欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (5): 745-758.doi: 10.3724/SP.J.1006.2020.94111

• 耕作栽培·生理生化 • 上一篇    下一篇

外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响

邹京南,于奇,金喜军,王明瑶,秦彬,任春元,王孟雪,张玉先()   

  1. 黑龙江八一农垦大学农学院, 黑龙江大庆 163319
  • 收稿日期:2019-08-01 接受日期:2019-12-26 出版日期:2020-05-12 网络出版日期:2020-01-14
  • 通讯作者: 张玉先
  • 作者简介:E-mail: zoujingnan222@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD0201000);国家现代农业产业技术体系建设专项(CARS-04-01A);黑龙江省自然科学基金项目(C2017049);黑龙江省农垦总局重点科研计划项目(HNK135-02-06);国家重点研究开发项目子课题“东北地区抗旱灌溉与优质高产春大豆关系的研究”项目资助(2018YFD1000905)

Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress

Jing-Nan ZOU,Qi YU,Xi-Jun JIN,Ming-Yao WANG,Bin QIN,Chun-Yuan REN,Meng-Xue WANG,Yu-Xian ZHANG()   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2019-08-01 Accepted:2019-12-26 Published:2020-05-12 Published online:2020-01-14
  • Contact: Yu-Xian ZHANG
  • Supported by:
    This study was supported by the National Key R&D Program(2018YFD0201000);the China Agricultural Research System(CARS-04-01A);the Natural Science Foundation of Heilongjiang Province(C2017049);the Heilongjiang Provincial Land Reclamation Bureau Key Research Project(HNK135-02-06);the National Key Research and Development Project Sub-Project: Research on the Relationship between Drought-Resistant Irrigation and High-Quality and High-Yield Spring Soybean in Northeast China.(2018YFD1000905)

摘要:

干旱胁迫降低大豆产量, 探究提高大豆耐旱能力和降低产量损失的机制对大豆生产具有重要意义。施褪黑素能缓解干旱胁迫对植株生长的抑制和氧化损伤。本试验于2017—2018年研究叶面喷施褪黑素对干旱胁迫下大豆鼓粒期叶片光合、抗逆、碳氮代谢和产量的影响表明, 外源褪黑素提高干旱胁迫下大豆叶片抗氧化酶活性, 抑制活性氧的产生和细胞膜损伤, 缓解干旱胁迫对光合能力的抑制, 提高碳氮同化能力, 最终缓解干旱胁迫造成的产量损失。与干旱胁迫相比, 褪黑素处理下单株荚数、单株粒数和百粒重两年平均提高了2.9%、0.8%和17.2%, 产量(单株粒重)平均提高了14.7%。

关键词: 褪黑素, 大豆, 干旱, 光合, 抗氧化系统, 碳氮代谢, 产量

Abstract:

Drought stress reduces soybean yield. Exploring the mechanism of improving drought tolerance and reducing yield loss is of great significance for soybean production. Melatonin application can alleviate the growth inhibition and oxidative damage of plants under drought stress. In this experiment, the effects of foliar application of melatonin on photosynthesis, stress resistance, carbon and nitrogen metabolism and yield of soybean during seed filling stage under drought stress were studied in 2017-2018. The application exogenous melatonin increased the antioxidant enzyme activity, inhibited the production of reactive oxygen species, decreased cell membrane damage under drought stress, alleviated the inhibition of photosynthetic capacity by drought stress, improved the carbon and nitrogen assimilation ability, and alleviated the yield loss caused by drought stress. Compared with drought stress, the treatment of melatonin increased the number of pods per plant, the grain number per plant and the hundred grain weight by 2.9%, 0.8%, and 17.2% on average of two years, respectively, and the yield (grain weight per plant) increased by 14.7%.

Key words: melatonin, soybean, drought, photosynthesis, antioxidant system, carbon and nitrogen metabolism, yield

图1

外源褪黑素对干旱胁迫下大豆鼓粒期叶片光合参数和Rubisco活性的影响 A: 净光合速率; B: 气孔导度; C: 蒸腾速率; D: 胞间二氧化碳浓度; E: 水分利用率; F: 核酮糖-1,5-二磷酸羧化酶。WW: 鼓粒期开始保持80%田间持水量叶片喷施5 d清水对照; D: 鼓粒期开始停止供水保持50%田间持水量叶片喷施5 d清水干旱胁迫处理; MT+D: 鼓粒期开始停止供水保持50%田间持水量叶片喷施5 d 100 μmol L-1褪黑素加干旱胁迫处理。10: 不同处理10 d后第1次取样, WW维持80%田间持水量, D和MT+D停止供水达到50%田间持水量; 17: 不同处理17 d后第2次取样, WW维持80%田间持水量, D和MT+D第1次取样结束后维持50%田间持水量; 24: 不同处理24 d后第3次取样, WW维持80%田间持水量, D和MT+D第2次取样结束后继续维持50%田间持水量。标以不同字母的柱值在P < 0.05水平上差异显著。"

图2

外源褪黑素对干旱胁迫下大豆鼓粒期叶片叶绿素荧光参数的影响 A: 光系统II光能转换效率; B: 光化学猝灭系数; C: 表观电子传递速率; D: 非光化学猝灭系数; E: 光系统II实际光化学效率; F: 光系统II实际最大光能转化效率。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。 "

图3

外源褪黑素对干旱胁迫下大豆鼓粒期叶片碳代谢的影响 A: 蔗糖磷酸合酶; B: 蔗糖合酶; C: 酸性转化酶; D: 中性转化酶; E: 可溶性糖; F: 淀粉; G: 果糖; H: 蔗糖。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

图4

外源褪黑素对干旱胁迫下大豆鼓粒期叶片氮代谢的影响 A: 铵态氮; B: 硝态氮; C: 硝酸还原酶; D: 谷氨酰胺合成酶; E: 谷氨酸脱氢酶; F: 谷氨酸合成酶。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

图5

外源褪黑素对干旱胁迫下大豆鼓粒期叶片抗氧化酶活性的影响 A: 超氧化物歧化酶; B: 过氧化物酶; C: 过氧化氢酶; D: 抗坏血酸过氧化物酶; E: 谷胱甘肽还原酶; F: 谷胱甘肽过氧化物酶; G: 单脱氢抗坏血酸还原酶; H: 脱氢抗坏血酸还原酶。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

图6

外源褪黑素对干旱胁迫下大豆鼓粒期叶片抗氧化剂含量的影响 A: 谷胱甘肽; B: 抗坏血酸。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

图7

外源褪黑素对干旱胁迫下大豆鼓粒期叶片膜脂过氧化的影响 A: 超氧阴离子产生速率; B: 过氧化氢含量; C: 丙二醛含量; D: 相对电导率。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

表1

外源褪黑素对干旱胁迫下鼓粒期大豆产量以及减产率和缓解率的影响"

年份
Year
处理
Treatment
单株荚数
Pods per plant
单株粒数
Seeds per pod
单株粒重
Grain weight
per plant (g)
百粒重
Hundred grain
weigh (g)
减产率
Yield reduction
rate (%)
缓解率
Remission rate
(%)
2017 MT+D 24.80±1.52 a 46.63±6.92 a 9.75±0.83 b 16.55±2.21 b
D 24.32±2.15 a 46.27±4.47 a 8.61±1.42 bc 14.01±1.19 c -24.6 9.9
WW 25.80±1.40 a 47.70±3.40 a 11.42±1.89 a 20.78±0.83 a
2018 MT+D 22.08±0.64 ab 42.53±1.90 ab 7.01±0.72 c 16.11±1.24 b
D 21.23±0.75 ab 42.13±1.98 ab 6.03±0.43 cd 13.76±0.91 c -36.3 10.3
WW 22.54±0.14 ab 42.67±2.63 ab 9.47±0.27 b 21.52±0.91 a
[1] 李琬 . 干旱对大豆根系生育的影响及灌溉缓解效应研究进展. 草业学报, 2019,28(4):192-202.
Li W . Research progress in understanding the effects of drought on growth of the soybean root system and the efficiency of irrigation. Acta Pratac Sin, 2019,28(4):192-202 (in Chinese with English abstract).
[2] Meckel L, Egli D B, Phillips R E, Radcliffe D, Leggett J E . Effect of moisture stress on seed growth in soybeans. Agron J, 1984,76:647-650.
doi: 10.1371/journal.pone.0214977 pmid: 31498795
[3] Westgate M E, Peterson C M . Flower and pod development in water deficient soybean. J Exp Bot, 1993,258:109-117.
[4] Getachew M . Influence of soil water deficit and phosphorus application on phosphorus uptake and yield of soybean (Glycine max L.) at Dejen, North-West Ethiopia. Am J Plant Sci, 2014,5:1889-1906.
[5] Kangasjärvi S, Neukermans J, Li S, Aro E M, Noctor G . Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot, 2012,63:1619-1636.
doi: 10.1093/jxb/err402 pmid: 22282535
[6] Tikkanen M, Grieco M, Aro E M . Novel insights into plant light-harvesting complex II phosphorylation and ‘state transitions’. Trends Plant Sci, 2011,16:126-131.
doi: 10.1016/j.tplants.2010.11.006 pmid: 21183394
[7] Manavalan L P, Guttikonda S K, Phan Tran L S, Nguyen H T . Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol, 2009,50:1260-1276.
doi: 10.1093/pcp/pcp082 pmid: 19546148
[8] 邹京南, 曹亮, 王梦雪, 金喜军, 任春元, 王明瑶, 于奇, 张玉先 . 外源褪黑素对干旱胁迫下大豆结荚期光合及生理的影响. 生态学杂志, 2019,38:2709-2718.
Zou J N, Cao L, Wang M X, Jin X J, Ren C Y, Wang M Y, Yu Q, Zhang Y X . Effects of exogenous melatonin on photosynthesis and physiology of soybean seedlings under drought stress. Chin J Ecol, 2019,38:2709-2718 (in Chinese with English abstract).
[9] 丁秀文, 张国良, 戴其根, 朱青 . 1,2,4-三氯苯胁迫对水稻分蘖盛期植株生长和生理特性的影响. 作物学报, 2014,40:487-496.
doi: 10.3724/SP.J.1006.2014.00487
Ding X W, Zhang G L, Dai Q G, Zhu Q . Effects of 1,2,4-trichlorobenzene on growth and physiological characteristics of rice at maximum tillering stage. Acta Agron Sin, 2014,40:487-496 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00487
[10] 马晓寒, 张杰, 张环纬, 陈彪, 温心怡, 许自成 . 通过外源MeJA抑制H2O2积累提高烟草的耐冷性. 作物学报, 2019,45:411-418.
Ma X H, Zhang J, Zhang H W, Chen B, Wen X Y, Xu Z C . Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2 accumulation. Acta Agron Sin, 2019,45:411-418 (in Chinese with English abstract).
[11] Gil-Quintana E, Larrainzar E, Seminario A, Díaz-Leal J L, Alamillo J M, Pineda M, Arrese-Igor C, Wienkoop S, González E M . González E MLocal inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. J Exp Bot, 2013,64:2171-2182.
doi: 10.1093/jxb/ert074 pmid: 23580751
[12] Larrainzar E, Molenaar J A, Wienkoop S, Gil-Quintana E, Alibert B, Limami A M, Arrese-Igor C, Gonzalez E M . Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways inMedicago truncatula roots and nodules. Plant Cell Environ, 2014,37:2051-2063.
doi: 10.1111/pce.12285
[13] Peleg Z, Blumwald E . Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011,14:290-295.
doi: 10.1016/j.pbi.2011.02.001 pmid: 21377404
[14] Tan D X, Hardeland R, Manchester L C, Korkmaz A, Ma S, Rosales-Corral S, Reiter R J . Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot, 2012,63:577-597.
doi: 10.1093/jxb/err256 pmid: 22016420
[15] Huang B, Chen Y E, Zhao Y Q, Ding C B, Liao J Q, Hu C, Zhou L J, Zhang Z W, Yuan S, Yuan M . Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front Plant Sci, 2019,10:677.
doi: 10.3389/fpls.2019.00677 pmid: 31178885
[16] 杨小龙, 须晖, 李天来, 王蕊 . 外源褪黑素对干旱胁迫下番茄叶片光合作用的影响. 中国农业科学, 2017,50:3186-3195.
Yang X L, Xu H, Li T L, Wang R . Effects of exogenous melatonin on photosynthesis of tomato leaves under drought stress. Sci Agric Sin, 2017,50:3186-3195 (in Chinese with English abstract).
[17] Cui G, Sun F, Gao X, Xie K, Zhang C, Liu S, Xi Y . Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta, 2018,248:69-87.
doi: 10.1007/s00425-018-2881-2 pmid: 29564630
[18] Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y . Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol Biochem, 2017,118:138-149.
doi: 10.1016/j.plaphy.2017.06.014 pmid: 28633086
[19] Liu J, Zhang R, Sun Y, Liu Z, Jin W, Sun Y . The beneficial effects of exogenous melatonin on tomato fruit properties. Sci Hortic, 2016,207:14-20.
doi: 10.1016/j.scienta.2016.05.003
[20] Zou J N, Jin X J, Zhang Y X, Ren C Y, Zhang M C, Wang M X . Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica, 2019,57:512-520.
doi: 10.32615/ps.2019.066
[21] Parry M A J, Andralojc P J, Parmar S, Keys A J, Habash D, Paul M J, Alred R, Quick W P, Servaites J C . Regulation of Rubisco by inhibitors in the light. Plant Cell Environ, 1997,20:528-534.
doi: 10.1046/j.1365-3040.1997.d01-85.x
[22] Kumar G M, Knowles N R . Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiol, 1993,102:115-124.
doi: 10.1104/pp.102.1.115 pmid: 12231802
[23] Su G, An Z, Zhang W, Liu Y . Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. J Plant Physiol, 2005,162:1297-1303.
doi: 10.1016/j.jplph.2005.04.033 pmid: 16425447
[24] Ke D, Sun G, Wang Z . Effects of superoxide radicals on ACC synthase activity in chilling-stressed etiolated mungbean seedlings. Plant Growth Regul, 2007,51:83-91.
doi: 10.1007/s10725-006-9150-2
[25] Shan C, Liang Z . Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci, 2010,178:130-139.
doi: 10.1016/j.plantsci.2009.11.002
[26] Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F . Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol, 1999,119:1091-1100.
doi: 10.1104/pp.119.3.1091 pmid: 10069848
[27] Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X . Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci, 2017,8:295.
doi: 10.3389/fpls.2017.00295 pmid: 28298921
[28] 徐龙光 . 黄帝手植柏的组织培养和硝酸还原酶活性测定. 西北农林科技大学硕士学位论文, 陕西杨凌, 2014.
Xu L G . Tissue Culture and Nitrate Reductase Activity Determination of P. sinensis. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2014 (in Chinese with English abstract).
[29] 屈春媛, 张玉先, 金喜军, 任春元, 张明聪, 王孟雪, 王彦宏, 李菁华, 郑浩宇, 邹京南 . 干旱胁迫下外源ABA对鼓粒期大豆产量及氮代谢关键酶活性的影响. 中国农学通报, 2017,33(34):26-31.
Qu C Y, Zhang Y X, Jin X J, Ren C Y, Zhang M C, Wang M X, Wang Y H, Li J H, Zheng H Y, Zou J N . Effect of exogenous ABA on yield and key enzyme activities of nitrogen metabolism of soybean under drought stress. Chin Agric Bull, 2017,33(34):26-31 (in Chinese with English abstract).
[30] Oliveira H C, Freschi L, Sodek L . Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiol Biochem, 2013,66:141-149.
doi: 10.1016/j.plaphy.2013.02.015 pmid: 23500717
[31] 张志良 . 植物生理学实验指导(第5版). 北京: 高等教育出版社. 2016. pp 127-159.
Zhang Z L. Experimental Guidance on Plant Physiology, 5th edn. Beijing: Higher Education Publishers, 2016. pp 127-159(in Chinese).
[32] Chopra J, Kaur N, Gupta A K . Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry, 2000,53:539-548.
doi: 10.1016/s0031-9422(99)00545-2 pmid: 10724178
[33] Tsai C Y, Salamini F, Nelson O E . Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol, 1970,46:299-306.
doi: 10.1104/pp.46.2.299 pmid: 16657454
[34] Nishiyama Y, Murata N . Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol, 2014,98:8777-8796.
doi: 10.1007/s00253-014-6020-0 pmid: 25139449
[35] 李瑞姣, 陈献志, 岳春雷, 李贺鹏, 王珺, 郭亮, 杨乐 . 干旱胁迫对日本荚蒾幼苗光合生理特性的影响. 生态学报, 2018,38:2041-2047.
Li R J, Chen X Z, Yue C L, Li H P, Wang J, Guo L, Yang L . Effects of drought stress on the photosynthetic characteristics of Viburnum japonicum seedlings. Acta Ecol Sin, 2018,38:2041-2047 (in Chinese with English abstract).
[36] Bonnefont-Rousselot D, Collin F, Jore D, Gardès-Albert M . Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro. J Pineal Res, 2011,50:328-335.
doi: 10.1111/j.1600-079X.2010.00847.x pmid: 21244479
[37] Davey M W, Montagu M V, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie I J J, Strain J J, Favell D, Fletcher J . Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric, 2000,80:825-860.
[38] Anjum S A, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem M F, Ali I, Wang L C . Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci, 2017,8:69.
doi: 10.3389/fpls.2017.00069 pmid: 28220130
[39] 王福祥, 肖开转, 姜身飞, 曲梦宇, 连玲, 何炜, 陈丽萍, 谢华安, 张建福 . 干旱胁迫下植物体内活性氧的作用机制. 科学通报, 2019,64:1765-1779.
Wang F X, Xiao K Z, Jiang S F, Qu M Y, Lian L, He W, Chen L P, Xie H A, Zhang J F . Mechanisms of reactive oxygen species in plants under drought stress. Chin Sci Bull, 2019,64:1765-1779 (in Chinese with English abstract).
[40] Sharma P, Jha A B, Dubey R S, Pessarakli M . Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot, 2012,10:1-26.
doi: 10.1016/j.plaphy.2016.05.038 pmid: 27269705
[41] Liu J, Wang W, Wang L, Sun Y . Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul, 2015,77:317-326.
doi: 10.1007/s10725-015-0066-6
[42] López-Burillo S, Tan D X, Rodriguez-Gallego V, Manchester L C, Mayo J C, Sainz R M, Reiter R J . Melatonin and its derivatives cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine and 6-methoxymelatonin reduce oxidative DNA damage induced by Fenton reagents. J Pineal Res, 2003,34:178-184.
[43] 李建明, 潘铜华, 王玲慧, 杜清洁, 常毅博, 张大龙, 刘媛 . 水肥耦合对番茄光合、产量及水分利用效率的影响. 农业工程学报, 2014,30(10):82-90.
Li J M, Pan T H, Wang L H, Du Q J, Chang Y B, Zhang D L, Liu Y . Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Trans CSAE, 2014,30(10):82-90 (in Chinese with English abstract).
[44] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S M A . Plant drought stress: effects, mechanisms and management. Agron Sustain Dev, 2009,29:153-188.
[45] 邢兴华 . α-萘乙酸缓解大豆花期逐渐干旱胁迫的生理机制. 南京农业大学博士学位论文, 江苏南京, 2014.
Xing X H . The Physiological Mechanism of α-naphthylacetic Acid to Alleviate the Gradual Drought Stress in Soybean Flowering Stage. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu,China, 2014 (in Chinese with English abstract).
[46] Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X . Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant, 2016,38:48.
doi: 10.1007/s11738-015-2045-y
[47] Wei W, Li Q T, Chu Y N, Reiter R J, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S, Chen S Y . Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot, 2014,66:695-707.
doi: 10.1093/jxb/eru392 pmid: 25297548
[48] 张兴华, 高杰, 杜伟莉, 张仁和, 薛吉全 . 干旱胁迫对玉米品种苗期叶片光合特性的影响. 作物学报, 2015,41:154-159.
Zhang X H, Gao J, Du W L, Zhang R H, Xue J Q . Effects of drought stress on photosynthetic characteristics of maize hybrids at seedling stage. Acta Agron Sin, 2015,41:154-159 (in Chinese with English abstract).
[49] 邢兴华, 徐泽俊, 齐玉军, 王晓军, 孙东雷, 卞能飞, 王幸 . 外源α-萘乙酸对花期干旱大豆碳代谢的影响. 应用生态学报, 2018,29:1215-1224.
Xing X H, Xu Z J, Qi Y J, Wang X J, Sun D L, Bian N F, Wang X . Effect of exogenous α-naphthaleneacetic acid on carbon metabolism of soybean under drought stress at flowering stage. Chin J Appl Ecol, 2018,29:1215-1224 (in Chinese with English abstract).
[50] Commichau F M, Forchhammer K, Stülke J . Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol, 2006,9:167-172.
doi: 10.1016/j.mib.2006.01.001 pmid: 16458044
[51] 任胜茂, 邓榆川, 文凤君, 刘明洁, 袁小琴, Sajad H, 蒲全明, 刘卫国, 杨文钰 . 套作对大豆苗期碳氮物质代谢的影响及其与抗倒伏性的关系. 草业学报, 2018,27(9):85-94.
Ren S M, Deng Y C, Wen F J, Liu M J, Yuan X Q, Sajad H, Pu Q M, Liu W G, Yang W Y . Effects of intercropping on the metabolism of carbon and nitrogen of soybean at the seedling stage and its relationship with lodging. Acta Pratac Sin, 2018,27(9):85-94 (in Chinese with English abstract).
[52] 黄琳琳 . 干旱胁迫和不同氮素水平对苹果根系氮素吸收和代谢的影响研究. 西北农林科技大学博士学位论文,陕西杨凌, 2018.
Huang L L . Effects of Drought Stress and Different Nitrogen Levels on Nitrogen Uptake and Metabolism in Apple Roots. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi,China, 2018 (in Chinese with English abstract).
[53] Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B . Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot, 2017,138:36-45.
doi: 10.1016/j.envexpbot.2017.02.012
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[13] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[14] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[15] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!