欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (2): 368-375.doi: 10.3724/SP.J.1006.2021.04110

• 研究简报 • 上一篇    下一篇

基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立

李威涛(), 郭建斌, 喻博伦, 徐思亮, 陈海文, 吴贝, 龚廷锋, 黄莉, 罗怀勇, 陈玉宁, 周小静, 刘念, 陈伟刚, 姜慧芳*()   

  1. 中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2020-05-16 接受日期:2020-09-14 出版日期:2021-02-12 网络出版日期:2020-09-28
  • 通讯作者: 姜慧芳
  • 作者简介:E-mail: 965301631@qq.com
  • 基金资助:
    农作物种质资源保护项目(2017NWB033);国家农作物种质资源共享服务平台(NICGR2017-36);国家现代农业产业技术体系建设专项(CARS-13-花生种质资源评价);中国农业科学院科技创新工程项目(CAAS-ASTIP-2013-OCRI)

Establishment of HPLC-RID method for the determination of soluble sugars in peanut seed

LI Wei-Tao(), GUO Jian-Bin, YU Bo-Lun, XU Si-Liang, CHEN Hai-Wen, WU Bei, GONG Ting-Feng, HUANG Li, LUO Huai-Yong, CHEN Yu-Ning, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, JIANG Hui-Fang*()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2020-05-16 Accepted:2020-09-14 Published:2021-02-12 Published online:2020-09-28
  • Contact: JIANG Hui-Fang
  • Supported by:
    Crop Germplasm Resources Protection Project(2017NWB033);Plant Germplasm Resources Sharing Platform(NICGR2017-36);China Agriculture Research System(CARS-13-花生种质资源评价);Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2013-OCRI)

摘要:

食用型花生是我国乃至世界范围内花生育种的重要方向之一, 但是花生遗传改良中缺乏与食用品质相关的可溶性糖含量的快速检测方法, 限制了食用花生育种进展。本研究建立了80%乙醇和水浴快速提取花生籽仁可溶性糖的方法, 该提取方法与国标法相比, 简化了样品前期处理步骤, 加快了提取进度。通过准确性和重复性试验对该方法的验证表明, 该方法的重复性较好, 而且准确有效。以20份花生品种为材料, 利用高效液相-示差折光法对该方法提取的样品和国标法提取的样品进行检测发现, 成熟花生籽仁中的可溶性糖主要是蔗糖, 葡萄糖和果糖很少, 2种方法测定的结果差异不显著。利用本研究建立的方法检测20份花生品种的结果显示, 蔗糖含量最低为16.19 mg g-1, 最高为83.81 mg g-1, 平均为30.41 mg g-1。利用国标法检测的结果显示, 蔗糖含量最低为15.60 mg g-1, 最高为81.38 mg g-1, 平均为30.20 mg g-1。这些检测结果, 一方面进一步验证了所建立方法的实用性, 另一方面也表明这些花生品种中的蔗糖含量差异较大。

关键词: HPLC-RID, 花生籽仁, 果糖, 葡萄糖, 蔗糖

Abstract:

Edible peanut is one of the important directions of peanut breeding in China and even in the world. However, the lack of efficient detection method of soluble sugar content related to edible quality in peanut kernel limits the progress of edible peanut breeding. In this study, a method of extracting soluble sugar from peanut kernel by 80% ethanol and water bath was established. The method simplified the pre-treatment steps of samples and speeded up the extraction progress compared with the GB method. The accuracy and repeatability tests showed that this method had high repeatability accuracy and effectiveness. Then, the samples extracted by this method and GB method were both tested by HPLC-RID, it was found that the soluble sugar in mature peanut kernel was mainly sucrose, with little glucose and fructose in 20 peanut varieties. There were no significant differences between these two methods. The results of 20 peanut varieties using the method and GB method showed that the sucrose content ranged from 16.19 mg g-1 to 83.81 mg g-1, 15.60 mg g-1 to 81.38 mg g-1, and with an average of 30.41 mg g-1, 30.20 mg g-1. In summary, the results not only further verified the practicability of the method established in this study, but also showed that there was a huge difference in the sucrose content between these peanut varieties.

Key words: HPLC-RID, peanut kernel, fructose, glucose, sucrose

表1

试验所用花生样品"

品种
Variety
来源
Source
类型
Type
种皮颜色
Seed coat color
豫花9805 Yuhua 9805 河南 Henan 普通型 Virginia 粉红色 Pink
冀花甜1号 Jihuatian 1 河北 Hebei 多粒型 Valencia 粉红色 Pink
冀花甜2号 Jihuatian 2 河北 Hebei 多粒型 Valencia 红色 Red
中花12 Zhonghua 12 湖北 Hubei 珍珠豆型 Spanish 红色 Red
中花21 Zhonghua 21 湖北 Hubei 珍珠豆型 Spanish 粉红色 Pink
桂花17 Guihua 17 广西 Guangxi 珍珠豆型 Spanish 粉红色 Pink
桂花22 Guihua 22 广西 Guangxi 珍珠豆型 Spanish 粉红色 Pink
桂花红35 Guihuahong 35 广西 Guangxi 珍珠豆型 Spanish 红色 Red
中花9号 Zhonghua 9 湖北 Hubei 珍珠豆型 Spanish 黑色 Black
桂花红166 Guihuahong 166 广西 Guangxi 珍珠豆型 Spanish 红色 Red
白沙1016 Baisha 1016 广东 Guangdong 珍珠豆型 Spanish 粉红色 Pink
伏花生 Fuhuasheng 山东 Shandong 珍珠豆型 Spanish 粉红色 Pink
粤油9号 Yueyou 9 广东 Guangdong 珍珠豆型 Spanish 粉红色 Pink
闽花5号 Minhua 5 福建 Fujian 珍珠豆型 Spanish 粉红色 Pink
仲恺花1号 Zhongkaihua 1 广东 Guangdong 珍珠豆型 Spanish 粉红色 Pink
湘花1号 Xianghua 1 湖南 Hunan 珍珠豆型 Spanish 粉红色 Pink
豫花10号 Yuhua 10 河南 Henan 普通型 Virginia 粉红色 Pink
冀9402 Ji 9402 河北 Hebei 普通型 Virginia 粉红色 Pink
中花6号 Zhonghua 6 湖北 Hubei 珍珠豆型 Spanish 粉红色 Pink
徐花13 Xuhua 13 江苏 Jiangsu 中间型 Intermediat 粉红色 Pink

图1

HPLC色谱图 A: 果糖、葡萄糖和蔗糖标品; B: 中花12样品。a: 果糖; b: 葡萄糖; c: 蔗糖。"

表2

蔗糖标准液的配制"

标准液
Standard solution (mL)
标准液浓度
Concentration of standard solution
(mg mL-1)
糖储备液
Sugar storage solution
(mL)
80%乙醇
80%
ethanol (mL)
10 0.5 0.25 9.75
10 1.5 0.75 9.25
10 2.5 1.25 8.75
10 3.5 1.75 8.25
10 4.5 2.25 7.75
10 5.5 2.75 7.25
10 6.5 3.25 6.75

表3

不同处理时间和提取液体积下的蔗糖含量"

提取液
Extracting solution
(mL)
水浴时间
Water bath time
(min)
蔗糖含量
Sucrose content
(mg g-1)
10 30 16.33
10 40 16.12
10 50 16.58
15 30 16.25
15 40 16.16
15 50 16.31
20 30 15.88
20 40 16.70
20 50 16.41

表4

方差分析结果"

变异来源
Variable
平方和
Sum of squares
自由度
DF
均方
Mean square
F
F-value
P
P-value
80%乙醇80% ethanol (mL) 0 1 0 0.004 0.949
水浴时间Water bath time (min) 0.118 1 0.118 1.937 0.213
误差 Error 0.364 6 0.061
总计 Total 2392.996 9

表5

精密度试验结果"

序号
Number
蔗糖含量
Sucrose content (mg g-1)
1 16.78
2 16.73
3 16.96
4 16.78
5 16.97
6 16.88
7 16.72
8 16.80
9 16.97
10 16.82
均值±标准差Mean±SD 16.84±0.10
相对标准偏差
Relative standard deviation (RSD %)
0.59

表6

重复性试验结果"

序号
Number
蔗糖含量
Sucrose content (mg g-1)
1 16.66
2 16.91
3 16.79
4 16.90
5 16.97
6 16.72
均值±标准差Mean±SD 16.83±0.12
相对标准偏差
Relative standard deviation (RSD %)
0.73

表7

加标回收率试验结果"

蔗糖储备液
Sucrose storage solution (mL)
实测蔗糖含量
Content of measured sucrose (mg g-1)
理论蔗糖含量
Content of theoretical sucrose (mg g-1)
加标量
Amount of sucrose content (mg)
回收率Recovery rate (%)
0 16.65
0.5 26.34 26.65 10 96.90
1.0 36.02 36.65 20 96.85
1.5 46.35 46.65 30 99.03
平均值Mean 97.59

表8

HPLC-RID和国标法测定花生籽仁中的蔗糖含量"

名称
Variety
均值±标准差Mean±SD 名称
Variety
均值±标准差Mean±SD
HPLC-RID GB 5009.8-2016 HPLC-RID GB 5009.8-2016
豫花9805 Yuhua 9805 16.58±0.44 15.60±0.75 白沙1016 Baisha 1016 19.59±0.03 20.55±1.57
冀花甜1号 Jihuatian 1 83.81±0.59 81.38±3.67 伏花生 Fuhuasheng 27.82±0.02 28.70±0.56
冀花甜2号 Jihuatian 2 51.61±0.87 48.96±1.33 粤油9号 Yueyou 9 27.56±1.03 27.35±0.18
中花12 Zhonghua 12 16.19±0.20 17.39±0.73 闽花5号 Minhua 5 24.72±0.31 25.14±1.15
中花21 Zhonghua 21 34.42±1.18 32.69±0.82 仲恺花1号 Zhongkaihua 1 26.10±0.54 24.89±0.83
桂花17 Guihua 17 25.62±0.79 25.82±1.36 湘花1号 Xianghua 1 22.61±0.05 23.08±1.54
桂花22 Guihua 22 20.33±0.09 21.37±1.33 豫花10 Yuhua 10 26.77±0.76 25.82±0.58
桂花红35 Guihuahong 35 26.85±0.30 25.72±0.59 冀9402 Ji 9402 60.26±0.90 59.52±1.73
中花9号 Zhonghua 9 31.62±0.05 31.19±0.62 中花6号 Zhonghua 6 21.26±0.69 22.76±2.46
桂花红166 Guihuahong 166 23.12±0.26 23.62±1.08 徐花13 Xuhua 13 21.32±0.25 22.36±3.24
[1] Toomer O T. Nutritional chemistry of the peanut (Arachis hypogaea). Crit Rev Food Sci, 2017,58:3042-3053.
[2] 吴兰荣, 陈静, 王秀贞, 杨伟强, 曹玉良, 张吉民. 花生感官品质的主要鉴定指标. 中国油料作物学报, 2005,27:52-54.
Wu L R, Chen J, Wang X Z, Yang W Q, Cao Y L, Zhang J M. Main value index of peanut sensory quality. Chin J Oil Crop Sci, 2005,27:52-54 (in Chinese with English abstract).
[3] 秦利, 韩锁义, 刘华. 我国食用花生研究现状. 江苏农业科学, 2015, (11):4-7.
Qin L, Han S Y, Liu H. Research status of edible peanut in China. Jiangsu Agric Sci, 2015, (11):4-7 (in Chinese with English abstract).
[4] 禹山林. 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008. p 186.
Yu S L. Chinese Peanut Varieties and Their Pedigrees. Shanghai: Shanghai Scientific and Technical Publishers, 2008. p 186 (in Chinese).
[5] 董文召, 汤丰收. 我国花生优质育种的研究进展及育种策略探讨. 中国农学通报, 2002,18(2):77-79.
Dong W Z, Tang F S. Research progress and breeding strategy of peanut quality breeding in China. Chin Agric Sci Bull, 2002,18(2):77-79 (in Chinese with English abstract).
[6] 秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016,38:666-671.
Qin L, Liu H, Du P, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Qi F Y, Zhang X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chin J Oil Crop Sci, 2016,38:666-671 (in Chinese with English abstract).
[7] 田艳玲, 王浩, 张曼玲, 陈婧. 高效液相色谱法与化学法测定蜂蜜中果糖、葡萄糖、蔗糖、麦芽糖含量的比较与研究. 食品研究与开发, 2008,29(8):126-129.
Tian Y L, Wang H, Zhang M Y, Chen J. Comparison and research of high-performance liquid chromatography and chemical method determination honey the fructose, glucose, sucrose, maltose content. Food Res Dev, 2008,29(8):126-129 (in Chinese with English abstract).
[8] 刘伟, 郭华. HPLC内标法与化学法测定蜂蜜中糖含量的比较. 应用科技, 2001, (8):55-59.
Liu W, Guo H. A comparison between methods for detecting the content of carbohydrate with honey of HPLC by using internal standard method and chemical method. Appl Sci Technol, 2001, (8):55-59 (in Chinese with English abstract).
[9] 袁天军, 王家俊, 者为, 段焰青, 李伟, 侯英, 杨式华, 赵艳丽, 张金渝. 近红外光谱法的应用及相关标准综述. 中国农学通报, 2013,29(20):190-196.
Yuan T J, Wang J J, Zhe W, Duan Y Q, Li W, Hou Y, Yang S H, Zhao Y L, Zhang J Y. The review of application and standards of near infrared spectrometry. Chin Agric Sci Bull, 2013,29(20):190-196 (in Chinese with English abstract).
[10] Pan L, Zhu Q, Lu R, McGrath J M. Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy. Food Chem, 2015,167:264-271.
doi: 10.1016/j.foodchem.2014.06.117 pmid: 25148988
[11] 杨勇, 任健, 郑喜群, 赵丽影, 李毛毛. 近红外光谱法的甜菜糖度快速测定. 光谱学与光谱分析, 2014,34:2728-2731.
Yang Y, Ren J, Zheng X Q, Zhao L Y, Li M M. Rapid determination of beet sugar content using near infrared spectroscopy. Spectr Spectr Anal, 2014,34:2728-2731 (in Chinese with English abstract).
[12] 朱玉新, 韩松林, 陈再蓉, 李新霞. 高效液相-示差折光法同时测定3种洋葱中4种糖的含量. 新疆医科大学学报, 2013,36(2):196-199.
Zhu Y X, Han S L, Chen Z R, Li X X. Determination of fructose, glucose, sucrose, maltose in different onions by HPLC-RID method. J Xinjiang Med Univ, 2013,36(2):196-199 (in Chinese with English abstract).
[13] 林月绪, 张华, 陈如凯. HPLC-RID测定甘蔗茎节蔗糖、葡萄糖和果糖含量. 福建农林大学学报(自然科学版), 2015,44(3):232-235.
Lin Y X, Zhang H, Chen R K. HPLC-RID determination of sucrose, glucose and fructose in sugarcane internodes. J Fujian Agric For Univ (Nat Sci Edn), 2015,44(3):232-235 (in Chinese with English abstract).
[14] Basha S M. Soluble sugar composition of peanut seed. J Agric Food Chem, 1992,40:780-783.
[15] 杨成聪, 凌霞, 胡伟伟, 张振东, 范文莹, 郭壮. 高效液相-示差折光法测定米酒中3种糖的含量. 食品研究与开发, 2017,38(21):144-150.
Yang C C, Ling X, Hu W W, Zhang Z D, Fan W Y, Guo Z. Determination of 3 kinds of carbohydrate in rice wine by HPLC-RID method. Food Res Dev, 2017,38(21):144-150 (in Chinese with English abstract).
[16] Janila P, Pandey M K, Shasidhar Y, Variath M T, Sriswathi M, Khera P, Manohar S S, Nagesh P, Vishwakarma M K, Mishra G P, Radhakrishnan T, Manivannan N, Dobariya K L, Vasanthi R P, Varshney R K. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci, 2016,242:203-213.
pmid: 26566838
[17] Bera S K, Kamdar J H, Kasundra S V, Dash P, Maurya A K, Jasani , Mital D, Chandrashekar A B, Manivannan N, Vasanthi R P, Dobariya K L, Pandey M K, Janila P, Radhakrishnan T, Varshney R K. Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica, 2018,214:162.
[18] Zhao S Z, Li A Q, Li C S, Xia H, Zhao C Z, Zhang Y, Hou L, Wang X J. Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electron J Biotechnol, 2016,25:9-12.
[19] Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, Wang X, Siddique K H M, Liu Z J, Paterson A H, Varshney R K, Liang X. Sequencing of cultivated peanut (Arachis hypogaea) yields insights into genome evolution and oil improvement. Mol Plant, 2019,12:920-934.
pmid: 30902685
[20] Wang X H, Xu P, Yin L, Ren Y, Li S L, Shi Y M, Alcock T D, Xiong Q, Qian W, Chi X Y, Pandey M K, Varshney R K, Yuan M. Genomic and transcriptomic analysis identified gene clusters and candidate genes for oil content in peanut (Arachis hypogaea L.). Plant Mol Biol Rep, 2018,36:518-529.
[21] 郭建斌, 吴贝, 陈伟刚, 贾朝阳, 荆建国, 陈四龙, 刘念, 陈玉宁, 周小静, 罗怀勇, 任小平, 姜慧芳, 黄莉. 基于核磁共振法的花生品种含油量遗传变异分析. 中国油料作物学报, 2017,39:326-333.
Guo J B, Wu B, Chen W G, Jia C Y, Jing J G, Chen S L, Liu N, Chen Y N, Zhou X J, Luo H Y, Ren X P, Jiang H F, Huang L. Variation of oil content in peanut varieties based on nuclear magnetic resonance technology. Chin J Oil Crop Sci, 2017,39:326-333 (in Chinese with English abstract).
[22] Wen S J, Liu H, Li X Y, Chen X P, Hong Y B, Li H F, Lu Q, Liang X Q. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol, 2018,97:177-185.
doi: 10.1007/s11103-018-0731-z pmid: 29700675
[23] 郭建斌. 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B. QTL Analysis for Oil Content and Fatty Acid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[24] Tang G Y, Xu P L, Ma W H, Wang F, Liu Z J, Wan S B, Shan L. Seed-specific expression of AtLEC1 increased oil content and altered fatty acid composition in seeds of peanut (Arachis hypogaea L.). Front Plant Sci, 2018,9:260.
doi: 10.3389/fpls.2018.00260 pmid: 29559985
[25] Sui N, Wang Y, Liu S S, Yang Z, Wang F, Wan S B. Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. Front Plant Sci, 2018,9:7.
pmid: 29403517
[26] Chi X Y, Zhang Z M, Chen N, Zhang X W, Wang M, Chen M N, Wang T, Pan L J, Chen J, Yang Z, Guan X Y, Yu S L. Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS One, 2017,12:e0189759.
doi: 10.1371/journal.pone.0189759 pmid: 29244878
[27] Singh A, Raina S N, Rajpal V R, Singh A K. Seed protein fraction electrophoresis in peanut (Arachis hypogaea L.) accessions and wild species. Physiol Mol Biol Plants, 2018,24:465-481.
doi: 10.1007/s12298-018-0521-8 pmid: 29692554
[28] Yu H W, Wang Q, Shi A M, Yang Y, Liu L, Hu H, Liu H Z. Visualization of protein in peanut using hyperspectral image with chemometrics. Spectr Spectr Anal, 2017,37:853-858.
[29] Park S Y, Grabau E. Differential isoform expression and protein localization from alternatively spliced Apetala2 in peanut under drought stress. J Plant Physiol, 2016,206:98-102.
doi: 10.1016/j.jplph.2016.09.007 pmid: 27723504
[30] Akkasaeng C, Tantisuwic N, Ngamhui N O, Roytrakul S, Jogloy S, Pathanothai A. Changes in protein expression in peanut leaves in the response to progressive water stress. Pak J Biol Sci, 2015,18:19-26.
pmid: 26353412
[31] Yang P, Zhang F, Luo X, Zhou Y, Xie J. Histone deacetylation modification participates in the repression of peanut (Arachis hypogaea L.) seed storage protein gene Ara h 2.02 during germination. Plant Biol, 2015,17:522-527.
doi: 10.1111/plb.12268 pmid: 25262939
[32] Shanmugavelan P, Kim S Y, Kim J B, Kim H W, Cho S M, Kim S N, Kim S Y, Cho Y S, Kim H R. Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPL-CELSD. Carbohydr Res, 2013,380:112-117.
doi: 10.1016/j.carres.2013.06.024 pmid: 24021435
[33] Cobb W Y, Swaisgood H E. Roasted peanut flavor and its relation to growth environment. J Food Sci, 1971,36:538-539.
[34] Mason M E, Johnson B, Hamming M. Flavor components of roasted peanuts. Some low molecular weight pyrazines and pyrrole. J Agric Food Chem, 1966,14:454-460.
doi: 10.1021/jf60147a004
[35] Newell J A, Mason M E, Matlock R S. Precursors of typical and atypical roasted peanut flavor. J Agric Food Chem, 1967,15:767-772.
doi: 10.1021/jf60153a010
[36] Oupadissakoon C, Young C T, Mozingo R W. Evaluation of free amino acid and free sugar contents in five lines of virginia-type peanuts at four locations 1. Peanut Sci, 1980,7:55-60.
doi: 10.3146/i0095-3679-7-1-13
[37] Tharanathan R N, Wankhede D B, Rao M, Rao R R. Carbohydrate composition of groundnuts (Arachis hypogea). J Sci Food Agric, 1975,26:749-754.
pmid: 1160361
[38] Misra J B, Mathur R S, Bhatt D M. Near-infrared transmittance spectroscopy: a potential tool for non-destructive determination of oil content in groundnuts. J Sci Food Agric, 2000,80:237-240.
doi: 10.1002/(ISSN)1097-0010
[39] Zhang G, Li P, Zhang W, Zhao J. Analysis of multiple soybean phytonutrients by near-infrared reflectance spectroscopy. Anal Bioanal Chem, 2017,409:1-11.
doi: 10.1007/s00216-016-9971-4 pmid: 27837266
[40] Tillman B L, Gorbet D W, Person G. Predicting oleic and linoleic acid content of single peanut seeds using near-infrared reflectance spectroscopy. Crop Sci, 2006,46:2121-2126.
doi: 10.2135/cropsci2006.01.0031
[41] 曲艺伟, 张鹤, 韩笑, 李雪莹, 王传堂, 王丕武, 姚丹, 张君. 花生脂肪酸近红外模型的建立. 分子植物育种, 2019,17:232-242.
Qu Y W, Zhang H, Han X, Li X Y, Wang C T, Wang P W, Yao D, Zhang J. Establishment of near-infrared model of peanut fatty acids. Mol Plant Breed, 2019,17:232-242 (in Chinese with English abstract).
[42] 李长生, 石素华, 孙金波, 厉广辉, 赵传志, 王兴军, 赵术珍. 花生种质资源品质的近红外分析与评价. 山东农业科学, 2018,50(6):154-158.
Li C S, Shi S H, Sun J B, Li G H, Zhao C Z, Wang X J, Zhao S Z. Analysis and evaluation of quality characters of peanut varieties with near infrared spectroscopy. Shandong Agric Sci, 2018,50(6):154-158 (in Chinese with English abstract).
[43] 王艳颖, 胡文忠, 庞坤, 马堃. 高效液相色谱-蒸发光散射法测定苹果中可溶性糖的含量. 食品与发酵工业, 2008,34(6):129-131.
Wang Y Y, Hu W Z, Pang K, Ma K. Determination of the soluble sugars in apple by high performance liquid chromatography WIH evaporative light scattering detector (HPLC-ELSD). Food Ferment Ind, 2008,34(6):129-131 (in Chinese with English abstract).
[44] Pattee H E, Isleib T G, Giesbrecht F G, McFeeters R F. Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. J Agric Food Chem, 2000,48:757-763.
doi: 10.1021/jf9910741 pmid: 10725145
[1] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[2] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[3] 雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用[J]. 作物学报, 2021, 47(2): 332-341.
[4] 李瑞杰,唐会会,王庆燕,许艳丽,王琦,卢霖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[5] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[6] 张莉, 荐红举, 杨博, 张翱翔, 张超, 杨鸿, 张立源, 刘列钊, 徐新福, 卢坤, 李加纳. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析[J]. 作物学报, 2018, 44(02): 197-207.
[7] 张金飞,李霞,何亚飞,谢寅峰. 外源葡萄糖增强高表达转玉米C4pepc水稻耐旱性的生理机制[J]. 作物学报, 2018, 44(01): 82-94.
[8] 李光彦,王庆燕,许艳丽,卢霖,焦浏,董学瑞,董志强*. 双重化控对春玉米灌浆期穗位叶和籽粒蔗糖代谢关键酶活性的影响[J]. 作物学报, 2016, 42(08): 1215-1223.
[9] 张秋英,李彦生,刘长锴,田博文,涂冰洁,毛健伟. 菜用大豆食用品质关键组分及其积累动态研究[J]. 作物学报, 2015, 41(11): 1692-1700.
[10] 杨长琴,刘瑞显,张国伟,徐立华,周治国. 花铃期渍水对棉铃对位叶蔗糖代谢及铃重的影响[J]. 作物学报, 2014, 40(05): 908-914.
[11] 陈娜,潘丽娟,迟晓元,陈明娜,王通,王冕,杨珍,胡冬青,王道远,禹山林. 花生果糖-1,6-二磷酸醛缩酶基因AhFBA1的克隆与表达[J]. 作物学报, 2014, 40(05): 934-941.
[12] 李彦生,南海洋,杜明,连腾祥,张秋英,刘晓冰. 菜用大豆籽粒不同部位蔗糖积累及关键酶活性研究[J]. 作物学报, 2013, 39(11): 2099-2105.
[13] 赵福成,景立权,闫发宝,陆大雷,王桂跃,陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响[J]. 作物学报, 2013, 39(09): 1644-1651.
[14] 陈维维,再吐尼古丽?库尔班,涂振东,叶凯. 不同种植密度对甜高粱糖分积累及SS、SPS活性的影响[J]. 作物学报, 2013, 39(08): 1507-1513.
[15] 何美敬,刘立峰,穆国俊,侯名语,陈焕英,崔顺立. 花生蔗糖合酶基因AhSuSy的克隆和干旱胁迫表达分析[J]. 作物学报, 2012, 38(12): 2139-2146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!