欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (2): 359-367.doi: 10.3724/SP.J.1006.2021.03038

• 耕作栽培·生理生化 • 上一篇    下一篇

不同膜上遮挡措施对旱地玉米土壤理化性状及产量的影响

王奇(), 扶亚芳, 司雷勇, 金岩, 夏镇卿, 路海东*()   

  1. 西北农林科技大学农学院 / 农业农村部西北旱区玉米生物学与遗传育种重点实验室, 陕西杨凌 712100
  • 收稿日期:2020-06-19 接受日期:2020-09-13 出版日期:2021-02-12 网络出版日期:2020-09-22
  • 通讯作者: 路海东
  • 作者简介:E-mail: 1061749064@qq.com
  • 基金资助:
    国家自然科学基金项目(31771724);陕西省科技重点研发计划项目(2018-NY-031)

Effects of different cooling methods on maize soil physical and chemical properties and yield in dryland

WANG Qi(), FU Ya-Fang, SI Lei-Yong, JIN Yan, XIA Zhen-Qing, LU Hai-Dong*()   

  1. College of Agronomy, Northwest A&F University / Laboratory Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
  • Received:2020-06-19 Accepted:2020-09-13 Published:2021-02-12 Published online:2020-09-22
  • Contact: LU Hai-Dong
  • Supported by:
    National Natural Science Foundation of China(31771724);Key Research and Development Project of Shaanxi Province(2018-NY-031)

摘要:

针对西北雨养旱作地区玉米长期地膜覆盖下出现的植株早衰现象, 从不改变地膜保水功能的角度出发, 采取地膜玉米膜上遮挡降温覆盖措施, 研究不同膜上遮挡措施下土壤温度变化及对玉米产量形成的影响, 分析不同膜上遮挡措施下玉米耕层土壤物理化学性状变化, 为解析普通地膜玉米生育后期早衰提供理论参考。试验以陕单609为材料, 基于2年田间试验, 对比分析普通地膜覆盖+膜上覆黑色遮阳网(A)、普通地膜覆盖+膜上覆盖秸秆(B)与普通地膜覆盖(C) 3种模式对农田土壤温度、土壤养分及玉米干物质量积累、产量和水肥利用效率的影响。结果表明: (1)在普通地膜覆盖的基础上添加遮挡物(黑色遮阳网、秸秆)可以有效降低土壤温度和紧实度, 其中玉米生育前期降温效果最为明显。(2)与对照处理C相比, 膜上遮挡降温处理A和处理B玉米生长后期土壤的有机质和全氮、全钾含量均增加, 玉米肥料偏生产力分别提高7.24%和6.97%。(3)降温处理能够延缓玉米生长后期绿叶面积的衰减速率, 提高植株干物质量的积累, 增加玉米粒重。与处理C相比, 降温处理A和处理B的2年平均玉米产量分别较普通地膜覆盖处理提高6.39%和5.93%, 平均水分利用效率分别提高8.17%和7.67%。在西北雨养旱作区, 适当降低普通地膜玉米的膜下温度有助于改善土壤理化性状, 促进玉米籽粒干物质积累和产量形成, 提高肥水利用效率。

关键词: 玉米, 降温措施, 地膜覆盖, 土壤理化性状, 产量

Abstract:

Aiming at the phenomenon of premature senescence of plants under long-term maize plastic film mulching in rainfed and arid regions in Northwest China, adding cooling measures on mulched maize were taken to study the effects of soil temperature change on maize yield formation and analysis the changes of soil physical and chemical properties in topsoil of maize from the perspective of never changing the water conserving function of plastic film, which would provide the theoretical reference for the analysis of the early senescence in the later growth stage of ordinary plastic film maize. This experiment design using Shaandan 609 (SD 609) as tested materials, based on a 2-year field experiment, compared with the effects of three modes, ordinary plastic film mulch + black sunshade net (A), ordinary plastic film mulch + straw (B) and ordinary plastic film mulch (C) on soil temperature, soil nutrients, dry matter mass accumulation yield and water and fertilizer use efficiency in yield. The results were as follows: (1) Adding coverings on plastic film mulching (black sunshade net, straw) can effectively decrease the soil temperature and compactness, especially early stage of maize growth. (2) Compared with the control treatment C, cooling treatment A and treatment B significantly increased the content of organic matter, total nitrogen and total potassium in the later stage of maize growth, and the average partial fertilizer productivity increased by 7.24% and 6.97%, respectively. (3) Cooling treatments can delay the attenuation of green leaf area in the later stage of maize growth, improve the accumulation rate of dry matter and increase the kernel weight of maize. Compared with treatment C, the 2-year average maize yields of cooling treatment A and treatment B were increased by 6.39% and 5.93% and the average water use efficiency by 8.17% and 7.67%, respectively. In rainfed and arid regions in Northwest China, properly reducing the temperature under the film of mulched maize are helpful to improve soil physical and chemical properties, promote the accumulation of dry matter and the formation of yield and improve the high utilization efficiency of fertilizer and water.

Key words: maize, cooling methods, plastic film mulching, soil physical and chemical properties, yield level

图1

2018年和2019年玉米生长期降雨量和日温度"

表1

不同覆盖方式下0~25 cm土层平均温度"

年份
Year
处理
Treatment
生育时期 Growth stage
V6 V12 VT R3 R4 R6
2018 A 27.1 b 25.1 b 22.8 b 23.1 b 19.3 b 16.5 b
B 26.0 c 24.7 b 23.0 b 22.7 b 19.5 b 16.7 b
C 29.5 a 26.6 a 24.3 a 24.5 a 22.0 a 19.2 a
2019 A 26.3 b 22.7 b 20.3 b 22.5 b 19.1 b 16.2 b
B 25.9 b 22.3 b 19.9 b 22.7 b 18.6 c 16.0 b
C 28.5 a 25.4 a 21.1 a 24.0 a 20.8 a 18.7 a

表2

不同覆盖方式下各生育期土壤平均紧实度"

年份
Year
处理
Treatment
生育时期 Growth stage
V6 V12 VT R3 R4 R6
2018 A 112.5 b 170.6 b 213.0 b 326.5 b 330.7 b 366.2 b
B 109.0 b 175.4 b 206.7 b 316.9 b 333.5 b 354.3 c
C 145.8 a 236.4 a 321.4 a 371.5 a 385.6 a 389.7 a
2019 A 101.8 b 132.4 b 201.3 b 319.7 b 331.2 b 354.6 c
B 103.6 b 134.7 b 210.5 b 321.0 b 327.6 b 374.1 b
C 136.5 a 196.7 a 312.8 a 385.7 a 394.0 a 402.8 a

表3

不同覆盖方式下土壤养分的含量"

年份
Year
处理
Treatment
有机质Organic matter
(g kg-1)
全氮
Total
nitrogen
(g kg-1)
全磷
Total
phosphorus
(g kg-1)
全钾
Total
potassium
(g kg-1)
碱解氮
Alkali-hydrolyzale nitrogen
(mg kg-1)
速效磷
Available phosphorus (mg kg-1)
速效钾
Available potassium (mg kg-1)
2018 A 16.351 a 0.871 a 0.972 a 14.653 ab 39.733 b 20.568 ab 146.475 b
B 16.251 a 0.858 a 0.998 a 14.956 a 40.268 b 20.348 b 151.160 ab
C 16.167 a 0.873 a 0.982 a 14.274 b 41.433 a 21.802 a 154.421 a
2019 A 16.131 a 0.862 a 0.982 a 14.406 a 40.500 b 19.450 b 139.650 b
B 16.073 a 0.869 a 0.974 a 14.520 a 39.740 b 20.580 ab 145.500 ab
C 15.794 b 0.801 b 0.967 a 13.953 b 42.700 a 21.085 a 149.650 a

图2

不同覆盖方式下玉米单株干物质量积累的变化 缩写和处理同表1。"

图3

不同覆盖方式下玉米单株叶面积的变化 缩写和处理同表1。"

表4

不同覆盖方式下的玉米产量"

年份
Year
处理
Treatment
有效穗数
Effective spike
(×104 ear hm-2)
穗粒数
Kernels per
spike
千粒重
1000-kernel
weight (g)
产量
Yield
(kg hm-2)
2018 A 6.92 a 650.87 a 336.08 a 15145.96 a
B 6.88 a 653.59 a 333.69 a 15010.87 a
C 6.95 a 644.19 a 310.42 b 13903.03 b
2019 A 6.87 a 666.10 a 325.42 a 14902.46 a
B 6.79 a 671.38 a 328.08 a 14962.27 a
C 6.75 a 669.35 a 309.83 b 1410.04 b

图4

不同处理模式的水分利用效率和肥料偏生产力 处理同表1。图中不同小写字母表示不同处理间差异达0.05显著水平。"

[1] 张冬梅, 池宝亮, 黄学芳, 刘恩科, 张健. 地膜覆盖导致旱地玉米减产的负面影响. 农业工程学报, 2008,24(4):99-102.
Zhang D M, Chi B L, Huang X F, Liu E K, Zhang J. Analysis of adverse effects on maize yield decrease resulted from plastic film mulching in dryland. Trans CSAE, 2008,24(4):99-102 (in Chinese with English abstract).
[2] Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Tröger J, Muñoz K, Frör O, Schauman G E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ, 2016,550:690-705.
doi: 10.1016/j.scitotenv.2016.01.153 pmid: 26849333
[3] Liu Y, Yang S J, Li S Q, Chen X P, Chen F. Growth and development of maize (Zea mays L.) in response to different field water management practices: resource capture and use efficiency. Agric For Meteorol, 2010,150:606-613.
doi: 10.1016/j.agrformet.2010.02.003
[4] Bu L D, Zhu L, Liu J L, Luo S S, Chen X P, Li S Q. Source-sink capacity responsible for higher maize yield with removal of plastic film. Agron J, 2013,105:591-598.
[5] 张琴. 不同颜色地膜覆盖对玉米土壤水热状况及产量的影响. 节水灌溉, 2017, (4):57-61.
Zhang Q. Effects of different color film mulching on soil moisture-heat and yield of maize. Water Sav Irrig, 2017, (4):57-61 (in Chinese with English abstract).
[6] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006,440:165-173.
doi: 10.1038/nature04514 pmid: 16525463
[7] Dotaniya M L, Meena V D. Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India Section B: Biol Sci, 2015,85:1-12.
[8] Walker J M. One-degree increment in soil temperature affects maize seedling behavior. Soc Soil Sci Am, 1969,33:729-736.
[9] Zhang X D, Zhao J, Yang L C, Kamran M, Xue X K, Dong Z Y, Jia Z K, HAN Q F. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crops Res, 2019,233:121-130.
[10] Jia Q M, Chen K Y, Chen Y Y, Ali S, Manzoor , Sohail A, Fahad S. Mulch covered ridges affect grain yield of maize through regulating root growth and root bleeding sap under simulated rainfall conditions. Soil Tillage Res, 2018,175:101-111.
doi: 10.1016/j.still.2017.08.017
[11] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
Bao S D. Soil Agro-chemistrical Analysis, 3rd edn. Beijing: Chinese Agriculture Press, 2000 (in Chinese).
[12] 李尚中, 樊廷录, 王勇, 赵刚, 王磊, 唐小明, 党翼, 赵晖. 不同覆膜集雨种植方式对旱地玉米叶绿素荧光特性、产量和水分利用效率的影响. 应用生态学报, 2014,25:458-466.
Li S Z, Fan T L, Wang Y, Zhao G, Wang L, Tang X M, Dang Y, Zhao H. Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize. Chin J Appl Ecol, 2014,25:458-466 (in Chinese with English abstract).
[13] 赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012,45:4947-4958.
doi: 10.3864/j.issn.0578-1752.2012.23.023
Zhao L F, Li C H, Liu T X, Wang X P, Zeng S S. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L.). Sci Agric Sin, 2012,45:4947-4958 (in Chinese with English abstract).
[14] 路海东, 薛吉全, 郝引川, 高杰. 黑色地膜覆盖对旱地玉米土壤环境和植株生长的影响. 生态学报, 2016,36:1997-2004.
doi: 10.5846/stxb201409301936
Lu H D, Xue J Q, Hao Y C, Gao J. Effects of black film mulching on soil environment and maize growth in dry land. Acta Ecol Sin, 2016,36:1997-2004 (in Chinese with English abstract).
[15] Lu H D, Xia Z Q, Fu Y F, Wang Q, Xue J Q, Chu J. Response of soil temperature, moisture, and spring maize (Zea mays L.) root/shoot growth to different mulching materials in semi-arid areas of Northwest China. Agronomy-Basel, 2020,10:453.
[16] 张琳琳, 孙仕军, 陈志君, 姜浩, 张旭东, 迟道才. 不同颜色地膜与种植密度对春玉米干物质积累和产量的影响. 应用生态学报, 2018,29:113-124.
Zhang L L, Sun S J, Chen Z J, Jiang H, Zhang X D, Chi C D. Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize. Chin J Appl Ecol, 2018,29:113-124 (in Chinese with English abstract).
[17] 陈志君, 张琳琳, 姜浩, 孙仕军. 东北雨养区黑色地膜和种植密度对玉米田间地温和产量的影响. 生态学杂志, 2017,36:2169-2176.
Chen Z J, Zhang L L, Jiang H, Sun S J. Effects of plastic film mulching and planting density on soil temperature and maize yield in rain-fed area of Northeast China. Chin J Ecol, 2017,36:2169-2176 (in Chinese with English abstract).
[18] Sun S Q, Wu Y H, Zhang J, Wang G X, Deluca T H, Zhu W, Li A, Duan M, He L. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau. Geoderma, 2019,353:283-292.
[19] Jasso-Flores I, Galicia L, Chávez-Vergara B, Merino A, Tapia-Torres Y, García-Oliva F. Soil organic matter dynamics and microbial metabolism along an altitudinal gradient in Highland tropical forests. Sci Total Environ, 2020,741:140-143.
[20] 吴才武, 夏建新, 段峥嵘. 土壤有机质测定方法述评与展望. 土壤, 2015,47:453-460.
Wu C W, Xia J X, Duan Z R. Review on detection methods of soil organic matter (SOM). Soil, 2015,47:453-460 (in Chinese with English abstract).
[21] Behtari B, Jafarian Z, Alikhani H. Temperature sensitivity of soil organic matter decomposition in response to land management in semi-arid rangelands of Iran. Catena, 2019,179:210-219.
[22] 杜社泥, 白岗栓. 玉米地膜覆盖的土壤环境效应. 干旱地区农业研究, 2007,25(5):56-59.
Du S N, Bai G S. Studies on effects of plastic film mulching on soil environment of maize field. Agric Res Arid Areas, 2007,25(5):56-59 (in Chinese with English abstract).
[23] 李玲玲, 黄高宝, 张仁陟, 晋小军, Chan K Y. 不同保护性耕作措施对旱作农田土壤水分的影响. 生态学报, 2005,25:2326-2332.
Li L L, Huang G B, Zhang R Z, Jin X J, Chan K Y. Effects of conservation tillage on soil water regimes in rainfed areas. Acta Ecol Sin, 2005,25:2326-2332 (in Chinese with English abstract).
[24] 殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016,42:751-757.
Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron Sin, 2016,42:751-757 (in Chinese with English abstract).
[25] 路海东, 薛吉全, 郭东伟, 郝引川, 陈鹏飞. 覆黑地膜对旱作玉米根区土壤温湿度和光合特性的影响. 农业工程学报, 2017,33(5):129-135.
Lu H D, Xue J Q, Guo D W, Hao Y C, Chen P F. Effects of black plastic film mulching on soil temperature and humidity in root zone and photosynthetic characteristics of rainfed maize. Trans CSAE, 2017,33(5):129-135 (in Chinese with English abstract).
[26] 银敏华, 李援农, 李昊, 徐袁博, 张天乐, 谷晓博. 覆盖模式对农田土壤环境与冬小麦生长的影响. 农业机械学报, 2016,47(4):127-135.
Yin M H, Li Y N, Li H, Xu Y B, Zhang T L, Gu X B. Effects of mulching patterns on farmland soil environment and winter wheat growth. Trans CSAM, 2016,47(4):127-135 (in Chinese with English abstract).
[27] 卜玉山, 苗果园, 周乃健, 邵海林, 王建程. 地膜和秸秆覆盖土壤肥力效应分析与比较. 中国农业科学, 2006,39:1069-1075.
Bu Y S, Miao G Y, Zhou N J, Shao H L, Wang J C. Analysis and comparison of the effects of plastic film mulching and straw mulching on soil fertility. Sci Agric Sin, 2006,39:1069-1075 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!