欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (3): 556-565.doi: 10.3724/SP.J.1006.2021.04107

• 研究简报 • 上一篇    下一篇

全生育期鉴定筛选耐盐碱花生品种

闫彩霞1, 王娟1, 赵小波1, 宋秀霞2, 姜常松3, 孙全喜1, 苑翠玲1, 张浩1, 单世华1,*()   

  1. 1山东省花生研究所, 山东青岛 266100
    2菏泽市牡丹区农业农村局, 山东菏泽 274000
    3海阳市农业技术推广中心, 山东烟台 265100
  • 收稿日期:2020-05-14 接受日期:2020-09-13 出版日期:2021-03-12 网络出版日期:2020-10-10
  • 通讯作者: 单世华
  • 作者简介:E-mail: cxyan335@sina.com
  • 基金资助:
    泰山学者特聘专家(ts201712080);农业科研杰出人才及其创新团队培养(13190194);山东省现代农业产业技术体系(SDAIT-04-02);山东省农业科学院农业科技创新工程资助(CXGC2016A01)

Identification and screening of saline-alkali tolerant peanut cultivars during whole growth stage

YAN Cai-Xia1, WANG Juan1, ZHAO Xiao-Bo1, SONG Xiu-Xia2, JIANG Chang-Song3, SUN Quan-Xi1, YUAN Cui-Ling1, ZHANG Hao1, SHAN Shi-Hua1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2Agricultural and Rural Bureau of Mudan District, Heze 274000, Shandong, China
    3Haiyang Agricultural Technology Extension Center, Yantai 265100, Shandong, China
  • Received:2020-05-14 Accepted:2020-09-13 Published:2021-03-12 Published online:2020-10-10
  • Contact: SHAN Shi-Hua
  • Supported by:
    Taishan Scholars Project(ts201712080);Outstanding Talents and Innovation Team in Agricultural Research(13190194);Shandong Agriculture Research System(SDAIT-04-02);Agricultural Science and Technological Innovation Project of Shandong Academy of Agricultural Science(CXGC2016A01)

摘要:

为改善黄河三角洲滨海盐碱地种植结构, 扩大花生种植面积, 本研究以22个育成的花生品种(系)为材料, 测定了全生育期9个性状指标, 利用方差分析、相关分析、聚类分析等进行耐盐碱鉴定及耐盐碱指标筛选。结果表明, 盐碱胁迫显著降低花生成苗率, 明显抑制花生的生长发育和产量形成, 不同品种(系)间在9个鉴定指标上存在较大差异。相对单株产量和相对小区产量均与相对地上部干重、相对主茎高、相对侧枝长呈显著正相关, 相对小区产量与相对成苗率、相对地下部干重、相对单株产量显著正相关。全部材料可划分为4个耐盐碱级别, 其中高度耐盐碱7份(I级)、较耐盐碱11份(II级)、盐碱胁迫敏感3份(III级)、高度敏感1份(IV级)。筛选出花育9307、花育9312、花育9313、6P03、花育9305及花育6303等适于盐碱地种植的高产品种(系)。本研究表明, 相对地上部干重、相对主茎高、相对成苗率、相对单株产量、相对侧枝长、相对地下部干重可作为简单、直观的花生耐盐碱鉴定指标。

关键词: 花生, 全生育期, 耐盐碱, 高产, 鉴定

Abstract:

In order to improve the planting structure of coastal saline-alkali land and enlarge the growing area of peanut in the Yellow River Delta. A total of 22 peanut elite cultivars were tested in saline-alkali area of Dongying in 2016 and 2017. Nine trait indices were separately investigated for five randomly selected individuals during whole growth stage. Variance analysis, correlation analysis and clustering analysis were used to evaluate the saline-alkali tolerance of the materials and to screen saline-alkali tolerant indices. Variance analysis showed that the seedling rates of all cultivars had an obvious decrease compared with those of the control. The growth, development and yield formation were essentially inhibited by saline-alkali stress. There were great differences among tested materials based on nine identification indices. Correlation analysis indicated that RYP and RPY had a significantly positive correlation with RSDW, RMSH and RBL. Additionally, RPY was also obviously related to RSR, RRDW, and RYP. Based on the results of clustering analysis, tested materials were divided into four saline-alkali tolerance grades, in which seven belonged to high tolerant grade I, 11 to tolerant grade II, 3 to susceptible grade III and 1 to highly susceptible grade IV. Huayu 9307, Huayu 9312, Huayu 9313, 6P03, Huayu 9305 and Huayu 6303 could be widely grown in the coastal saline-alkali area as high yield cultivars. In conclusion, the results suggested that RSDW, RMSH, RSR, RYP, RBL, and RRDW could be taken as simple and intuitive indices in the identification of saline-alkali tolerant peanut genotypes.

Key words: peanut, whole growth period, saline-alkali tolerance, high-yield, identification

图1

2016-2017年试验进行期间广饶的月降雨量"

表1

试验地及正常地块土壤的理化性质"

指标
Index
试验田Experimental field 正常地块
Normal field
结荚期Pod-setting stage 饱果期Pod-filling stage
pH 8.9 8.5 6.6
有机质Organic matter (%) 0.97 1.34 1.19
全氮Total N (%) 0.073 0.100 0.081
全钾Total K (%) 1.99 2.07 2.12
全磷Total P (mg kg-1) 682 772 975
有效磷Olsen-P (mg kg-1) 6.9 5.5 55.9
速效钾Available K (mg kg-1) 363.5 540.6 310.1
碱解氮Alkali-hydrolysable N (mg kg-1) 137.3 69.5 107.9
含盐量Salinity (‰) 2.253 2.093 1.093

表2

供试的22个花生品种(系)的亲本来源、品种类型及在正常栽培条件下的百果重"

品种(系)
Cultivar (line)
亲本
Parents
百果重
100-pod weight (g)
品种类型
Variety type
6P03 花85×营山大花生Hua 85×Yingshan peanut 270.2 大果Big-pod
6P09 花17×鲁花11 Hua 17×Luhua 11 279.3 大果Big-pod
花育6301 Huayu 6301 花育23×J11 Huayu 23×J11 150.6 小果Small-pod
花育6303 Huayu 6303 赣花1号×鲁花15 Ganhua 1×Luhua 15 260.5 小果Small-pod
花育6304 Huayu 6304 乡香×D16 Xiangxiang×D16 215.8 小果Small-pod
花育6306 Huayu 6306 花育20×J11 Huayu 20×J11 238.5 小果Small-pod
花育6307 Huayu 6307 赣花1号×海花1号Ganhua 1×Haihua 1 210.9 小果Small-pod
花育6312 Huayu 6312 花17×赣花1号Hua 17×Ganhua 1 207.8 小果Small-pod
花育6314 Huayu 6314 鲁花15×J11 Luhua 15×J11 248.0 小果Small-pod
花育71 Huayu 71 乡香×闽花10号Xiangxiang×Minhua 10 290.6 大果Big-pod
花育9301 Huayu 9301 海花1号×XW87 Haihua 1×XW87 298.5 大果Big-pod
花育9302 Huayu 9302 花98×罗江鸡窝Hua 98×Luojiangjiwo 283.2 大果Big-pod
花育9303 Huayu 9303 鲁花15×赣花1号Luhua 15×Ganhua 1 258.3 小果Small-pod
花育9305 Huayu 9305 花98×鲁花11 Hua 98×Luhua 11 282.7 大果Big-pod
花育9306 Huayu 9306 白沙1016×XW 84 Baisha 1016×XW 84 280.3 大果Big-pod
花育9307 Huayu 9307 费县爬蔓×花育22 Feixianpaman×Huayu 22 276.3 大果Big-pod
花育9308 Huayu 9308 花98×粤油551 Hua 98×Yueyou 551 282.6 大果Big-pod
花育9309 Huayu 9309 花育19×乡香Huayu 19×Xiangxiang 279.5 大果Big-pod
花育9310 Huayu 9310 8328-12×五莲大粒 8328-12×Wuliandali 284.3 大果Big-pod
花育9311 Huayu 9311 蓬莱半蔓×NcAc1 8016 Penglaibanman×NcAc1 8016 277.1 大果Big-pod
花育9312 Huayu 9312 花育23×花17 Huayu 23×Hua 17 302.6 大果Big-pod
花育9313 Huayu 9313 花育22×C76-16 Huayu 22×C76-16 278.9 大果Big-pod

表3

盐碱胁迫对22个花生品种(系)成苗率的影响"

品种(系)
Cultivar (line)
相对成苗率
RSR
品种(系)
Cultivar (line)
相对成苗率
RSR
6P03 0.81 ab 花育9302 Huayu 9302 0.593 bcd
6P09 0.587 bcd 花育9303 Huayu 9303 0.757 abc
花育6301 Huayu 6301 0.703 abcd 花育9305 Huayu 9305 0.823 ab
花育6303 Huayu 6303 0.837 ab 花育9306 Huayu 9306 0.81 ab
花育6304 Huayu 6304 0.687 abcd 花育9307 Huayu 9307 0.88 a
花育6306 Huayu 6306 0.737 abcd 花育9308 Huayu 9308 0.51 cd
花育6307 Huayu 6307 0.83 ab 花育9309 Huayu 9309 0.743 abc
花育6312 Huayu 6312 0.643 abcd 花育9310 Huayu 9310 0.623 bcd
花育6314 Huayu 6314 0.703 abcd 花育9311 Huayu 9311 0.72 abcd
花育71 Huayu 71 0.59 bcd 花育9312 Huayu 9312 0.777 ab
花育9301 Huayu 9301 0.497 d 花育9313 Huayu 9313 0.747 abc

表4

盐碱胁迫对22个花生品种(系)农艺性状和产量性状的影响"

品种(系)
Cultivar (line)
相对主茎高
RMSH
相对侧枝长
RBL
相对地上部干重
RSDW
相对地下部干重
RRDW
相对单株产量
RYP
相对百果重
100-RPW
相对百仁重
100-RSW
6P03 1.013 defg 1 bcd 0.973 abc 0.663 bcde 0.947 a 0.933 abc 0.937 ab
6P09 0.84 ghij 0.767 fgh 0.83 cdef 0.747 abcd 0.807 abc 0.817 def 0.873 bc
花育6301 Huayu 6301 1.107 bcd 0.923 cde 0.8 cdef 0.897 a 0.833 abc 0.713 gh 0.853 bc
花育6303 Huayu 6303 1.033 cdef 0.96 bcde 1.023 ab 0.523 efgh 0.97 a 0.95 ab 0.983 a
花育6304 Huayu 6304 0.983 defgh 1.08 abc 0.787 def 0.837 ab 0.837 abc 0.783 efg 0.86 bc
花育6306 Huayu 6306 1.117 bcd 1.123 ab 0.737 ef 0.423 fgh 0.797 abc 0.913 abc 0.913 ab
花育6307 Huayu 6307 0.84 ghij 0.863 def 0.77 ef 0.403 gh 0.8 abc 0.653 h 0.757 d
花育6312 Huayu 6312 0.733 ijk 0.77 fgh 0.76 ef 0.643 cde 0.79 abc 0.787 efg 0.86 bc
花育6314 Huayu 6314 1.2 abc 1.107 ab 0.747 ef 0.7 bcde 0.707 abc 0.907 abc 0.917 ab
花育71 Huayu 71 0.927 efgh 0.963 bcde 0.79 def 0.527 efgh 0.763 abc 0.893 abcd 0.913 ab
品种(系)
Cultivar (line)
相对主茎高
RMSH
相对侧枝长
RBL
相对地上部干重
RSDW
相对地下部干重
RRDW
相对单株产量
RYP
相对百果重
100-RPW
相对百仁重
100-RSW
花育9301 Huayu 9301 0.81 hij 0.62 h 0.47 g 0.21 i 0.73 abc 0.897 abc 0.937 ab
花育9302 Huayu 9302 0.897 fghi 0.93 cde 0.67 f 0.743 abcd 0.823 abc 0.867 cd 0.88 bc
花育9303 Huayu 9303 0.637 k 0.697 gh 0.76 ef 0.53 efgh 0.573 c 0.817 def 0.9 abc
花育9305 Huayu 9305 0.993 defg 1.007 bcd 0.957 abcd 0.573 defg 0.86 ab 0.923 abc 0.903 abc
花育9306 Huayu 9306 0.69 jk 0.657 h 0.857 bcdef 0.443 fgh 0.64 bc 0.76 fg 0.817 cd
花育9307 Huayu 9307 1.227 ab 1.073 abc 0.96 abcd 0.933 a 0.85 abc 0.877 bcd 0.87 bc
花育9308 Huayu 9308 0.813 hij 0.833 efg 0.723 f 0.363 hi 0.807 abc 0.913 abc 0.89 abc
花育9309 Huayu 9309 1.093 bcde 1.057 abc 0.777 def 0.61 def 0.733 abc 0.867 cd 0.93 ab
花育9310 Huayu 9310 1.097 bcde 1.087 abc 0.92 abcde 0.803 abc 0.913 ab 0.93 abc 0.923 ab
花育9311 Huayu 9311 1.11 bcd 1.067 abc 0.79 def 0.437 fgh 0.787 abc 0.857 cde 0.933 ab
花育9312 Huayu 9312 1.297 a 1.203 a 0.957 abcd 0.917 a 0.877 ab 0.97 a 0.947 ab
花育9313 Huayu 9313 1.133 abcd 0.97 bcde 1.063 a 0.923 a 0.877 ab 0.907 abc 0.89 abc

表5

盐碱胁迫下22个花生基因型的小区产量及其耐盐碱指数"

品种(系)
Cultivar (line)
小区产量
PY (kg hm-2)
相对小区产量
RPY
品种(系)
Cultivar (line)
小区产量
PY (kg hm-2)
相对小区产量
RPY
6P03 2487 ab 0.81 a 花育9302 Huayu 9302 2247 ab 0.627 abcd
6P09 2153 ab 0.59 abcd 花育9303 Huayu 9303 1647 b 0.503 cd
花育6301 Huayu 6301 2247 ab 0.783 ab 花育9305 Huayu 9305 2533 ab 0.717 abcd
花育6303 Huayu 6303 2380 ab 0.847 a 花育9306 Huayu 9306 2287 ab 0.66 abcd
花育6304 Huayu 6304 1687 b 0.59 abcd 花育9307 Huayu 9307 2980 a 0.813 a
花育6306 Huayu 6306 2000 ab 0.683 abcd 花育9308 Huayu 9308 1687 b 0.47 d
花育6307 Huayu 6307 1667 b 0.61 abcd 花育9309 Huayu 9309 2247 ab 0.687 abcd
花育6312 Huayu 6312 1800 b 0.657 abcd 花育9310 Huayu 9310 2267 ab 0.667 abcd
花育6314 Huayu 6314 2000 ab 0.713 abcd 花育9311 Huayu 9311 2180 ab 0.713 abcd
花育71 Huayu 71 2133 ab 0.583 abcd 花育9312 Huayu 9312 2713 ab 0.78 abc
花育9301 Huayu 9301 1780 b 0.523 bcd 花育9313 Huayu 9313 2600 ab 0.83 a

表6

盐碱胁迫下花生产量指标与其他耐盐碱指数相关性分析"

生育时期
Growth stage
农艺性状指标
Tolerance index
相对单株产量
RYP
相对小区产量
RPY
苗期Seedling stage RSR 0.171 0.673**
结荚期Pod-setting stage RMSH 0.451* 0.702**
RBL 0.512* 0.550**
RRDW 0.576** 0.743**
RSDW 0.412 0.538*
饱果期Pod-filling stage RYP 1.000 0.594**
100-RPW 0.393 0.271
100-RSW 0.302 0.265

图2

基于全生育期9个耐盐碱指数的供试花生材料的聚类分析 I、II、III、IV表示不同耐盐碱级别。"

[1] 欧阳竹, 王竑晟, 来剑斌, 王春晶, 刘振, 孙志刚, 侯瑞星. 黄河三角洲农业高质量发展新模式. 中国科学院院刊, 2020,35(2):145-153.
Ou-Yang Z, Wang H S, Lai J B, Wang C J, Liu Z, Sun Z G, Hou R X. New approach of high-quality agricultural development in the Yellow River Delta. Bull Chin Acad Sci, 2020,35(2):145-153 (in Chinese with English abstract).
[2] 贾继增, 高丽锋, 赵光耀, 周文彬, 张卫建. 作物基因组学与作物科学革命. 中国农业科学, 2015,48:3316-3332.
Jia J Z, Gao L F, Zhao G Y, Zhou W B, Zhang W J. Crop genomics and crop science revolutions. Sci Agric Sin, 2015,48:3316-3332 (in Chinese with English abstract).
[3] 刘永惠, 沈一, 陈志德, 王州飞, 颜伟. 不同花生品种(系)萌发期耐盐性的鉴定与评价. 中国油料作物学报, 2012,34:168-173.
Liu Y H, Shen Y, Chen Z D, Wang Z F, Yan W. Identification of salt tolerance in peanut varieties/lines at the germination stage. Chin J Oil Crop Sci, 2012,34:168-173 (in Chinese with English abstract).
[4] 慈敦伟, 戴良香, 宋文武, 张智猛. 花生萌发至苗期耐盐胁迫的基因型差异. 植物生态学报, 2013,37:1018-1027.
Ci D W, Dai L X, Song W W, Zhang Z M. Genotypic differences in salt tolerance from germination to seedling stage in peanut. Chin J Plant Ecol, 2013,37:1018-1027 (in Chinese with English abstract).
[5] 郭峰, 万书波, 李新国, 徐平丽, 孟静静. NaCl胁迫对花生种子萌发的影响. 干旱地区农业研究, 2010,28(3):177-181.
Guo F, Wan S B, Li X G, Xu P L, Meng J J. Effect of NaCl stress on seed germination in peanut. Agric Res Arid Area, 2010,28(3):177-181 (in Chinese with English abstract).
[6] 沈一, 刘永惠, 陈志德, 颜伟, 栾玉柱. 花生幼苗期耐盐品种的筛选与评价. 花生学报, 2012,41(1):10-15.
Shen Y, Liu Y H, Chen Z D, Yan W, Luan Y Z. Selection and evaluation of peanut varieties based on seedling salt tolerance. J Peanut Sci, 2012,41(1):10-15 (in Chinese with English abstract).
[7] 吴兰荣, 陈静, 许婷婷, 苗华荣, 胡文广, 禹山林. 花生全生育期耐盐鉴定研究. 花生学报, 2005,34(1):20-24.
Wu L R, Chen J, Xu T T, Miao H R, Hu W G, Yu S L. Identification of salt tolerance in peanut growth duration. J Peanut Sci, 2005,34(1):20-24(in Chinese with English abstract).
[8] Singh A L, Hariprassana K, Solanity R M. Screening and selection of groundnut genotypes for tolerance of soil salinity. Aust J Crop Sci, 2008,1:69-77.
[9] Singh A L, Hariprasanna K, Chaudhari V, Gor H K, Chikani B M. Identification of groundnut cultivars tolerant of soil salinity. J Plant Nutr, 2010,33:1761-1776.
[10] Hammad A R, Shaban K A, Tantawy M F. Studies on salinity tolerance of two peanut cultivars in relation to growth, leaf water content, some chemical aspects and yield. J Appl Sci Res, 2010: 1517-1526.
[11] 胡晓辉, 孙令强, 苗华荣, 石运庆, 陈静. 不同盐浓度对花生品种耐盐性鉴定指标的影响. 山东农业科学, 2011, (11):35-37.
Hu X H, Sun L Q, Miao H R, Shi Y Q, Chen J. Effects of different NaCl concentrations on indicators for evaluating salt tolerance of peanut varieties. Shandong Agric Sci, 2011, (11):35-37 (in Chinese with English abstract).
[12] 符方平. 花生对盐胁迫的适应性及其耐盐性评价. 湖南农业大学硕士学位论文, 湖南长沙, 2013. pp 35-37.
Fu F P. Adaption to Salt Stress and Salt Tolerance Evaluation. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2013. pp 35-37 (in Chinese with English abstract).
[13] 张智猛, 慈敦伟, 丁红, 宋文武, 符方平, 康涛, 戴良香. 花生品种耐盐性指标筛选与综合评价. 应用生态学报, 2013,24:3487-3494.
Zhang Z M, Ci D W, Ding H, Song W W, Fu F P, Kang T, Dai L X. Indices selection and comprehensive evaluation of salinity tolerance for peanut varieties. Chin J Appl Ecol, 2013,24:3487-3494 (in Chinese with English abstract).
[14] 刘倩, 高娅妮, 柳旭, 周文楠, 王佺珍. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响. 生态学报, 2018,38:6143-6155.
Liu Q, Gao Y N, Liu X, Zhou W N, Wang Q Z. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress. Acta Ecol Sin, 2018,38:6143-6155 (in Chinese with English abstract).
[15] 马宏秀, 王开勇, 张开祥, 孟春梅, 安梦洁. 棉粕对盐碱胁迫下棉花生理及生长补偿效应. 植物学报, 2019,54:208-216.
Ma H X, Wang K Y, Zhang K X, Meng C M, An M J. Effect of cotton seed meal on cotton physiology and growth compensation under salinity-alkalinity stress. Chin Bull Bot, 2019,54:208-216 (in Chinese with English abstract).
[16] 宝力格, 陆平, 史梦莎, 许月, 刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定. 作物学报, 2020,46:734-744.
Bao L G, Lu P, Shi M S, Xu Y, Liu M X. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages. Acta Agron Sin, 46:734-744 (in Chinese with English abstract).
[17] 刘谢香, 常汝镇, 关荣霞, 邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020,46:1-8.
Liu X X, Chang R Z, Guan R X, Qiu L J. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron Sin, 2020,46:1-8 (in Chinese with English abstract).
[18] 万书波, 王才斌, 吴正锋, 郑永美, 陈殿绪, 郑亚萍, 冯昊, 刘苹, 郭峰, 赵海军, 单世华, 孙学武. 花生栽培观察记载技术规范. NY/T 2408-2013.
Wan S B, Wang C B, Wu Z F, Zheng Y M, Chen D X, Zheng Y P, Feng H, Liu P, Guo F, Zhao H J, Shan S H, Sun X W. Observation and record technical specification of peanut in cultivation. NY/T 2408-2013 (in Chinese).
[19] 董合忠. 滨海盐碱地棉花成苗的原理与技术. 应用生态学报, 2012,23:566-572.
Dong H Z. Underlying mechanisms and related techniques of stand establishment of cotton on coastal saline-alkali soil. Chin J Appl Ecol, 2012,23:566-572 (in Chinese with English abstract).
[20] 戴海芳, 武辉, 阿曼古丽·买买提阿力, 王立红, 麦麦提·阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014,47:1290-1300.
Dai H F, Wu H, Amanguli M M T A L, Wang L H, Maimaiti A P Z, Zhang J S. Analysis of salt-tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes. Sci Agric Sin, 2014,47:1290-1300 (in Chinese with English abstract).
[21] 严青青, 张巨松, 徐海江, 李星星, 王燕提. 盐碱胁迫对海岛棉幼苗生物量分配和根系形态的影响. 生态学报, 2019,39:7632-7640.
Yan Q Q, Zhang J S, Xu H J, Li X X, Wang Y T. Effects of saline-alkali stress on biomass allocation and root morphology of sea island cotton seedlings. Acta Ecol Sin, 2019,39:7632-7640 (in Chinese with English abstract).
[22] 慈敦伟, 张智猛, 丁红, 宋文武, 符方平, 康涛, 戴良香. 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015,35:805-814.
Ci D W, Zhang Z M, Ding H, Song W W, Fu F P, Kang T, Dai L X. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015,35:805-814 (in Chinese with English abstract).
[23] 朱广龙, 宋成钰, 于林林, 陈许兵, 智文芳, 刘家玮, 焦秀荣, 周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制. 作物学报, 2018,44:1713-1724.
Zhu G L, Song C Y, Yu L L, Chen X B, Zhi W F, Liu J W, Jiao X R, Zhou G S. Alleviation effects of exogenous growth regulators on seed germination of sweet sorghum under salt stress and its physiological basis. Acta Agron Sin, 2018,44:1713-1724 (in Chinese with English abstract).
[24] 张玉娟, 游均, 刘爱丽, 黎冬华, 于景印, 王燕燕, 周瑢, 宫慧慧, 张秀荣. 芝麻发芽期耐盐性鉴定方法研究及耐盐候选基因的挖掘. 中国农业科学, 2018,51:2235-2247.
Zhang Y J, You J, Liu A L, Li D H, Yu J Y, Wang Y Y, Zhou R, Gong H H, Zhang X R. Screening method for salt tolerance in Sesame (Sesamum indicum L.) and identification of candidate salt-tolerant genes. Sci Agric Sin, 2018,51:2235-2247 (in Chinese with English abstract).
[25] 管博, 周道玮, 田雨, 杨季云, 肖模昕. 盐碱及变温条件对花苜蓿种子发芽的影响. 中国草地学报, 2010,32(1):58-63.
Guan B, Zhou D W, Tian Y, Yang J Y, Xiao M X. Effect of salt-alkali and changing temperature on seed germination of Melissilus ruthenicus. Chin J Grassland, 2010,32(1):58-63 (in Chinese with English abstract).
[26] 孙现军, 姜奇彦, 胡正, 张慧媛, 徐长兵, 邸一桓, 韩龙植, 张辉. 水稻资源全生育期耐盐性鉴定筛选. 作物学报, 2019,45:1656-1663.
Sun X J, Jiang Q Y, Hu Z, Zhang H Y, Xu C B, Di Y H, Han L Z, Zhang H. Screening and identification of salt-tolerant rice germplasm in whole growth period. 2019,45:1656-1663 (in Chinese with English abstract).
[27] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 298-300.
Wan S B. Peanut Cultivation in China, Shanghai. Shanghai Scientific and Technical Publisher, 2003. pp 298-300(in Chinese).
[28] 梁银培, 孙健, 索艺宁, 刘化龙, 王敬国, 郑洪亮, 孙晓雪, 邹德堂. 水稻耐盐性和耐碱性相关性状的QTL定位及环境互作分析. 中国农业科学, 2017,50:1747-1762.
Liang Y P, Sun J, Suo Y N, Liu H L, Wang J G, Zheng H L, Sun X X, Zou D T. QTL mapping and QTL × environment interaction analysis of salt and alkali tolerance-related traits in rice (Oryza sativa L.). Sci Agric Sin, 2017,50:1747-1762 (in Chinese with English abstract).
[29] 谭军利, 康跃虎, 窦超银. 干旱区盐碱地覆膜滴灌不同年限对糯玉米生长和产量的影响. 中国农业科学, 2013,46:4957-4967.
Tan J L, Kang Y H, Dou C Y. Effects of different irrigation and cropping years on waxy corn growth and yield using drip irrigation with plastic-film mulching on saline-sodic soils in arid area. Sci Agric Sin, 2013,46:4957-4967 (in Chinese with English abstract).
[30] 秦都林, 王双磊, 刘艳慧, 聂军军, 赵娜, 毛丽丽, 宋宪亮, 孙学振. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响. 作物学报, 2017,43:1030-1042.
Qin D L, Wang S L, Liu Y H, Nie J J, Zhao N, Mao L L, Song X L, Sun X Z. Effects of cotton stalk returning on soil physical and chemical properties and cotton yield in coastal saline-alkali soil. Acta Agron Sin, 2017,43:1030-1042 (in Chinese with English abstract).
[31] Sun J, Zou D T, Luan F S, Zhao H W, Wang J G, Liu H L, Liu Z L. Dynamic QTL analysis of the Na+ content, K+ content, and Na+/K+ ratio in rice roots during the field growth under salt stress. Biol Planta, 2014,58:689-696.
[32] 罗佳, 候银莹, 程军回, 王宁宁, 陈波浪. 低磷胁迫下不同磷效率基因型棉花的根系形态特征. 中国农业科学, 2016,49:2280-2289.
Luo J, Hou Y Y, Cheng J H, Wang N N, Chen B L. Root morphological characteristics of cotton genotypes with different phosphorus efficiency under phosphorus stress. Sci Agric Sin, 2016,49:2280-2289 (in Chinese with English abstract).
[33] 辛承松, 董合忠, 罗振, 唐薇, 张冬梅, 李维江, 孔祥强. 黄河三角洲盐渍土棉花施用氮、磷、钾肥的效应研究. 作物学报, 2010,36:1698-1706.
Xin C S, Dong H Z, Luo Z, Tang W, Zhang D M, Li W J, Kong X Q. Effects of N, P, and K fertilizer application on cotton grown in saline soil in Yellow River Delta. Acta Agron Sin, 2010,36:1698-1706 (in Chinese with English abstract).
[34] Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants: From soil to cell. Plant Physiol, 1998,116:447-453.
doi: 10.1104/pp.116.2.447 pmid: 9490752
[35] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002,216:23-37.
[36] 郑亚萍, 信彩云, 王才斌, 孙秀山, 杨伟强, 万书波, 郑永美, 冯昊, 陈殿绪, 孙学武, 吴正锋. 磷肥对花生根系形态、生理特性及产量的影响. 植物生态学报, 2013,37:777-785.
Zheng Y P, Xin C Y, Wang C B, Sun X S, Yang W Q, Wan S B, Zheng Y M, Feng H, Chen D X, Sun X W, Wu Z F. Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea L.). Chin J Plant Ecol, 2013,37:777-785 (in Chinese with English abstract).
[37] 董晓霞, 魏建林, 杨果, 李彦, 田叶, 管力生, 崔荣宗. 春花生养分限制因子与缺肥时花生体内氮磷钾的分配研究. 中国农学通报, 2008,24(4):277-281.
Dong X X, Wei J L, Yang G, Li Y, Tian Y, Guan L S, Cui R Z. Studies on limiting nutrient elements of spring peanut and distribution of nitrogen, phosphorus and potassium in different parts when lack of nutrients. Chin Agric Sci Bull, 2008,24(4):277-281 (in Chinese with English abstract).
[38] 王传堂, 王秀贞, 吴琪, 唐月异, 孙全喜, 王志伟. 花生新品种(系)东营盐碱地种植丰产性初步评价. 山东农业科学, 2016,48(10):69-73.
Wang C T, Wang X Z, Wu Q, Tang Y Y, Sun Q X, Wang Z W. Preliminary evaluation on yielding ability of new peanut cultivars (lines) planted in saline and alkaline lands in Dongying. Shandong Agric Sci, 2016,48(10):69-73 (in Chinese with English abstract).
[39] Azad M A K, Alam M S, Hamid M A. Modification of salt tolerance level in groundnut (Arachis hypogaea L.) through induced mutation. Legume Res, 2013,36:224-233.
[40] Singh A L, Hariprasanna K, Chaudhari V. Differential nutrients absorption an important tool for screening and identification of soil salinity tolerant peanut genotypes. Indian J Plant Physiol, 2016,21:83-92.
[41] 武辉, 侯丽丽, 周艳飞, 范志超, 石俊毅, 阿丽艳·肉孜, 张巨松. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012,45:1703-1713.
Wu H, Hou L L, Zhou Y F, Fan Z C, Shi J Y, Aliyan R Z, Zhang J S. Analysis of chilling-tolerance and determination of chilling- tolerance evaluation indicators in cotton of different genotypes. Sci Agric Sin, 2012,45:1703-1713 (in Chinese with English abstract).
[42] 刘振兴, 周桂梅, 刘自华, 孟庆祥, 石春雨. 花生产量与农艺性状的灰关联熵分析. 中国油料作物学报, 2006,28:25-28.
Liu Z X, Zhou G M, Liu Z H, Meng Q X, Shi C Y. Grey correlation analysis between peanut yield and agronomic traits. Chin J Oil Crop Sci, 2006,28:25-28 (in Chinese with English abstract).
[43] 金建猛, 谷建中, 刘向阳, 任丽, 范君龙. 花生农艺性状与产量的灰色关联度分析. 种子科技, 2009,27(5):31-33.
Jin J M, Gu J Z, Liu X Y, Ren L, Fan J L. Grey correlation analysis between peanut yield and agronomic traits. Seed Sci Technol, 2009,27(5):31-33 (in Chinese with English abstract).
[44] 李绍伟, 李军华, 任丽, 金建猛, 范君龙, 邓丽. 花生产量与主要农艺性状的灰色关联度分析. 陕西农业科学, 2007, (1):37-38.
Li S W, Li J H, Ren L, Jin J M, Fan J L, Deng L. Grey correlation analysis between peanut yield and main agronomic traits. Shaanxi J Agric Sci, 2007, (1):37-38 (in Chinese with English abstract).
[45] Azad M A K, Alaml M S, Hamid M A, Hossain M A. Low Ca2+/Na+ ratio and efficiency of mobilization of Ca2+ from shoot tissues to kernel determine salinity tolerance in groundnut (Arachis hypogaea L.). Legume Res, 2013,36:396-405.
[46] Mungala A J, Radhakrishnan T, Dobaria J R. In vitro screening of 123 India peanut cultivars for sodium chloride induced salinity tolerance. World J Agric Sci, 2008,4:574-582.
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[8] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!