a 15.22±0.80 a
AC 56.86±0.33 ab 19.71±0.48 a 23.43±0.15 a 97.15±0.34 a 17.13±0.66 a
2016
0-10 CK 52.96±0.33 b 18.89±0.15 a 28.15±0.21 a 97.66±0.13 a 11.33±0.61 b
FLRC 51.45±0.55 c 20.02±0.15 a 28.53±0.62 a 98.37±0.16 a 8.03±1.00 c
AL 52.20±0.33 bc 19.49±0.76 a 28.31±1.06 a 97.96±0.52 a 9.82±0.32 bc
AC 54.59±0.33 a 18.45±0.55 a 26.96±0.26 a 97.15±0.46 a 14.13±0.76 a
10-20 CK 56.10±0.25 a 21.77±0.38 a 22.13±0.57 a 97.98±0.16 a 15.42±0.36 a
FLRC 55.35±0.45 a 23.20±0.58 a 21.45±0.31 a 98.36±0.22 a 13.94±0.81 a
AL 55.72±0.33 a 22.47±0.89 a 21.80±1.03 a 98.07±0.24 a 14.71±0.52 a
AC 56.10±0.33 a 21.22±0.23 a 22.68±0.19 a 97.96±0.21 a 15.53±0.58 a
20-30 CK 57.61±0.25 ab 25.66±0.70 ab 16.73±0.78 a 94.78±0.72 a 17.53±0.19 a
FLRC 56.60±0.22 b 26.59±0.30 a 16.81±0.14 a 95.29±0.12 a 15.97±0.33 b
AL 56.86±0.45 b 25.30±0.74 ab 17.84±1.00 a 95.95±0.81 a 16.32±0.71 b
AC 57.99±0.33 a 23.95±0.65 b 18.06±0.95 a 95.61±0.80 a 18.14±0.50 a
PP-value
处理 Treatment (T) 0.095 0.808 0.893 0.528 0.009
年份 Year (Y) 0.071 0.000 0.000 0.000 0.046
处理×年份 T×Y 0.991 0.429 0.801 0.585 0.670

图3

耕层构造对春玉米根重密度的影响 标以不同字母的柱值在P < 0.05水平上差异显著。处理缩写同表1。"

图4

耕层构造对春玉米根长密度的影响 标以不同字母的柱值在P < 0.05水平上差异显著。处理缩写同表1。"

图5

耕层构造对春玉米根表面积密度的影响 标以不同字母的柱值在P < 0.05水平上差异显著。处理缩写同表1。"

图6

耕层构造对春玉米根体积密度的影响 标以不同字母的柱值在P < 0.05水平上差异显著。处理缩写同表1。"

[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2008-2010. pp 204-209.
National Bureau of Statistics of the People’s Republic of China. China Statistics Year Book. Beijing: China Statistics Press, 2008-2010. pp 204-209(in Chinese).
[2] 白伟, 孙占祥, 郑家明, 侯志研, 刘洋, 冯良山, 杨宁 . 辽西地区不同种植模式对春玉米产量形成及其生长发育特性的影响. 作物学报, 2014,40:181-189.
doi: 10.3724/SP.J.1006.2014.00181
Bai W, Sun Z X, Zheng J M, Hou Z Y, Liu Y, Feng L S, Yang N . Effect of different planting patterns on maize growth and yield in western Liaoning province. Acta Agron Sin, 2014,40:181-189 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00181
[3] 白伟, 孙占祥, 郑家明, 郝卫平, 刘勤, 刘洋, 蔡倩 . 虚实并存耕层提高春玉米产量和水分利用效率. 农业工程学报, 2014,30(21):81-90.
Bai W, Sun Z X, Zheng J M, Hao W P, Liu Q, Liu Y, Cai Q . Furrow loose and ridge compaction plough layer improve spring maize yield and water use efficiency in dry-land. Trans CSAE, 2014,30(21):81-90 (in Chinese with English abstract).
[4] 王立春, 马虹, 郑金玉 . 东北春玉米耕地合理耕层构造研究. 玉米科学, 2008,16(4):13-17.
Wang L C, Ma H, Zheng J Y . Research on rational plough layer construction of spring maize soil in northeast China. J Maize Sci, 2008,16(4):13-17 (in Chinese with English abstract).
[5] 聂良鹏, 郭利伟, 牛海燕, 魏杰, 李增嘉, 宁堂原 . 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响. 作物学报, 2015,41:468-478.
doi: 10.3724/SP.J.1006.2015.00468
Nie L P, Guo L W, Niu H Y, Wei J, Li Z J, Ning T Y . Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system. Acta Agron Sin, 2015,41:468-478 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00468
[6] 郑洪兵, 郑金玉, 罗洋, 李瑞平, 王浩, 李伟堂, 齐华 . 农田不同耕层构造对玉米生长发育及产量的影响. 干旱地区农业研究, 2015,33(5):41-45.
Zheng H B, Zheng J Y, Luo Y, Li R P, Wang H, Li W T, Qi H . Effects of different tillage layer structures on growth and yield of maize in cropland zone in northeast of China. Agric Res Arid Areas, 2015,33(5):41-45 (in Chinese with English abstract).
[7] 韩晓增, 邹文秀, 王凤仙, 王凤菊 . 黑土肥沃耕层构建效应. 应用生态学报, 2009,20:2996-3002.
Han X Z, Zou W X, Wang F X, Wang F J . Construction effect of fertile cultivated layer in black soil. Chin J Appl Ecol, 2009,20:2996-3002 (in Chinese with English abstract).
[8] Bai W, Sun Z X, Zheng J M, Liu Y, Hou Z Y, Feng L S, Zhang Z . The combination of subsoil and the incorporation of corn stover affect physicochemical properties of soil and corn yield in semi-arid China. Toxicol Environ Chem, 2016,98:561-570.
[9] Moitzi G, Amon S, Klik A, Schwen A . Effect of two-axle and three-axle sugarbeet tanker harvester on selected soil-physical properties in dry and wet soil conditions. CIGR J, 2019,21:18-27.
[10] Ren L, Nest T V, Ruysschaert G , D’Hose T, Cornelis W M. Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil Tillage Res, 2019,192:76-86.
doi: 10.1016/j.still.2019.04.026
[11] 白伟, 安景文, 张立祯, 逄焕成, 孙占祥, 牛世伟, 蔡倩 . 秸秆还田配施氮肥改善土壤理化性状提高春玉米产量. 农业工程学报, 2017,33(15):168-176.
Bai W, An J W, Zhang L Z, Pang H C, Sun Z X, Niu S W, Cai Q . Improving of soil physical and chemical properties and increasing spring maize yield by straw turnover plus nitrogen fertilizer. Trans CSAE, 2017,33(15):168-176 (in Chinese with English abstract).
[12] Munkholm L J, Heck R J, Deen B . Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res, 2013,127:85-91.
[13] Sun M, Ren A X, Gao Z Q, Wang P R, Mo F, Xue, L Z, Lei M M . Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crops Res, 2018,218:24-32.
[14] Jakhar P, Rana K S, Dass A, Choudhary A K, Kumar P R A M O D, Meena M C, Choudhary M U K E S H . Tillage and residue retention effect on crop and water productivity of Indian mustard (Brassica juncea) under rainfed conditions. Indian J Agric Sci, 2018,88:47-53.
[15] Kaur R, Arora V K . Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India. Agric Water Manage, 2019,213:724-731.
[16] Salem H M, Valero C, Muñoz M Á, Rodríguez M G, Silva L L . Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 2015,237:60-70.
[17] Weyers S L, Archer D W, Forcella F, Gesch R, Johnson J M . Strip-tillage reduces productivity in organically managed grain and forage cropping systems in the Upper Midwest, USA. Renewable Agric Food Syst, 2018,33:309-321.
doi: 10.1017/S1742170517000084
[18] Glinski J. Soil Physical Conditions and Plant Roots. Boca Raton, London, New York: CRC Press, 2018. pp 24-62.
[19] De Moraes M T, Bengough A G, Debiasi H, Franchini J C, Levien R, Schnepf A, Leitner D . Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil. Plant Soil, 2018,428:67-92.
[20] Blanco-Canqui H, Ruis S J . No-tillage and soil physical environment. Geoderma, 2018,326:164-200.
doi: 10.1016/j.geoderma.2018.03.011
[21] Logan T J . Effects Conservation Tillage on Ground Water Quality: Nitrates and Pesticides. Boca Raton, London-New York: CRC Press, 2018. pp 62-75.
[22] Dang Y P, Moody P W, Bell M J, Seymour N P, Dalal R C, Freebairn D M, Walker S R . Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil Tillage Res, 2015,152:115-123.
[23] Li H, Mollier A, Ziadi N, Shi Y, Parent L É, Morel C . The long-term effects of tillage practice and phosphorus fertilization on the distribution and morphology of corn root. Plant Soil, 2017,412:97-114.
[24] He Y B, Lin L R, Chen J Z . Maize root morphology responses to soil penetration resistance related to tillage and drought in a clayey soil. J Agric Sci, 2017,155:1137-1149.
doi: 10.1017/S0021859617000302
[25] Hou R X, Zhu O Y, Han D R, Wilson G V . Effects of field experimental warming on wheat root distribution under conventional tillage and no-tillage systems. Ecol Evol, 2018,8:2418-2427.
doi: 10.1002/ece3.3864 pmid: 29531664
[26] Guan D, Zhang Y, Al-Kaisi M M, Wang Q, Zhang M, Li Z, . Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil Tillage Res, 2015,146:286-295.
[27] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D . Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114(in Chinese).
[28] 李晓龙, 高聚林, 胡树平, 于晓芳, 王志刚, 苏治军, 谢岷 . 不同深耕方式对土壤三相比及玉米根系构型的影响. 干旱地区农业研究, 2015,33(4):1-7.
Li X L, Gao J L, Hu S P, Yu X F, Wang Z G, Su Z J, Xie M . Effects of various cultivation approaches on the three-phase ratio of soil and root system structure of maize. Agric Res Arid Areas, 2015,33(4):1-7 (in Chinese with English abstract).
[29] 冯倩倩, 韩惠芳, 张亚运, 许菁, 曹亚倩, 王少博, 李增嘉 . 耕作方式对麦-玉轮作农田固碳、保水性能及产量的影响. 植物营养与肥料学报, 2018,24:869-879.
Feng Q Q, Han H F, Zhang Y Y, Xu J, Cao Y Q, Wang S B, Li Z J . Effects of tillage methods on soil carbon sequestration and water holding capacity and yield in wheat-maize rotation. J Plant Nutr Fert, 2018,24:869-879 (in Chinese with English abstract).
[30] 刘武仁, 郑金玉, 罗洋, 郑洪兵, 李瑞平, 李伟堂 . 不同耕层构造对玉米生长发育及产量的影响. 吉林农业科学, 2013,38(5):1-3.
Liu W R, Zheng J Y, Luo Y, Zheng H B, Li R P, Li W T . Effects of structures of different tillage layer on growth and yield of maize. J Jilin Agric Sci, 2013,38(5):1-3 (in Chinese with English abstract).
[31] 赵亚丽, 刘卫玲, 程思贤, 周亚男, 周金龙, 王秀玲, 李潮海, . 深松(耕)方式对砂姜黑土耕层特性,作物产量和水分利用效率的影响. 中国农业科学, 2018,51:2489-2503.
Zhao Y L, Liu W L, Cheng S X, Zhou Y N, Zhou J L, Wang X L, Li C H . Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil. Sci Agric Sin, 2018,51:2489-2503 (in Chinese with English abstract).
[32] 梁泉, 廖红, 严小龙 . 植物根构型的定量分析. 植物学通报, 2007,24:695-702.
Liang Q, Liao H, Yan X L . Quantitative analysis of plant root architecture. Chin Bull Bot, 2007,24:695-702 (in Chinese with English abstract).
[33] 高飞, 李霞, 任佰朝, 董树亭, 刘鹏, 赵斌, 张吉旺 . 小麦玉米周年生产中耕作方式对夏玉米根系特性和产量的影响. 中国农业科学, 2017,50:2141-2149.
Gao F, Li X, Ren B Z, Dong S T, Liu P, Zhao B, Zhang J W . Root characteristics and grain yield of summer maize under different winter wheat-summer maize tillage systems. Sci Agric Sin, 2017,50:2141-2149 (in Chinese with English abstract).
[1] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331.
[2] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[3] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507-519.
[4] 刘朋召,师祖姣,宁芳,王瑞,王小利,李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断[J]. 作物学报, 2020, 46(8): 1225-1237.
[5] 李瑞杰,唐会会,王庆燕,许艳丽,王琦,卢霖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[6] 张玉芹,杨恒山,李从锋,赵明,罗方,张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902-913.
[7] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响[J]. 作物学报, 2020, 46(10): 1605-1616.
[8] 唐海明,肖小平,李超,汤文光,郭立君,汪柯,程凯凯,潘孝晨,孙耿. 不同土壤耕作模式对双季水稻生理特性与产量的影响[J]. 作物学报, 2019, 45(5): 740-754.
[9] 宁芳,张元红,温鹏飞,王瑞,王倩,董朝阳,贾广灿,李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应[J]. 作物学报, 2019, 45(5): 777-791.
[10] 唐会会,许艳丽,王庆燕,马正波,李光彦,董会,董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(3): 431-442.
[11] 刘妍,刘兆新,何美娟,刘婷如,杨坚群,甄晓宇,栗鑫鑫,李向东,杨东清. 冬闲期耕作方式对连作花生叶片衰老和产量的影响[J]. 作物学报, 2019, 45(1): 131-143.
[12] 严青青,张巨松,李星星,王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1): 100-110.
[13] 樊海潮,顾万荣,杨德光,尉菊萍,朴琳,张倩,张立国,杨秀红,魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响[J]. 作物学报, 2018, 44(6): 909-919.
[14] 赵财,王巧梅,郭瑶,殷文,樊志龙,胡发龙,于爱忠,柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响[J]. 作物学报, 2018, 44(11): 1694-1703.
[15] 周泉, 王龙昌, 马淑敏, 张小短, 邢毅, 张赛. 西南旱地油菜间作紫云英和秸秆覆盖的生产效应[J]. 作物学报, 2018, 44(03): 431-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!