欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (10): 1507-1516.doi: 10.3724/SP.J.1006.2020.04015

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析

米文博(), 方园, 刘自刚*(), 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲   

  1. 甘肃省干旱生境作物生物学重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室 / 甘肃省油菜工程与技术研究中心 / 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2020-01-17 接受日期:2020-04-15 出版日期:2020-10-12 网络出版日期:2020-05-14
  • 通讯作者: 刘自刚
  • 作者简介:E-mail: 1291402843@qq.com
  • 基金资助:
    国家自然科学基金项目(31660404);国家重点基础研究发展计划项目(2018YFD0100502-2);甘肃省高校科研成果转化培育项目(2018D-13);国家现代农业产业技术体系建设专项(CARS-13);甘肃省科技重大专项项目(17ZD2NA016-4)

Differential proteomics analysis of fertility transformation of the winter rape thermo-sensitive sterile line PK3-12S (Brassica rapa L.)

MI Wen-Bo(), FANG Yuan, LIU Zi-Gang*(), XU Chun-Mei, LIU Gao-Yang, ZOU Ya, XU Ming-Xia, ZHENG Guo-Qiang, CAO Xiao-Dong, FANG Xin-Ling   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Sciences / Key Laboratory of Crop Genetics Improvement and Germplasm Enhancement of Gansu Province / Gansu Research Center of Rapeseed Engineering and Technology / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-01-17 Accepted:2020-04-15 Published:2020-10-12 Published online:2020-05-14
  • Contact: Zi-Gang LIU
  • Supported by:
    National Natural Science Foundation of China(31660404);National Key Basic Research Development Program(2018YFD0100502-2);Gansu University Scientific Research Achievement Transformation and Cultivation Project(2018D-13);National Modern Agricultural Industry Technology System Construction Project(CARS-13);Gansu Science and Technology Major Special Project(17ZD2NA016-4)

摘要:

为揭示温敏不育系PK3-12S育性转换机制, 本研究以白菜型冬油菜温敏不育系PK3-12花药为材料, 采用2-DE和LC-MS/MS质谱鉴定等差异蛋白组学方法, 分离鉴定了PK3-12在不育/可育条件下花药差异表达蛋白质, 并对差异表达蛋白进行了生物信息学分析; 进而采用RT-PCR检测了PK3-12在不育/可育条件下花蕾发育进程中差异蛋白编码基因表达量变化。结果表明, 高温不育条件下, PK3-12花药形态瘪小, 药室有少量败育花粉, 育性转换受1对隐性基因控制, 表达变化量在2倍以上差异蛋白质点31个, 其中增量表达蛋白质点6个, 减量表达蛋白质点11个, 表达完全抑制蛋白点12个, 不育花药特异表达蛋白点2个。质谱鉴定出15个差异蛋白质, 参与信号转导通路、二羧基乙醛酸代谢、糖酵解代谢、次生合成代谢、氨基酸生物合成、分支酸生物合成、碳代谢途径等细胞过程。Rubisco亚基连接蛋白编码基因BrrbcL开放读码框(open reading frame, ORF)长度为1095 bp, 编码364个氨基酸; 与可育花蕾相比, 发育进程中不育花蕾BrrbcL基因、膜联蛋白基因(ANN)、BetVI过敏原家族基因(BetVI)表达明显下调, 表明上述基因可能参与了温敏不育系PK3-12S育性的转换。

关键词: 白菜型冬油菜, 温敏不育, 差异蛋白组学, 基因表达

Abstract:

To reveal the fertility switching mechanism of temperature-sensitive sterility line PK3-12S (Brassica rapa L.), the differentially expressed proteins were isolated and identified using anthers of PK3-12S in sterile/fertile conditions by 2-DE and LC-MS/MS mass spectrometry. The expression level variations of differentially expressed genes were examined by RT-PCR in PK3-12 flower buds during sterility/fertile development. The result showed that the sterile anther size of PK3-12 was small with a little abortive pollen in the anther room under high temperature. The trait of fertility transformation was controlled by a pair of recessive alleles. There were 31 differentially expressed proteins with more than two times of the expression level, including six protein spots with increasing expression, 11 protein spots with reduced expression, 12 protein spots with complete inhibition, and two protein spots with induced expressed. Fifteen differentially expressed proteins involved in the cellular processes such as signal transduction pathways, glyoxylate and dicarboxylate metabolism, glycolysis gluconeogenesis, biosynthesis of secondary metabolites, biontheses of amino acids, chorismate biosynthesis, and carbon metabolism pathways were identified by mass spectrometry. The BrrbcL gene, encoding a Rubisco subunit-binding accessory protein, had an open reading frame (ORF) in length of 1095 bp encoded 364 amino acids. Compared with fertile anthers, the expression level of BrrbcL gene, annexin gene (ANN) and BetVI allergen family gene (BetVI) was significantly down-regulated during sterile anthers development, which indicated that these genes maybe participate in the fertility transformation of the thermo-sensitive sterile line PK3-12S.

Key words: winter turnip rape (Brassica rapa L.), thermo-sensitive sterile line, proteomics, gene expression

表1

差异表达基因定量引物"

基因
Gene
引物序列
Primer sequence (5°-3°)
产物长度
Product length (bp)
Rbcl F: CAGTCCCAGCTACGACCTTCT 134
R: CCTGTCTCCATCGGTTTGTTT
Ann F: CCGGAACAGACGAAGGAGCT 169
R: TCACCGAGAAGTGCGACGAG
CTIMC F: CAGCCCAAGCTCAGGAAGTA 166
R: CCACCGACCAAGAAACCATC
Bet VI F: CCCCACTGGTGAAAGTATCGG 138
R: CCTTGGGAGTAACGGTGATGG

图1

白菜型冬油菜热敏感不育系PK3-12S可育(A)和不育(B)花形态的比较"

表2

PK3-12S组合后代育性表现"

组合
Combination
可育株数/株
Number of fertile plants/ plant
不育株数/株
Number of sterile plants/ plant
分离比
Separation ratio
卡方测验
Chi-square test
F1 F2 BC1 F1 F2 BC1 F2 BC1 F2 BC1
PK3-12S×QX6-3 26
31
42
65
86
47
34
63
39
0
0
0
21
31
14
36
56
32
3.10:1 0.94:1 3:1 1:1
PK3-12S×QX21-2 2.77:1 1.13:1 3:1 1:1
PK3-12S×LX2-3 3.36:1 1.22:1 3:1 1:1

图2

白菜型冬油菜生态不育系PK3-12可育时期(左)及其不育时期(右)花器全蛋白双向电泳图谱"

表3

PK3-12S可育时期与不育时期花器差异表达蛋白点质谱鉴定结果"

编号
No.
登录号
Accession No.
蛋白名称
Protein name
调节
Regulated
物种来源
Plant species
蛋白分子量
Protein MW
多肽片
段数
Pep. count
蛋白得分
Protein score CI (%)
1 A0A078JSU1 3-磷酸草莽酸-1-乙烯基乙酰羧化转移酶
3-phosphoshikimate-1-carboxyvinyltransferase
+ Brassica napus 55720.4 18 100
2 M1F2H2 1,5-二磷酸核酮糖羧化/加氧酶
Chloroplast ribulose-1,5-bisphosphate
- Brassica oleracea 47858.1 10 99.999
3 A0A0D3E3Z1 琥珀酰辅酶A连接酶β亚基
Succinyl-CoA ligase subunit beta
- Brassica oleracea 45214.0 17 100
4 M4CHC2 磷酸甘油酸激酶
Phosphoglycerate kinase
- Brassica rapa subsp. 42368.6 16 100
9 M4F009 膜联蛋白
Annexin
- Brassica rapa subsp. pekinensis 37045.8 15 99.618
11 A0A078GNP3 硫氧还蛋白还原酶
Thioredoxin reductase
- Brassica napus 72670.1 12 99.821
12 M4CN89 铁蛋白
Ferritin
- Brassica rapa subsp. pekinensis 30584.2 10 100
16 U5IBV8 谷胱甘肽巯基转移酶
Glutathion-S-transferase taub (fragment)
+ Brassica oleracea 17916.5 9 100
17 M4DE25 磷酸丙糖异构酶
Triosephosphate isomerase
- Brassica rapa subsp. 27221.1 13 100
18 E5KXU6 超氧化物歧化酶
Superoxide dismutase (fragment)
- Brassica campestris 22151.1 3 100
19 Q944W6 肿瘤翻译调控因子同源蛋白
Translationally-controlled tumor protein homolog
- Brassica oleracea 19027.6 8 96.594
20 O82795 热应答蛋白
Heat stress-induced protein
+ Brassica oleracea 23474.3 6 100
26 A8IXG5 BetVI过敏原家族蛋白
BetVI allergen family protein
+ Brassica campestris 17149.9 12 100
27 M4E5U4 抑制蛋白
Profilin
- Brassica rapa subsp. pekinensis 14518.1 5 100
30 A1YN07 Kunitz型半胱氨酸蛋白酶抑制因子
Kunitz-type cysteine protease inhibitor
+ Brassica campestris 24744.6 6 100

图3

差异蛋白GO功能分析"

图4

差异表达蛋白KEGG分类图"

图5

PK3-12S花器发育过程中差异蛋白编码基因的相对表达量 rbcL: 1,5-二磷酸核酮糖羧化酶; ANN: 膜联蛋白; CTIMC: 磷酸丙糖异构酶; BetVI: BetVI过敏原家族蛋白。"

[1] 殷艳, 王汉中. 我国油菜生产现状及发展趋势. 农业展望, 2011,7(1):43-45.
Yin Y, Wang H Z. Present situation and development trend of rape production in China. Agric Outlook, 2011,7(1):43-45 (in Chinese).
[2] 刘成, 黄杰, 冷博峰, 冯中朝, 李俊鹏. 我国油菜产业现状, 发展困境及建议. 中国农业大学学报, 2017,22(12):203-210.
Liu C, Huang J, Leng B F, Feng Z C, Li J P. Current situation, development difficulties and suggestions of Chinese rape industry. J China Agric Univ, 2017,22(12):203-210 (in Chinese with English abstract).
[3] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019,41:485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019,41:485-489 (in Chinese with English abstract).
[4] Zeng X C, Xu Y Z, Jiang J J, Zhang F Q, Ma L, Wu D W, Wang Y P, Sun W C. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC Plant Biol, 2018,18:52.
doi: 10.1186/s12870-018-1242-4 pmid: 29587648
[5] 王学芳, 孙万仓, 李孝泽, 武军艳, 马维国, 康艳丽, 曾潮武, 蒲媛媛, 叶剑, 刘红霞, 曾军, 张亚红. 河西走廊种植冬油菜的环境效应. 作物学报, 2008,34:2210-2217.
doi: 10.3724/SP.J.1006.2008.02210
Wang X F, Sun W C, Li X Z, Wu J Y, Ma W G, Kang Y L, Zeng C W, Pu Y Y, Ye J, Liu H X, Zeng J, Zhang Y H. The environment effect of planting winter rape in Hexi Corridor. Acta Agron Sin, 2008,34:2210-2217 (in Chinese with English abstract).
[6] Liu Z G, Sun W C, Zhao Y N, Li X C, Fang Y, Wu J Y, Zeng X C, Yang N N, Wang Y, He L. Effects of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed. Russ J Plant Physiol, 2016,63:451-460.
doi: 10.1134/S1021443716040099
[7] Chen X, Hu J, Zhang H, Ding Y. DNA methylation changes in photoperiod-thermo-sensitive male sterile rice PA64S under two different conditions. Gene, 2014,537:143-148.
doi: 10.1016/j.gene.2013.12.015
[8] Zhang J W, Liu Z Q, Liu X Q, Dong J G, Pang H X, Yu C Y. Proteomic alteration of a thermo-sensitive male sterility SP2S in rapeseed (Brassica napus) in response to mild temperature stress. Plant Breed, 2016,135:191-199.
doi: 10.1111/pbr.2016.135.issue-2
[9] Ji J L, Yang L M, Fang Z Y, Zhuang M, Zhang Y Y, Lyu H H, Liu Y M, Li Z S. Complementary transcriptome and proteome profiling in cabbage buds of a recessive male sterile mutant provides new insights into male reproductive development. J Proteomics, 2018,179:80-91.
doi: 10.1016/j.jprot.2018.03.003 pmid: 29522879
[10] Liu H Z, Zhang G S, Wang J S, Li J J, Song Y L, Qiao L, Niu N, Wang J W, Ma S C, Li L L. Chemical hybridizing agent SQ-1-induced male sterility in Triticum aestivum L.: a comparative analysis of the anther proteome. BMC Plant Biol, 2018,18:7.
doi: 10.1186/s12870-017-1225-x pmid: 29304738
[11] Xiao X J, Yang Y Z, Yang Y J, Lin J Z, Tang D Y, Liu X M. Comparative analysis of young panicle proteome in thermo- sensitive genic male-sterile rice Zhu-1S under sterile and fertile conditions. Biotechnol Lett, 2009,31:157-161.
doi: 10.1007/s10529-008-9838-7 pmid: 18923912
[12] Song L R, Liu Z Q, Tong J H, Xiao L T, Ma H, Zhang H Q. Comparative proteomics analysis reveals the mechanism of fertility alternation of thermo-sensitive genic male sterile rice lines under low temperature inducement. Proteomics, 2015,15:1884-1905.
doi: 10.1002/pmic.201400103 pmid: 25641954
[13] Yu C Y, Xu X F, Ge J, Guo X F, Dong J G, Dong Z S. Premature breakdown of tapetum associated with reverse thermo-sensitive genic male-sterile line Huiyou 50S in rapeseed (Brassica napus). Acta Physiol Plant, 2016,38:54.
doi: 10.1007/s11738-015-2039-9
[14] Zeng X H, Li W P, Wu Y H, Liu F, Luo J L, Cao Y L, Zhu L, Li Y J, Li J, You Q B, Wu G. Fine mapping of a dominant thermo-sensitive genic male sterility gene (BntsMs) in rapeseed (Brassica napus) with AFLP- and Brassica rapa-derived PCR markers. Theor Appl Genet, 2014,127:1733-1740.
doi: 10.1007/s00122-014-2335-6
[15] Liu X Q, Yu C Y, Dong J G, Xu A X, Hu S W. De novo transcriptome reconstruction of a thermo-sensitive male sterility mutant in rapeseed (Brassica napus; Brassicaceae). Appl Plant Sci, 2017,5:1700077. doi: 10.3732/apps.1700077.
doi: 10.3732/apps.1700077
[16] 徐献锋, 胡玉梅, 于澄宇, 葛娟, 郭英芬, 董军刚, 胡胜武. 甘蓝型油菜反型温敏核不育Huiyou 50S的生理特征及遗传分析. 华北农学报, 2014,29(3):147-152.
doi: 10.7668/hbnxb.2014.03.027
Xu X F, Hu Y M, Yu C Y, Ge J, Guo Y F, Dong J G, Hu S W. Physiological characterization and genetic analysis of reverse thermo-sensitive genic male-sterile line Huiyou 50S in Brassica napus. Acta Agric Boreali-Sin, 2014,29(3):147-152 (in Chinese with English abstract).
[17] Majeran W, Zybailov B, Ytterberg A J, Dunsmore J, Sun Q, van Wijk K J. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics, 2008,7:1609-1638.
doi: 10.1074/mcp.M800016-MCP200 pmid: 18453340
[18] Bradford M M. A rapid method for the quantification of microgram quantities of protein utilizing the principle of protein. Dye binding. Anal Biochem, 1976,72:248-254.
doi: 10.1006/abio.1976.9999 pmid: 942051
[19] Katayama H, Nagasu T, Oda Y. Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectr, 2001,15:1416-1421.
doi: 10.1002/(ISSN)1097-0231
[20] Majeran W, Zybailov B, Ytterberg A J, Dunsmore J, Sun Q, van Wijk K J. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics, 2008,7:1609-1638.
doi: 10.1074/mcp.M800016-MCP200 pmid: 18453340
[21] Guo L L, Sui Z H, Zhang S, Ren Y Y, Liu Y. Comparison of potential diatom “barcode” genes (18S and ITS rDNA, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in bacillariophyta. Int J Syst Evol Microbiol, 2015,65:1369-1380.
doi: 10.1099/ijs.0.000076 pmid: 25604341
[22] Cuong P V, Cuong H V. Heterosis for photosynthesis and dry matter accumulation in F1 hybrid rice (Oryza sativa L.) produced from thermo-sensitive male sterile line under drought stress at heading stage. J Fac Agric Kyushu Univ, 2014,59:221-228.
[23] Huber S C, Wilson R F, Burton J W. Studies on genetic male-sterile soybeans: II. Effect of nodulation on photosynthesis and carbon partitioning in leaves. Plant Physiol, 1983,73:713-717.
doi: 10.1104/pp.73.3.713 pmid: 16663288
[24] Van Cuong P, Thi Thu Hang D, Thi Hang T, Araki T, Yoshimura A, Mochizuki T. Photosynthesis and panicle growth responses to drought stress in F1 hybrid rice (Oryza sativa L.) from a cross between thermo-sensitive genic male sterile (TGMS) line 103S and upland rice IR17525. J Fac Agric Kyushu Univ, 2014,59:271-277.
[25] Rosa Téllez S, Anoman A D, Flores Tornero M, Toujani W, Alseekh S, Fernie A R, Nebauer S G, Muñoz Bertomeu J, Segura J, Ros R. Phosphoglycerate kinases are co-regulated to adjust metabolism and to optimize growth. Plant Physiol, 2018,176:1182-1198.
doi: 10.1104/pp.17.01227 pmid: 28951489
[26] Ito H, Iwabuchi M, Ogawa K. The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol, 2003,144:655-660.
[27] Chen M J, Thelen J J. The plastid isoform of triose phosphate isomerase is required for the post germinative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell, 2010,22:77-90.
doi: 10.1105/tpc.109.071837 pmid: 20097871
[28] Hu C Q, Sturtevant J M, Thermodynamic study of yeast phosphoglycerate kinase. Biochemistry, 1987,26:178-182.
doi: 10.1021/bi00375a025 pmid: 3548815
[29] Lin Y, Miyagi A, Scheuring S. The annexin V transmembrane channel. Biophys J, 2018,114:491.
[30] Dai S J, Chen T T, Chong K, Xue Y B, Liu S Q, Wang T. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics, 2007,6:207-230.
doi: 10.1074/mcp.M600146-MCP200 pmid: 17132620
[31] Monastyrskaya K. Functional association between regulatory RNAs and the annexins. Int J Mol Sci, 2018,19:591.
doi: 10.3390/ijms19020591
[32] Halac I N D, Harte C. Genetics and development of morphological and physiological characters of male sterility in Oenothera. Protoplasma, 1995,187:22-30.
doi: 10.1007/BF01280229
[33] Dai X J, Kang G P, Wang Z X, Luan J, Wang Z, Liang M Z, Chen L B. Cytoplasmic effects on the agronomic and physiological traits of dual-purpose genic male sterile substitution lines of rice. Crop Sci, 2017,57:3016-3026.
doi: 10.2135/cropsci2017.03.0153
[34] 李莉, 王书平, 张改生, 王亮明, 宋瑜龙, 张龙雨, 牛娜, 马守才. 小麦生理型和遗传型雄性不育系及其保持系小花完整叶绿体蛋白质组分比较研究. 作物学报, 2011,37:1134-1143.
doi: 10.3724/SP.J.1006.2011.01134
Li L, Wang S P, Zhang G S, Wang L M, Song Y L, Zhang L Y, Niu N, Ma S C. Comparison of chloroplast proteomes extracted from florets of physiological and genic male sterile lines and their maintainer line in wheat. Acta Agron Sin, 2011,37:1134-1143 (in Chinese with English abstract).
[35] Mayer M P, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci, 2005,62:678-684
[36] Usman M G, Rafii M Y, Martini M Y. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnol Genet Eng Rev, 2017,33:26-39.
doi: 10.1080/02648725.2017.1340546 pmid: 28649918
[1] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[4] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[5] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[6] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[7] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[8] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[9] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[10] 陈日荣,周延彪,王黛君,赵新辉,唐晓丹,许世冲,唐倩莹,符星学,王凯,刘选明,杨远柱. 利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5[J]. 作物学报, 2020, 46(8): 1157-1165.
[11] 王芳权,范方军,夏士健,宗寿余,郑天清,王军,李文奇,许扬,陈智慧,蒋彦婕,陶亚军,仲维功,杨杰. 水稻光温敏核不育基因tms5pms3的互作效应[J]. 作物学报, 2020, 46(3): 317-329.
[12] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[13] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[14] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[15] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!