作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1639-1653.doi: 10.3724/SP.J.1006.2021.04223
汪颖(), 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清*()
WANG Ying(), GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing*()
摘要:
以不同主茎高花生品种为材料, 利用转录组测序技术分析茎秆转录组基因表达的异同, 并结合加权基因共表达网络分析(WGCNA), 深入挖掘与主茎生长相关基因, 深入认识花生茎秆形态建成的分子机制。结果表明, 矮秆型Df216与高秆型花育33号相比较共有5872个差异基因; Df216与中间型山花108相比较共有6662个差异基因, 这些差异基因涉及细胞壁和次生细胞壁的生物起源及调控过程、苯丙烷生物合成及代谢过程、木质素生物合成过程、纤维素合酶活性等分子功能。WGCNA鉴定到5个与主茎高呈极显著相关的共表达模块。编码咖啡酰辅酶A-O-甲基转移酶、转录因子ATAF2、WAT1、GDSL脂肪酶等基因是模块内的核心基因。通过筛选权重值构建核心基因的局部网络发现, Grey60模块的核心基因ADRL3L与编码莽草酸香豆酯/奎酸酯3’-羟化酶、4-香豆酸辅酶A连接酶、羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶、以及快速碱化因子、锌指蛋白、类COBRA蛋白等基因有较高互作网络关系; Brown模块核心基因TZB0A2则与编码β-1,4-半乳糖基转移酶、果胶乙酰酯酶、类受体丝氨酸/苏氨酸蛋白激酶、富含亮氨酸重复序列的伸展蛋白等基因有较高互作网络关系。相关模块与核心基因的挖掘以及基因生物学功能和互作网络的解析有助于揭示花生主茎生长的遗传基础。
[1] |
Reinhardt D, Kuhlemeier C. Plant architecture. EMBO Rep, 2002, 3:846-851.
pmid: 12223466 |
[2] | 张佳蕾, 郭峰, 张凤, 杨莎, 耿耘, 孟静静. 提早化控对高产花生个体发育和群体结构影响. 核农学报, 2018, 32:2216-2224. |
Zhang J L, Guo F, Zhang F, Yang S, Geng Y, Meng J J. Effects of earlier chemical control on ontogeny and population structure of high yield peanut. J Nucl Agric Sci, 2018, 32:2216-2224 (in Chinese with English abstract). | |
[3] |
Flintham J E, Börner A, Worland A J, Gale M D. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci, 1997, 128:11-25.
doi: 10.1017/S0021859696003942 |
[4] |
Wu J, Kong X Y, Wan J M, Liu X Y, Zhang X, Guo X P, Zhou R H, Zhao G Y, Jing R L, Fu X D, Jia J Z. Dominant and pleiotropic effects of a GAI1 gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol, 2011, 157:2120-2130.
doi: 10.1104/pp.111.185272 pmid: 22010107 |
[5] |
Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M, Hasegawa Y, Kitano H, Matsuoka M. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol, 2006, 140:580-590.
pmid: 16407447 |
[6] |
Chen W W, Cheng Z J, Liu L L, Man M, You X M, Wang J, Zhang F, Zhou C L, Zhang Z, Zhang H, You S M, Wang Y P, Luo S, Zhang J H, Wang J L, Wang J, Zhao Z C, Guo X P, Lei C L, Zhang X, Lin Q B, Ren Y L, Zhu S S, Wan J M. Small Grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. Plant Sci, 2019, 288:110208.
doi: 10.1016/j.plantsci.2019.110208 |
[7] |
Zhang Y X, Yu C S, Lin J Z, Liu J, Liu B, Wang J, Huang A B, Li H Y, Zhao T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One, 2017, 12:e0180825.
doi: 10.1371/journal.pone.0180825 |
[8] |
Chen X, Lu S C, Wang Y F, Zhang X, Lu B, Luo L Q, Xi D D, Shen J B, Ma H, Ming F. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant J, 2015, 82:302-314.
doi: 10.1111/tpj.2015.82.issue-2 |
[9] |
Langridge P, Fleury D. Making the most of ‘omics’ for crop breeding. Trends Biotechnol, 2011, 29:33-40.
doi: 10.1016/j.tibtech.2010.09.006 pmid: 21030098 |
[10] |
Van Emon J M. The omics revolution in agricultural research. J Agric Food Chem, 2016, 64:36-44.
doi: 10.1021/acs.jafc.5b04515 |
[11] |
Edwards D, Batley J. Plant bioinformatics: from genome to phenome. Trends Biotechnol, 2004, 22:232-237.
pmid: 15109809 |
[12] |
Mochida K, Shinozaki K. Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol, 2010, 51:497-423.
doi: 10.1093/pcp/pcq027 |
[13] | Wang X D, Zheng M, Liu H F, Zhang L, Chen F, Zhang W, Fan S H, Peng M L, Hu M L, Wang H Z, Zhang J F, Hua W. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. BMC Biotechnol Biofuels, 2020, 13:42. |
[14] | 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块. 作物学报, 2020, 46:385-394. |
Ma J, Cao Y Y, Wang L F, Li J J, Wang H, Fan Y P, Li H Y. Identification of gene co-expression modules of maize plant height and ear height by WGCNA. Acta Agron Sin, 2020, 46:385-394 (in Chinese with English abstract). | |
[15] | 巨飞燕, 张思平, 刘绍东, 马慧娟, 陈静, 葛常伟, 沈倩, 张小萌, 刘瑞华, 赵新华, 张永江, 庞朝友. 利用WGCNA进行棉花果枝节间伸长相关基因共表达模块鉴定. 棉花学报, 2019, 31:403-413. |
Ju F Y, Zhang S P, Liu S D, Ma H J, Chen J, Ge C W, Shen Q, Zhang X M, Liu R H, Zhao X H, Zhang Y J, Pang C Y. Identification of co-expression modules of genes related to internode elongation of cotton fruiting branches by WGCNA. Cotton Sci, 2019, 31:403-413 (in Chinese with English abstract). | |
[16] |
Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varshney R K, Liao B S, Jiang H F. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut ( Arachis hypogaeaL.). Sci Rep, 2016, 6:39478.
doi: 10.1038/srep39478 pmid: 27995991 |
[17] |
Zhang X G, Zhang J H, He X Y, Wang Y, Ma X L, Yin D M. Genome wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci, 2017, 8:1611.
doi: 10.3389/fpls.2017.01611 |
[18] | 彭振英, 单雷, 田海莹, 孟静静, 郭峰, 王兴军, 张智猛, 丁红, 万书波, 李新国. 利用远缘杂交培育半匍匐密枝型高产花生新品系. 中国油料作物学报, 2019, 41:490-496. |
Peng Z Y, Shan L, Tian H Y, Meng J J, Guo F, Wang X J, Zhang Z M, Ding H, Wan S B, Li X G. Breeding of semi-sprawl and dense-branching high yield peanut by distant hybridization. Chin J Oil Crop Sci, 2019, 41:490-496 (in Chinese with English abstract). | |
[19] | 鲁清, 刘浩, 李海芬, 陈小平, 洪彦彬, 刘海燕, 李少维, 周桂元, 梁炫强. 花生不同株型主要农艺性状的相关分析及其对单株产量的影响. 热带作物学报, 2019, 40:1115-1121. |
Lu Q, Liu H, Li H F, Chen X P, Hong Y B, Liu H Y, Li S W, Zhou G Y, Liang X Q. Correlation analysis of main agronomic traits of different plant types and path analysis of yield per plant in peanut ( Arachis hypogaea L.). Chin J Trop Crop, 2019, 40:1115-1121 (in Chinese with English abstract). | |
[20] | 彭振英, 单雷, 张智猛, 李新国, 万书波. 花生株型与高产. 花生学报, 2019, 48(2):69-72. |
Peng Z Y, Shan L, Zhang Z M, Li X G, Wan S B. High yield and plant type of peanut. J Peanut Sci, 2019, 48(2):69-72 (in Chinese with English abstract). | |
[21] | 胡珀, 韩天富. 植物茎秆性状形成与发育的分子基础. 植物学通报, 2008, 25:1-13. |
Hu P, Han T F. Molecular basis of stem trait formation and development in plants. Chin Bull Bot, 2008, 25:1-13 (in Chinese with English abstract). | |
[22] |
Hedden P. The genes of the green revolution. Trends Genet, 2003, 19:5-9.
pmid: 12493241 |
[23] |
Würschum T, Langer S M, Longin C F H, Tucker M R, Leiser W L. A modern green revolution gene for reduced height in wheat. Plant J, 2017, 92:892-903.
doi: 10.1111/tpj.13726 |
[24] |
Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J Z, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA, 2011, 108: 11034-11039.
doi: 10.1073/pnas.1019490108 |
[25] | 王健, 朱锦懋, 林青青, 李晓娟, 滕年军, 李振声, 李滨, 张爱民, 林金星. 小麦茎秆结构和细胞壁化学成分对抗压强度的影响. 科学通报, 2006, 51:679-685. |
Wang J, Zhu J M, Lin Q Q, Li X J, Teng N J, Li Z S, Li B, Zhang A M, Lin J X. Effects of stem structure and cell wall chemical composition on resistance to compressive strength in wheat. Sci Bull, 2006, 51:679-685. | |
[26] | 谢星光, 戴传超, 苏春沦, 周家宇, 王宏伟, 王兴祥. 内生真菌对花生残茬腐解及土壤酚酸含量的影响. 生态学报, 2015, 35:3536-3845. |
Xie X G, Dai C C, Su C L, Zhou J Y, Wang H W, Wang X X. Effects of endophytic fungus on decay of peanut residues and phenolic acid concentrations in soil. Acta Ecol Sin, 2015, 35:3536-3845 (in Chinese with English abstract). | |
[27] |
Xie L Q, Yang C J, Wang X L. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot, 2011, 62:4495-4506.
doi: 10.1093/jxb/err164 |
[28] |
Muro-Villanueva F, Mao X Y, Chapple C. Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr Opin Biotechnol, 2019, 56:202-208.
doi: 10.1016/j.copbio.2018.12.008 |
[29] |
Liu Q Q, Luo L, Zheng L Q. Lignins: biosynthesis and biological functions in plants. Int J Mol Sci, 2018, 19:335.
doi: 10.3390/ijms19020335 |
[30] | Yeats T H, Bacic A, Johnson K L. Plant glycosylphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. J Integr Plant Biol, 2018, 8:649-669. |
[31] |
Dai X X, You C J, Chen G P, Li X H, Zhang Q F, Wu C Y. OsBC1L4encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol, 2011, 75:333-345.
doi: 10.1007/s11103-011-9730-z |
[32] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15:573-581.
doi: 10.1016/j.tplants.2010.06.005 |
[33] |
Liu J J, Osbourn A, Ma P D. MYB transcription factors as regualtors of phenylpropanoid metabolism in plants. Mol Plant, 2015, 8:689-708.
doi: 10.1016/j.molp.2015.03.012 |
[34] |
Legay S, Sivadon P, Blervacq A S, Pavy N, Baghdady, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation inArabidopsis and poplar. New Phytol, 2010, 188:774-786.
doi: 10.1111/nph.2010.188.issue-3 |
[35] |
Zhang Y X, Yu C S, Lin J Z, Liu J, Liu B, Wang J, Huang A B, Li H Y, Zhao T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One, 2017, 12:e0180825.
doi: 10.1371/journal.pone.0180825 |
[36] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf, 2008, 9:559.
doi: 10.1186/1471-2105-9-559 |
[37] |
Wang H S, Gu L J, Zhang X G, Liu M L, Jiang H Y, Cai R H, Zhao Y, Cheng B J. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Mol Biol, 2018, 98:187-203.
doi: 10.1007/s11103-018-0763-4 |
[38] |
Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10:79-87.
doi: 10.1016/j.tplants.2004.12.010 |
[39] |
Chen X, Lu S C, Wang Y F, Zhang X, Lv B, Luo L Q, Li D D, Shen J B, Ma H, Ming F. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant J, 2015, 82:302-314.
doi: 10.1111/tpj.2015.82.issue-2 |
[40] |
Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, Novák O, Morreel K, Lacombe B, Martinez Y, Pfrunder S Jin X, Renou J P, Thibaud J B, Ljung K, Fischer U, Martinoia E, Boerjan W, Goffner D. ArabidopsisWAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun, 2013, 4:2625.
doi: 10.1038/ncomms3625 |
[41] | 郝晓云, 蔡永智, 钱雯婕, 袁哈利, 李榕, 李鸿彬. 植物GDSL脂肪酶家族研究进展. 植物生理学报, 2013, 49:1286-1290. |
Hao X Y, Cai Y Z, Qian W J, Yuan H L, Li R, Li H B. Advances in research of GDSL-lipase family in plants. Plant Physiol J, 2013, 49:1286-1290 (in Chinese with English abstract). | |
[42] |
Du C Q, Li X S, Chen J, Chen W J, Li B, Li C Y, Wang L, Li J L, Zhao X Y, Lin J Z, Liu X M, Luan S, Yu F. A Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. Proc Natl Acad Sci USA, 2016, 113:8326-8334.
doi: 10.1073/pnas.1606728113 |
[43] |
Huang P, Yoshida H, Yano K, Kinoshita S, Kawai K, Koketsu E, Hattori M, Takehara S, Huang J, Hirano K, Ordonio R L, Matsuoka M, Ueguchi-Tanaka M. OsIDD2, a zinc finger and INDETERMINATE DOMAIN protein, regulates secondary cell wall formation. J Integr Plant Biol, 2018, 60:130-143.
doi: 10.1111/jipb.12557 |
[44] |
Naran R, Pierce M, Mort A J. Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons. Plant J, 2007, 50:95-107.
doi: 10.1111/j.1365-313X.2007.03033.x |
[45] |
Liwanag A J M, Ebert B, Verhertbruggen Y, Rennie E A, Rautengarten C, Oikawa A, Andersen M C F, Clausen M H, Scheller H V. Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a b-1,4-galactan β-1,4-galactosyltransferase. Plant Cell, 2012, 24:5024-5036.
doi: 10.1105/tpc.112.106625 |
[46] |
Gou J Y, Miller L M, Hou G C, Yu X H, Chen X Y, Liu C J. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell, 2012, 24:50-65.
doi: 10.1105/tpc.111.092411 |
[47] | 张保才, 周奕华. 植物细胞壁形成机制的新进展. 中国科学: 生命科学, 2015, 45:644-556. |
Zhang B C, Zhou Y H. Plant cell wall formation and regulation. Sci Sin Vitae, 2015, 45:644-556 (in Chinese with English abstract). | |
[48] | 范春芬, 王艳婷, 彭良才, 丰胜求. 植物细胞壁伸展蛋白的功能与利用. 植物生理学报, 2018, 54:1279-1287. |
Fan C F, Wang Y T, Peng L C, Feng S Q. Plant extensins function and their potential genetic manipulation in crops. Plant Physiol J, 2018, 54:1279-1287 (in Chinese with English abstract). |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[5] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[6] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[7] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[8] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[9] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[10] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[11] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[12] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[13] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[14] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[15] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
|