欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (10): 1517-1525.doi: 10.3724/SP.J.1006.2020.02008

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析

王小雷1(), 李炜星1, 曾博虹2, 孙晓棠1, 欧阳林娟1, 陈小荣1, 贺浩华1,*(), 朱昌兰1,*()   

  1. 1 江西农业大学作物生理生态与遗传育种教育部重点实验室 / 江西省超级稻工程技术研究中心, 江西南昌 330045
    2 江西省农业科学院 / 江西省超级水稻研究发展中心, 江西南昌 330200
  • 收稿日期:2020-02-13 接受日期:2020-06-02 出版日期:2020-10-12 网络出版日期:2020-06-23
  • 通讯作者: 贺浩华,朱昌兰
  • 作者简介:E-mail: wxl0vip@163.com
  • 基金资助:
    国家自然科学基金项目(31860373);国家转基因生物新品种培育重大专项(2016-ZX08001-002);江西省“5511”优势科技创新团队项目(2016-5BCB19005)

QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines

WANG Xiao-Lei1(), LI Wei-Xing1, ZENG Bo-Hong2, SUN Xiao-Tang1, OU-YANG Lin-Juan1, CHEN Xiao-Rong1, HE Hao-Hua1,*(), ZHU Chang-Lan1,*()   

  1. 1 Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education / Jiangxi Super Rice Engineering Technology Research Center, Nanchang 330045, Jiangxi, China
    2 Jiangxi Super Rice Research and Development Center of Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
  • Received:2020-02-13 Accepted:2020-06-02 Published:2020-10-12 Published online:2020-06-23
  • Contact: Hao-Hua HE,Chang-Lan ZHU
  • Supported by:
    National Natural Science Foundation of China(31860373);National Major Project for Developing New GM Crops(2016-ZX08001-002);“5511” Superior Science and Technology Innovation Team Project of Jiangxi Province, China(2016-5BCB19005)

摘要:

粒形及千粒重是水稻产量的重要影响因素, 通过挖掘这些性状的优异基因, 对水稻超高产育种具有重要意义。本研究利用1套以籼稻恢复系昌恢121为背景亲本, 粳稻越光为供体亲本构建的染色体片段代换系为材料, 在3个环境下对水稻粒形及千粒重进行QTL检测及稳定性分析, 共检测到59个QTL, 分布于1号、2号、3号、4号、5号、6号、7号、10号、11号和12号染色体上, 贡献率为0.77%~36.26%, 其中发现10个QTL多效位点。值得关注的是qGW2-1qGW2-2qGW3-1qGW3-2qGL3qGL12这6个QTL能在3个环境中重复检测到, 其中qGW3-1为新鉴定的QTL位点。这些结果为进一步开展水稻粒形基因的精细定位、克隆和分子辅助育种奠定了一定的理论基础。

关键词: 水稻, 染色体片段置换系, 粒形, 千粒重, 数量性状座位

Abstract:

Grain shape and 1000-grain weight are the important factors affecting rice yield. Discovering the excellent genes of these traits is of great significance for super high yield rice breeding. In this study, a set of chromosome segment substitute lines (CSSLs), derived from a cross between Koshihikari (a japonica cultivar, as donor patent) and Changhui 121 (an indica restorer line, as a background patent), were used to quantitative trait locus (QTLs) detection and stability analysis in three environments. The results showed that a total of 59 QTLs were identified on chromosomes 1, 2, 3, 4, 5, 6, 7, 10, 11, and 12, respectively, whose contribution rate was 0.77%-36.26%. Among them, 10 pleiotropic QTLs were found, and qGW2-1, qGW2-2, qGW3-1, qGW3-2, qGL3, and qGL12 could all be detected in three environments. Furthermore, qGW3-1 is a novel identified QTL locus. These results lay a foundation for further fine mapping, cloning and marker-assisted breeding of grain shape genes.

Key words: rice, chromosome segment substitution lines (CSSLs), grain shape, 1000-grain weight, quantitative trait locus (QTL)

图1

水稻粒形及千粒重性状QTL在染色体上的分布"

表1

CSSLs及其亲本昌恢121和越光的性状表现"

性状
Trait
环境
Environment
亲本Parents 置换系群体CSSL
昌恢121a
Changhui 121a
越光a
Koshihikaria
均值±标准差
Mean ± SD
变幅
Ranges
变异系数
CV (%)
粒长GL (mm) E1 9.30±0.48** 7.30±1.56 8.58±0.22 7.60-10.10 0.03
E2 9.84±0.08** 7.40±0.14 9.18±0.34 7.80-9.80 0.04
E3 9.04±0.14** 7.09±0.60 8.91±0.34 7.60-9.82 0.04
粒宽GW (mm) E1 2.40±0.12* 3.30±0.56 2.73±0.13 2.20-3.20 0.05
E2 2.48±0.12* 3.20±0.00 2.58±0.17 2.40-3.26 0.07
E3 2.33±0.19** 3.24±0.60 2.48±0.16 2.22-3.30 0.06
千粒重TGW (g) E1 21.20±1.02** 18.78±0.32 22.36±0.34 16.50-26.80 0.02
E2 20.18±0.09** 18.66±0.36 22.51±1.53 16.90-26.62 0.07
E3 21.91±0.09** 18.89±0.60 21.32±1.46 16.90-26.40 0.07

表2

利用208 个CSSLs 定位到的水稻粒形及千粒重QTL"

性状
Trait
位点
QTL
染色体
Chr.
区间
Marker interval
LOD值LOD value 贡献率PVE (%) 加性效应Additive effect
E1 E2 E3 E1 E2 E3 E1 E2 E3
千粒重TGW (g) qTGW1 1 RM6292-RM5362 5.26 6.75 1.36
qTGW2-1 2 RM1358-RM5812 8.34 8.47 2.11
qTGW2-2 2 RM8030-RM1092 28.21 13.67 36.26 19.34 2.56 1.55
qTGW2-3 2 RM1092-RM208 8.52 8.67 -1.85
qTGW3-1 3 RM3646-RM3513 4.41 4.28 -1.17
qTGW3-2 3 RM3513-RM2334 3.68 3.61 7.07 4.55 1.02 0.80
qTGW4 4 RM6089-RM5503 7.73 4.31 7.80 8.35 -1.08 -0.95
qTGW5 5 RM3295-RM3476 3.01 5.37 2.88 6.91 1.23 1.58
qTGW6 6 RM5371-RM7641 5.96 5.89 -1.16
qTGW7 7 RM3186-RM3404 3.92 2.66 7.56 3.31 -0.76 -0.49
qTGW11 11 RM6894-RM5731 5.00 6.39 -0.60
粒宽
GW (mm)
qGW1-1 1 RM312-RM5638 3.24 0.77 0.08
qGW1-2 1 RM5389-RM6696 9.70 2.49 -0.06
qGW2-1 2 RM1358-RM5812 46.92 3.23 27.80 18.99 1.26 11.21 0.31 0.10 0.29
qGW2-2 2 RM8030-RM1092 14.21 26.45 58.34 3.84 13.64 35.01 -0.10 -0.29 -0.30
qGW3-1 3 RM5748-RM6676 16.43 3.91 5.02 4.56 1.55 1.54 0.13 0.07 0.08
qGW3-2 3 RM3513-RM2334 19.31 9.43 9.82 5.54 3.98 3.19 0.11 0.11 0.10
qGW4-1 4 RM5412-RM3471 12.33 3.26 0.06
qGW4-2 4 RM6089-RM5503 30.53 4.03 10.04 1.59 -0.12 -0.06
qGW5-1 5 RM3295-RM3476 11.98 3.15 0.10
qGW5-2 5 RM7423-RM1054 12.36 3.27 -0.16
qGW6 6 RM8258-RM2615 10.64 4.93 2.75 1.97 0.09 0.09
qGW10 10 RM5271-RM2125 9.72 4.11 0.13
qGW11 11 RM6272-RM287 7.99 2.01 -0.08
qGW12 12 RM8216-RM6288 12.85 3.04 3.41 0.92 -0.09 -0.04
粒长
GL (mm)
qGL1-1 1 RM1220-RM259 7.90 7.36 0.19
qGL1-2 1 RM5389-RM6696 10.47 10.04 0.41
qGL2 2 RM1358-RM5812 5.39 4.88 -0.33
qGL3 3 RM3646-RM3513 12.86 16.33 18.19 12.68 18.82 23.05 -0.41 -0.48 -0.53
qGL5 5 RM7444-RM3328 14.75 12.09 14.87 13.61 -0.32 -0.30
qGL6 6 RM8258-RM2615 8.65 3.28 8.12 3.34 -0.30 -0.19
qGL7-1 7 RM5711-RM8263 5.10 4.60 -0.19
qGL7-2 7 RM3186-RM3404 3.85 3.84 -0.13
qGL10-1 10 RM5271-RM2125 4.94 4.46 4.44 4.49 -0.22 -0.22
qGL10-2 10 RM1375-RM6704 2.67 2.7 -0.17
qGL12 12 RM19-RM6296 6.04 5.38 4.85 5.51 5.47 5.02 -0.14 -0.13 -0.13

表3

多效性区域分析"

染色体
Chr.
区间
Marker interval
性状
Trait
多效性QTL
Pleiotropic QTL
已克隆的基因
Cloned gene
参考文献
Reference
1 RM5389-RM6696 GW, GL qGL1-2, qGW1-2 _ _
2 RM1358-RM5812 TGW, GW, GL qTGW2-1, qGL2, qGW2-1 LG1/OsUBP15, GW2 Shi et al.[25]; Song et al.[8]
2 RM8030-RM1092 TGW, GW qTGW2-2, qGW2-2 _ _
3 RM3646-RM3513 TGW, GL qTGW3-1, qGL3 GS3 Fan et al.[11]
3 RM3513-RM2334 TGW, GW qTGW3-2, qGW3-2 _ _
4 RM6089-RM5503 TGW, GW qGW4-2, qTGW4 _ _
5 RM3295-RM3476 TGW, GW qTGW5, qGW5-1 gW5 Weng et al.[9]
6 RM8258-RM2615 GW, GL qGL6, qGW6 _ _
7 RM3186-RM3404 TGW, GL qTGW7, qGL7-2 BG2/CYP78A13 Xu et al.[26]
10 RM5271-RM2125 GW, GL qGW10, qGL10-1 _ _

图2

水稻粒形性状QTL对应片段置换系与背景亲本昌恢121的表型差异比较 NC和HN分别表示南昌和海南。**表示昌恢121的粒形性状与目标片段置换系之间的差异达0.01显著水平, t检验。"

[1] 邢永忠, 谈移芳, 徐才国, 华金平, 孙新立. 利用水稻重组自交系群体定位谷粒外观性状的数量性状基因. 植物学报, 2001,43:840-845.
Xing Y Z, Tan Y F, Xu C G, Hua J P, Sun X L. Quantitative trait genes of grain appearance traits were identified by rice recombinant inbred population. Acta Bot Sin, 2001,43:840-845 (in Chinese with English abstract).
[2] 余守武, 樊叶杨, 杨长登, 李西明. 水稻第1染色体短臂粒长和粒宽QTL的精细定位. 中国水稻科学, 2008,22:465-471.
Yu S W, Fan Y Y, Yang C D, Li X M. Detailed mapping of QTLs for short arm length and grain width in rice chromosome 1. Chin J Rice Sci, 2008,22:465-471 (in Chinese with English abstract).
[3] 彭伟业, 孙平勇, 潘素君, 李魏, 戴良英. 水稻品种魔王谷水稻粒形、剑叶性状和株高QTL定位. 作物学报, 2018,44:1673-1680.
doi: 10.3724/SP.J.1006.2018.01673
Peng W Y, Sun P Y, Pan S J, Li W, Dai L Y. Mapping of QTL for grain shape, leaf character and plant height of rice variety Mowanggu. Acta Agron Sin, 2018,44:1673-1680 (in Chinese with English abstract).
[4] 周梦玉, 宋昕蔚, 徐静, 付雪, 李婷, 朱雨晨, 肖幸运, 毛一剑, 曾大力, 胡江, 朱丽, 任德勇, 高振宇, 郭龙彪, 钱前, 吴明国, 林建荣, 张光恒. 籼稻C84和粳稻春江16B重组自交系遗传图谱构建及籽粒性状QTL定位与验证. 中国水稻科学, 2018,32:207-218.
Zhou M Y, Song X W, Xu J, Fu X, Li T, Zhu Y C, Xiao X Y, Mao Y J, Zeng D L, Hu J, Zhu L, Ren D Y, Gao Z Y, Gou L B, Qian Q, Wu M G, Lin J R, Zhang G H. Construction of genetic map of indica rice C84 and japonica rice Chunjiang 16B recombinant inbred lines and mapping and verification of QTL for grain traits. Chin J Rice Sci, 2018,32:207-218 (in Chinese with English abstract).
[5] 丁膺宾, 张莉珍, 许睿, 王艳艳, 郑晓明, 张丽芳, 程云连, 吴凡, 杨庆文, 乔卫华, 兰进好. 基于染色体片段置换系的野生稻粒长QTL-qGL12 的精细定位. 中国农业科学, 2018,51:3435-3444.
doi: 10.3864/j.issn.0578-1752.2018.18.001
Ding Y B, Zhang L Z, Xu R, Wang Y Y, Zheng X M, Zhang L F, Cheng Y L, Wu F, Yang Q W, Qiao W H, Lan J H. Fine localization of wild rice grain length QTL-qGL12 based on chromosome fragment replacement line. Sci Agric Sin, 2018,51:3435-3444 (in Chinese with English abstract).
[6] 孙妍, 苏龙, 乔卫华, 郑晓明, 齐兰, 丁膺宾, 许睿, 张丽芳, 程云连, 兰进好, 杨庆文. 基于染色体片段置换系的野生稻粒宽QTL-q GW8-1的精细定位. 植物遗传资源学报, 2018,19:135-142.
Sun Y, Su L, Qiao W H, Zheng X M, Qi L, Ding Y B, Xu R, Zhang L F, Cheng Y L, Lan J H, Yang Q W. Precise mapping of grain width QTL-qGW8-1 in wild rice based on chromosome fragment replacement line. J Plant Genet Resour, 2018,19:135-142 (in Chinese with English abstract).
[7] Feng Y, Lu Q, Zhai R, Zhang M, Xu Q, Yang Y, Wang S, Yuan X, Yu H, Wang Y, Wei X. Genome wide association mapping for grain shape traits in indica rice. Planta, 2016,244:819.
doi: 10.1007/s00425-016-2548-9 pmid: 27198135
[8] Song X J, Huan W, Shi M, Zhu M Z, Lin X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014 pmid: 17417637
[9] Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, Guo T, Jian L, Su N, Wan J M. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 2008,179:2239-2252.
doi: 10.1534/genetics.108.089862 pmid: 18689882
[10] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPLl6 in rice. Nat Genet, 2012,44:950-954.
pmid: 22729225
[11] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171.
doi: 10.1007/s00122-006-0218-1
[12] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269.
doi: 10.1038/ng.977 pmid: 22019783
[13] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015,47:949-954.
doi: 10.1038/ng.3352 pmid: 26147620
[14] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948.
doi: 10.1038/ng.3346 pmid: 26147619
[15] Wu W G, Liu X Y, Wang M H, Rachel S M, Luo X J, Marie N N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang X K, Rod A W, Zhu Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017,3:1-7.
[16] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012,22:1666-1680.
doi: 10.1038/cr.2012.151
[17] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012,109:21534-21539.
doi: 10.1073/pnas.1219776110 pmid: 23236132
[18] Ken I, Naoki H, Yuka M, Naomi M, Nao H, Haruko O, Takayuki K, Kazuhiro U, Bunichi S, Atsuko O, Hisashi M, Etsuko K. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[19] Ying Z J, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018,11:750-753.
doi: 10.1016/j.molp.2018.03.007 pmid: 29567450
[20] 贺浩华, 傅军如, 朱昌兰. 香型超级杂交稻新组合淦鑫688. 杂交水稻, 2008, (3):80-82.
He H H, Fu J R, Zhu C L. Ganxin 688, a new combination of fragrant super hybrid rice. Hybrid Rice, 2008, (3):80-82 (in Chinese with English abstract).
[21] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[22] Wang J K, Wang X Y, Crossa J, Crouch J T, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006,88:93-104.
doi: 10.1017/S0016672306008408 pmid: 17125584
[23] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
doi: 10.1016/j.cj.2015.01.001
[24] McCouch S R. Gene nomenclature system for rice. Rice, 2008,1:72-84.
doi: 10.1007/s12284-008-9004-9
[25] 刘健, 牛付安, 江建华, 孙程, 陈兰, 郭媛, 付淑换, 洪德林. 多环境下粳稻产量及其相关性状的条件和非条件QTL定位. 中国水稻科学, 2012,26:144-154.
doi: 10.3969/j.issn.10017216.2012.02.003
Liu J, Niu F A, Jiang J H, Su C, Chen L, Gou Y, Fu S H, Hong D L. Location of conditional and unconditional QTL for japonica rice yield and its related traits in multiple environments. Chin J Rice Sci, 2012,26:144-154 (in Chinese with English abstract).
[26] 梁云涛, 潘英华, 徐志健. 利用野栽分离群体定位水稻粒型相关QTL. 西南农业学报, 2017,30:2161-216.
Liang Y T, Pan Y H, Xu Z J. Rice grain type-related QTLs were identified by isolated populations in wild cultivation. J Southwest Agric Univ, 2017,30:2161-216 (in Chinese with English abstract).
[27] Lin Z, Yan J, Su J, Liu H, Hu C, Li G, Wang F, Lin Y. Novel OsGRAS19 mutant, D26, positively regulates grain shape in rice (Oryza sativa). Funct Plant Biol, 2019,46:857-868.
doi: 10.1071/FP18266 pmid: 31146805
[28] Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant, 2018,11:736-749.
doi: 10.1016/j.molp.2018.03.005 pmid: 29567449
[29] Shi C L, Ren Y L, Liu L L, Wang F, Zhang H, Tian P, Pan T, Wang Y F, Jing R N, Liu T Z, Wu F Q, Lin Q B, Lei C L, Zhang X, Zhu S S, Guo X P, Wang J L, Zhao Z C, Wang J, Zhai H Q, Cheng Z J, Wan J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol, 2019,180:381-391.
doi: 10.1104/pp.19.00065 pmid: 30796160
[30] Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003,107:479-493.
doi: 10.1007/s00122-003-1270-8 pmid: 12736777
[31] Xu F, Fang J, Ou S J, Gao S P, Zhang F X, Du L, Xiao Y H, Wang H R, Sun X H, Chu J F, Wang G D, Chu C. Variations in CYP78A13 coding region influence grain size and yield in rice. Plant Cell Environ, 2015,38:800-811.
doi: 10.1111/pce.12452 pmid: 25255828
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!