欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1639-1653.doi: 10.3724/SP.J.1006.2021.04223

• 研究论文 • 上一篇    下一篇

利用WGCNA鉴定花生主茎生长基因共表达模块

汪颖(), 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清*()   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2020-10-02 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-02-20
  • 通讯作者: 杨东清
  • 作者简介:E-mail: 15610413063@163.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000900);山东省重大科技创新工程项目(2018YFJH0601-3);山东省农业重大应用技术创新项目(SD2019ZZ11);山东省现代农业产业技术体系花生创新团队首席专家专项基金(SDAIT-04-01)

Identification of gene co-expression modules of peanut main stem growth by WGCNA

WANG Ying(), GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing*()   

  1. College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2020-10-02 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-02-20
  • Contact: YANG Dong-Qing
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Shandong Key Research and Development Program(2018YFJH0601-3);Shandong Agricultural Application Technology Innovation Project(SD2019ZZ11);Shandong Modern Agricultural Industrial Technology System Peanut Innovation Team Chief Expert Special Fund(SDAIT-04-01)

摘要:

以不同主茎高花生品种为材料, 利用转录组测序技术分析茎秆转录组基因表达的异同, 并结合加权基因共表达网络分析(WGCNA), 深入挖掘与主茎生长相关基因, 深入认识花生茎秆形态建成的分子机制。结果表明, 矮秆型Df216与高秆型花育33号相比较共有5872个差异基因; Df216与中间型山花108相比较共有6662个差异基因, 这些差异基因涉及细胞壁和次生细胞壁的生物起源及调控过程、苯丙烷生物合成及代谢过程、木质素生物合成过程、纤维素合酶活性等分子功能。WGCNA鉴定到5个与主茎高呈极显著相关的共表达模块。编码咖啡酰辅酶A-O-甲基转移酶、转录因子ATAF2、WAT1、GDSL脂肪酶等基因是模块内的核心基因。通过筛选权重值构建核心基因的局部网络发现, Grey60模块的核心基因ADRL3L与编码莽草酸香豆酯/奎酸酯3’-羟化酶、4-香豆酸辅酶A连接酶、羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶、以及快速碱化因子、锌指蛋白、类COBRA蛋白等基因有较高互作网络关系; Brown模块核心基因TZB0A2则与编码β-1,4-半乳糖基转移酶、果胶乙酰酯酶、类受体丝氨酸/苏氨酸蛋白激酶、富含亮氨酸重复序列的伸展蛋白等基因有较高互作网络关系。相关模块与核心基因的挖掘以及基因生物学功能和互作网络的解析有助于揭示花生主茎生长的遗传基础。

关键词: 花生, 主茎高, 转录组, 加权基因共表达网络, 核心基因

Abstract:

This study was investigated the difference of transcriptome using three different peanut varieties with high main stem by RNA-seq. Transcriptomics combined with weighted gene co-expression network analysis (WGCNA) was used to explore the hub genes related to main stem growth and the molecular mechanisms of morphological formation of peanut stems. Results showed that 5872 differential expressed genes (DEGs) were detected in the Df216 and Huayu 33 comparation group, while 6662 DEGs were detected in the Df216 and Shanhua 108 comparation group. GO analysis suggested that these DEGs were mainly involved in molecular function and biological process, including the primary and secondary cell wall organization and biogenesis, phenylpropanoid biosynthetic and metabolic process, lignin biosynthetic process, and cellulose synthase activity, respectively. There were 33 modules were identified by WGCNA, among which five modules (Grey60, Cyan, Darkolivegreen, Brown, and Blue) were highly significant association with main stem height. According to the connectivity of genes in modules, caffeoyl-CoA O-methyltransferase, transcription factorATAF2, WAT1 (walls are thin1), and GDSL esterase/lipase were the hub genes, respectively. The results of hub gene networks by weighted values indicated that coumaroylquinate 3’-monooxygenase, 4-coumarate-CoA ligase, shikimate O-hydroxycinnamoyltransferase, rapid alkalinization factor,COBRA-like protein, and zinc finger protein had high connections with ADRL3Lin the Grey60 module, while β-1,4-galactosyltransferase, LRR receptor-like serine/threonine-protein kinase, pectin acetylesterase, leucine-rich repeat extensin-like protein had high connections with TZB0A2 in the Brown module. The identification of co-expression modules and their hub genes, and the analysis of gene function and gene networks of key genes will be helpful for revealing the genetic basis of the main height in peanut.

Key words: peanut, plant height, transcriptome, weighted gene co-expression network, hub gene

图1

不同品种花生表型比较与主茎高的动态变化 PP333: 喷施多效唑的山花108; GA3: 喷施赤霉素的山花108。 "

图2

不同品种花生主茎中差异表达基因比较"

图3

不同品种花生主茎中差异表达基因比较与GO功能分析"

表1

不同比较组特有的显著性GO富集"

比较组
Comparison group
GO本体类型
GO ontology
GO条目
GO term
GO注释
GO annotation
基因数
Count
校正后的P
P-value
花育33号vs. Df216
Huayu 33 vs. Df216
生化过程
Biological process
GO:0009250 葡聚糖生物合成的过程
Glucan biosynthetic process
50 0.041165
生化过程
Biological process
GO:0010411 木葡聚糖代谢过程
Xyloglucan metabolic process
23 0.018282
山花108 vs. Df216
Shanhua 108 vs. Df216
分子功能
Molecular function
GO:0001046 核心启动子序列特异性DNA结合
Core promoter sequence-specific DNA binding
21 0.003117
分子功能
Molecular function
GO:0001047 核心启动子整合
Core promoter binding
21 0.003117
分子功能
Molecular function
GO:0016762 木葡聚糖: 木葡糖基转移酶活性
Xyloglucan:xyloglucosyl transferase activity
21 0.003117
分子功能
Molecular function
GO:0015171 氨基酸跨膜转运蛋白活性
Amino acid transmembrane transporter activity
47 0.025596
生化过程
Biological process
GO:0000271 多糖生物合成的过程
Polysaccharide biosynthetic process
92 0.001366
生化过程
Biological process
GO:0015849 有机酸运输
Organic acid transport
74 0.003012
生化过程
Biological process
GO:0046942 羧酸运输
Carboxylic acid transport
74 0.003012
山花108 vs. 花育33号
Shanhua 108 vs. Huayu 33
细胞组成
Cellular component
GO:0044421 胞外区部分
Extracellular region part
34 0.001703
分子功能
Molecular function
GO:0004185 丝氨酸型羧肽酶活性
Serine-type carboxypeptidase activity
16 0.003464
分子功能
Molecular function
GO:0070008 丝氨酸型外肽酶活性
Serine-type exopeptidase activity
16 0.00394
生化过程
Biological process
GO:0003333 氨基酸跨膜转运
Amino acid transmembrane transport
25 0.001824
生化过程
Biological process
GO:0007267 细胞间信号传导
Cell-cell signaling
13 0.011421
生化过程
Biological process
GO:0098656 阴离子跨膜转运
Anion transmembrane transport
39 0.039813

表2

不同品种比较组共有的显著性GO富集"

GO条目
GO term
GO注释
GO annotation
花育33号vs. Df216 Huayu 33 vs. Df216 山花108 vs. Df216
Shanhua 108 vs. Df216
山花108 vs. 花育33号 Shanhua 108 vs. Huayu 33
基因数
Count
校正后的P
P-value
基因数
Count
校正后的P
P-value
基因数
Count
校正后的P
P-value
GO:0031225 膜的锚固成分
Anchored component of membrane
98 4.553E-11 89 0.0001002 67 7.96E-08
GO:0005578 蛋白质的细胞外基质
Proteinaceous extracellular matrix
12 0.004731 12 0.036629 13 8.511E-06
GO:0046658 质膜锚定成分
Anchored component of plasma membrane
55 0.0047443 57 0.0664356 52 5.388E-07
GO:2000652 次生细胞壁生物发生的调控
Regulation of secondary cell wall biogenesis
17 9.805E-05 16 0.0016265 10 0.0185837
GO:1903338 细胞壁组织或生物发生的调节
Regulation of cell wall organization or biogenesis
27 2.636E-05 24 0.0033336 18 0.0013154
GO:0051274 葡聚糖生物合成的过程
Beta-glucan biosynthetic process
42 0.0009383 48 0.0002424 29 0.0068829
GO:0051273 葡聚糖代谢过程
Beta-glucan metabolic process
55 2.754E-05 58 0.0001085 41 6.796E-05
GO:0044042 葡聚糖代谢过程
Glucan metabolic process
90 0.0001556 98 0.000349 66 0.0002696
GO:0034637 细胞碳水化合物的生物合成过程
Cellular carbohydrate biosynthetic process
74 0.0463189 97 9.156E-05 58 0.0042563
GO:0030244 纤维素生物合成的过程
Cellulose biosynthetic process
37 0.0003169 43 3.566E-05 24 0.0114207
GO:0030243 纤维素代谢过程
Cellulose metabolic process
48 2.636E-05 51 5.814E-05 36 5.853E-05
GO条目
GO term
GO注释
GO annotation
花育33号vs. Df216 Huayu 33 vs. Df216 山花108 vs. Df216
Shanhua 108 vs. Df216
山花108 vs. 花育33号 Shanhua 108 vs. Huayu 33
基因数
Count
校正后的P
P-value
基因数
Count
校正后的P
P-value
基因数
Count
校正后的P
P-value
GO:0009834 次生细胞壁生物发生
Secondary cell wall biogenesis
70 1.901E-22 85 2.361E-31 23 0.0430558
GO:0009832 细胞壁生物起源
Cell wall biogenesis
103 3.631E-17 125 2.642E-24 45 0.016437
GO:0009831 植物型细胞壁修饰或参与多维细胞生长
Plant-type cell wall modification
or involved in multidimensional cell growth
13 0.0017006 14 0.0013665 11 0.0007573
GO:0009825 多维细胞生长
Multidimensional cell growth
25 0.0487668 32 0.0017647 23 0.0010804
GO:0009664 细胞壁组织
Cell wall organization
70 1.685E-05 82 2.134E-07 54 5.871E-06
GO:0006865 氨基酸转运
Amino acid transport
40 0.0487668 53 0.0002826 32 0.0077748
GO:0006073 细胞葡聚糖代谢过程
Cellular glucan metabolic process
90 0.0001556 98 0.000349 66 0.0002696

图4

花育33号vs. Df216 (A)与山花108 vs. Df216 (B)共有的显著性GO条目"

表3

不同比较组细胞壁形成相关基因"

基因
Gene
基因功能描述
Gene description
花育33号vs. Df216
Huayu 33 vs. Df216
山花108 vs. Df216
Shanhua 108 vs. Df216
差异
倍数
log2 Fold Change
P
P-value
差异
倍数
log2 Fold Change
P
P-value
Arahy.Tifrunner.gnm1.ann1.65D6GP 纤维素合酶A (CESA) Cellulose synthase A (CESA) -5.494 2.564E-06 -5.076 0.0001548
Arahy.Tifrunner.gnm1.ann1.KX036Y 纤维素合酶A (CESA) Cellulose synthase A (CESA) -6.518 2.591E-16 -3.232 3.313E-05
Arahy.Tifrunner.gnm1.ann1.S1R27D 纤维素合酶A (CESA) Cellulose synthase A (CESA) -6.874 7.371E-08 -1.553 0.000396
Arahy.Tifrunner.gnm1.ann1.TQ1ANH 纤维素合酶A (CESA) Cellulose synthase A (CESA) -2.204 1.035E-07 -6.746 4.079E-27
Arahy.Tifrunner.gnm1.ann1.V28JVI 纤维素合酶A (CESA) Cellulose synthase A (CESA) -2.263 7.811E-07 -6.165 1.262E-05
Arahy.Tifrunner.gnm1.ann1.VZR30Z 纤维素合酶A (CESA) Cellulose synthase A (CESA) -5.455 1.812E-15 -2.666 3.491E-05
Arahy.Tifrunner.gnm1.ann1.906G3Q 类COBRA蛋白 COBRA-like protein -2.324 0.0031254 -3.232 3.313E-05
Arahy.Tifrunner.gnm1.ann1.D1AFGR 类COBRA蛋白 COBRA-like protein -2.403 2.538E-06 -1.553 0.000396
Arahy.Tifrunner.gnm1.ann1.TNUB95 类COBRA蛋白 COBRA-like protein -2.270 0.0011721 -6.746 4.079E-27
Arahy.Tifrunner.gnm1.ann1.26LA0S MYB转录因子 Transcription factor MYB -8.816 2.627E-12 -8.747 4.412E-12
Arahy.Tifrunner.gnm1.ann1.9732XC MYB转录因子 Transcription factor MYB -1.108 0.0021535 -1.327 0.0001081
Arahy.Tifrunner.gnm1.ann1.BEF3I8 MYB转录因子 Transcription factor MYB -1.256 0.0003772 -1.329 0.0001474
Arahy.Tifrunner.gnm1.ann1.EHBV2Z MYB转录因子 Transcription factor MYB -2.763 0.0008392 -2.469 0.002727
Arahy.Tifrunner.gnm1.ann1.I7UCTP MYB转录因子 Transcription factor MYB -2.393 0.0001061 -2.336 0.0009775
Arahy.Tifrunner.gnm1.ann1.0B4MFB 苯丙氨酸解氨酶(PAL)
Phenylalanine ammonia-lyase (PAL)
-3.265 6.1E-12 -2.814 1.7409E-11
Arahy.Tifrunner.gnm1.ann1.5H4H17 苯丙氨酸解氨酶(PAL) Phenylalanine ammonia-lyase -2.331 0.003147 -2.474 0.00036061
Arahy.Tifrunner.gnm1.ann1.NB2RRK 苯丙氨酸解氨酶(PAL)
Phenylalanine ammonia-lyase (PAL)
-3.255 7.62E-12 -2.839 1.2212E-11
Arahy.Tifrunner.gnm1.ann1.V1SQAY 苯丙氨酸解氨酶(PAL)
Phenylalanine ammonia-lyase (PAL)
-2.383 5.57E-11 -1.973 4.7356E-09
基因
Gene
基因功能描述
Gene description
花育33号vs. Df216
Huayu 33 vs. Df216
山花108 vs. Df216
Shanhua 108 vs. Df216
差异
倍数
log2 Fold Change
P
P-value
差异
倍数
log2 Fold Change
P
P-value
Arahy.Tifrunner.gnm1.ann1.AYA1A5 肉桂酸-4-单加氧酶(CYP73A)
Trans-cinnamate 4-monooxygenase (CYP73A)
-1.393 0.000882 -1.173 0.00020608
Arahy.Tifrunner.gnm1.ann1.K1LFJJ 肉桂酸-4-单加氧酶(CYP73A)
Trans-cinnamate 4-monooxygenase (CYP73A)
-1.766 2.92E-05 -1.497 8.6362E-06
Arahy.Tifrunner.gnm1.ann1.SGZ2CH 肉桂酸-4-单加氧酶(CYP73A)
Trans-cinnamate 4-monooxygenase (CYP73A)
-2.124 3.62E-28 -1.839 1.1701E-27
Arahy.Tifrunner.gnm1.ann1.NC09XL 4-香豆酸辅酶A连接酶(4CL)
4-coumarate-CoA ligase (4CL)
-2.127 6.10E-13 -1.695 1.9119E-09
Arahy.Tifrunner.gnm1.ann1.ST1ALI 4-香豆酸辅酶A连接酶(4CL)
4-coumarate-CoA ligase (4CL)
-2.222 9.10E-18 -1.600 9.8676E-12
Arahy.Tifrunner.gnm1.ann1.DXZI51 肉桂酰辅酶A还原酶(CCR)
Cinnamoyl-CoA reductase(CCR)
-2.881 2.05E-05 -3.467 4.0937E-06
Arahy.Tifrunner.gnm1.ann1.FW0QWP 肉桂酰辅酶A还原酶(CCR)
Cinnamoyl-CoA reductase (CCR)
-3.016 4.02E-07 -3.442 1.4653E-05
Arahy.Tifrunner.gnm1.ann1.ULUR0X 肉桂酰辅酶A还原酶(CCR)
Cinnamoyl-CoA reductase (CCR)
-2.552 9.27E-24 -1.880 3.7164E-13
Arahy.Tifrunner.gnm1.ann1.AJ1Q9U 莽草酸香豆酯/奎酸酯3’-羟化酶(C3’H)
Coumaroyl shikimate/quinate 3’-hydroxylases (C3’H)
-1.828 5.243E-12 -1.324 7.724E-08
Arahy.Tifrunner.gnm1.ann1.555M2B 咖啡酸3-O-甲基转移酶(COMT)
Caffeic acid 3-O-methyltransferase (COMT)
-1.438 9.47E-05 -1.014 0.00374356
Arahy.Tifrunner.gnm1.ann1.GM134S 咖啡酸3-O-甲基转移酶(COMT)
Caffeic acid 3-O-methyltransferase (COMT)
-1.765 7.80E-07 -1.447 8.2856E-06
Arahy.Tifrunner.gnm1.ann1.I1E7E1 咖啡酸3-O-甲基转移酶(COMT)
Caffeic acid 3-O-methyltransferase
-2.028 0.005323 -1.957 0.00818603
Arahy.Tifrunner.gnm1.ann1.MG688V 阿魏酸5-羟化酶(F5H) Ferulate-5-hydroxylase (F5H) -2.550 5.69E-25 -1.689 2.8239E-08
Arahy.Tifrunner.gnm1.ann1.PFDI3N 阿魏酸5-羟化酶(F5H) Ferulate-5-hydroxylase (F5H) -2.441 1.78E-17 -1.547 2.4651E-06
Arahy.Tifrunner.gnm1.ann1.ADRL3L 咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)
Caffeoyl-CoA O-methyltransferase (CCoAOMT)
-1.873 3.96E-08 -1.438 3.3642E-06
Arahy.Tifrunner.gnm1.ann1.QGH881 咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)
Caffeoyl-CoA O-methyltransferase (CCoAOMT)
-1.640 3.20E-08 -1.283 7.9012E-06
Arahy.Tifrunner.gnm1.ann1.WH9NWR 咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)
Caffeoyl-CoA O-methyltransferase (CCoAOMT)
-1.493 1.55E-07 -1.258 1.7761E-06

图5

样品基因聚类分析及不同品种比较组软阈值β的确定"

图6

基因聚类树和模块构建及其与茎高相关性"

表4

模块核心基因及其功能描述"

模块
Module
核心基因
Hub gene
基因功能描述
Gene description
Black arahy.Tifrunner.gnm1.ann1.Q5T5LU NADH脱氢酶 NADH dehydrogenase
Blue arahy.Tifrunner.gnm1.ann1.Z11ITV 功能未知 Uncharacterized
Brown arahy.Tifrunner.gnm1.ann1.TZB0A2 GDSL酯酶/脂肪酶 GDSL esterase/lipase
Cyan arahy.Tifrunner.gnm1.ann1.X47CQ0 转录因子ATAF2 ATAF2 transcription factor
Darkgreen arahy.Tifrunner.gnm1.ann1.A6Q8V1 功能未知 Uncharacterized
Darkgrey arahy.Tifrunner.gnm1.ann1.1KSV8R 4-香豆酸辅酶A连接酶 (4CL) 4-coumarate-CoA ligase (4CL)
Darkolivegreen arahy.Tifrunner.gnm1.ann1.5B5NV8 薄壁蛋白 WALLS ARE THIN1 (WAT1)
Darkorange arahy.Tifrunner.gnm1.ann1.6255L4 纤维素合酶A Cellulose synthase A
Darkred arahy.Tifrunner.gnm1.ann1.LML9QV 果糖二磷酸醛缩酶 Fructose-bisphosphate aldolase
Darkturquoise arahy.Tifrunner.gnm1.ann1.SHEQ35 质膜ATP酶4 Plasma membrane ATPase 4
Green arahy.Tifrunner.gnm1.ann1.MF538D 光系统I亚基XI Photosystem I subunit XI
Greenyellow arahy.Tifrunner.gnm1.ann1.9WC044 网格蛋白组装蛋白 Clathrin assembly protein
Grey60 arahy.Tifrunner.gnm1.ann1.ADRL3L 咖啡酰辅酶A Caffeoyl-CoA O-methyltransferase
Lightcyan arahy.Tifrunner.gnm1.ann1.FY9BZZ 晚期胚胎富集蛋白, Lea 5 Late embryogenesis abundant protein, Lea 5
Lightgreen arahy.Tifrunner.gnm1.ann1.01T93A FCS类锌蛋白指17 FCS-like zinc finger 17
Lightyellow arahy.Tifrunner.gnm1.ann1.34EHR3 GDSL酯酶/脂肪酶 GDSL esterase/lipase
Magenta arahy.Tifrunner.gnm1.ann1.178YCU 功能未知 Uncharacterized
Midnightblue arahy.Tifrunner.gnm1.ann1.1C5B46 28S核糖体核糖核酸 28S ribosomal RNA
Orange arahy.Tifrunner.gnm1.ann1.1EF43V Iojap蛋白 Protein Iojap
Paleturquoise arahy.Tifrunner.gnm1.ann1.BGN30W 大亚基核糖体蛋白L15 Large subunit ribosomal protein L15
Pink arahy.Tifrunner.gnm1.ann1.3896ZX 脂质体相关蛋白7 Probable plastid-lipid-associated protein 7
Purple arahy.Tifrunner.gnm1.ann1.75V8XQ BAHD酰基转移酶 BAHD acyltransferase DCR
Red arahy.Tifrunner.gnm1.ann1.8M9DZW 脱水早期响应蛋白7 Early-responsive to dehydration 7
Royalblue arahy.Tifrunner.gnm1.ann1.512HAI 五肽重复域含蛋白1 Pentatricopeptide repeat domain-containing protein 1
Saddlebrown arahy.Tifrunner.gnm1.ann1.84UTM8 酪蛋白激酶II亚基-2 Casein kinase II subunit beta-2-like
Salmon arahy.Tifrunner.gnm1.ann1.0ZKW04 膜蛋白PM19L Membrane protein PM19L
Skyblue arahy.Tifrunner.gnm1.ann1.HUVM91 类CASP蛋白质2B2 CASP-like protein 2B2
Steelblue arahy.Tifrunner.gnm1.ann1.XM49AS 功能未知 Uncharacterized
Tan arahy.Tifrunner.gnm1.ann1.EYFM1K 伸展蛋白 Extensin
Turquoise arahy.Tifrunner.gnm1.ann1.EPZ5Z8 功能未知 Uncharacterized
Violet arahy.Tifrunner.gnm1.ann1.P9IGRK 40S核糖体蛋白S19-1 40S ribosomal protein S19-1
White arahy.Tifrunner.gnm1.ann1.R57BTI 核碱基抗坏血酸转运蛋白4 Nucleobase-ascorbate transporter 4
Yellow arahy.Tifrunner.gnm1.ann1.P5C9KT 线粒体GTPase 1 Mitochondrial GTPase 1

图7

显著共表达模块内核心基因的基因网络 A和B分别表示Grey60和Brown模块。"

表5

与模块内核心基因相关联基因及其功能注释"

模块
Module
关联基因
Associated gene
权重
Weight
基因功能描述
Gene function annotations
Grey60 arahy.Tifrunner.gnm1.ann1.AJ1Q9U 0.1318 莽草酸香豆酯/奎酸酯3’-羟化酶(C3’H)
Coumaroyl shikimate/quinate 3’-hydroxylases (C3’H)
arahy.Tifrunner.gnm1.ann1.QGH881 0.1183 咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)
Caffeoyl-CoA O-methyltransferase (CCoAOMT)
arahy.Tifrunner.gnm1.ann1.NC09XL 0.1175 4-香豆酸辅酶A连接酶(4CL)
4-coumarate-CoA ligase (4CL)
arahy.Tifrunner.gnm1.ann1.AXL13P 0.1169 莽草酸香豆酯/奎酸酯3’-羟化酶(C3'H)
Coumaroyl shikimate/quinate 3’-hydroxylases (C3'H)
arahy.Tifrunner.gnm1.ann1.ST1ALI 0.1109 4-香豆酸辅酶A连接酶(4CL)
4-coumarate-CoA ligase (4CL)
arahy.Tifrunner.gnm1.ann1.M5N13L 0.1086 快速碱化因子(RALF)
Rapid alkalinization factor (RALF)
模块
Module
关联基因
Associated gene
权重
Weight
基因功能描述
Gene function annotations
arahy.Tifrunner.gnm1.ann1.T3N7AF 0.1049 锌指蛋白
Zinc finger protein
arahy.Tifrunner.gnm1.ann1.D1AFGR 0.1046 类COBRA蛋白
COBRA-like protein
arahy.Tifrunner.gnm1.ann1.ND3FHR 0.1034 羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移(HCT)
Shikimate O-hydroxycinnamoyltransferase (HCT)
arahy.Tifrunner.gnm1.ann1.N9L63V 0.1027 鼠李半乳糖醛酸聚糖裂解酶(RGL)
Rhamnogalacturonan lyase (RGL)
Brown arahy.Tifrunner.gnm1.ann1.WKJE7A 0.1711 半乳聚糖β-1,4-半乳糖基转移酶(GALS3)
Galactan beta-1,4-galactosyltransferase (GALS3)
arahy.Tifrunner.gnm1.ann1.XNX4G2 0.1556 LRR受体样丝氨酸/苏氨酸蛋白激酶(FEI1)
LRR receptor-like serine/threonine-protein kinase (FEI1)
arahy.Tifrunner.gnm1.ann1.ZIW1BH 0.1548 果胶乙酰酯酶(PAE)
Pectin acetylesterase (PAE)
arahy.Tifrunner.gnm1.ann1.U9FET0 0.1529 类成蛋白1
Formin-like protein 1
arahy.Tifrunner.gnm1.ann1.V8PY6L 0.1521 富含亮氨酸重复序列的类伸展蛋白(LRXs)
Leucine-rich repeat extensin-like protein (LRXs)
arahy.Tifrunner.gnm1.ann1.Y1E6HX 0.1434 葡聚糖内切1,3-β-葡糖苷酶13
Glucan endo-1,3-beta-glucosidase 13
arahy.Tifrunner.gnm1.ann1.ZES6QF 0.1421 碱性亮氨酸拉链蛋白(bZIP34)
Basic leucine zipper 34
arahy.Tifrunner.gnm1.ann1.X0GQC6 0.1416 磷酸糖转运蛋白
Sugar phosphate/phosphate translocator
arahy.Tifrunner.gnm1.ann1.UC02TM 0.1403 RR型类受体丝氨酸/苏氨酸蛋白激酶
LRR receptor-like serine/threonine-protein kinase
arahy.Tifrunner.gnm1.ann1.Z92X92 0.1399 羟脯氨酸O-半乳糖基转移酶HPGT1
Hydroxyproline O-galactosyltransferase HPGT1
[1] Reinhardt D, Kuhlemeier C. Plant architecture. EMBO Rep, 2002, 3:846-851.
pmid: 12223466
[2] 张佳蕾, 郭峰, 张凤, 杨莎, 耿耘, 孟静静. 提早化控对高产花生个体发育和群体结构影响. 核农学报, 2018, 32:2216-2224.
Zhang J L, Guo F, Zhang F, Yang S, Geng Y, Meng J J. Effects of earlier chemical control on ontogeny and population structure of high yield peanut. J Nucl Agric Sci, 2018, 32:2216-2224 (in Chinese with English abstract).
[3] Flintham J E, Börner A, Worland A J, Gale M D. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci, 1997, 128:11-25.
doi: 10.1017/S0021859696003942
[4] Wu J, Kong X Y, Wan J M, Liu X Y, Zhang X, Guo X P, Zhou R H, Zhao G Y, Jing R L, Fu X D, Jia J Z. Dominant and pleiotropic effects of a GAI1 gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol, 2011, 157:2120-2130.
doi: 10.1104/pp.111.185272 pmid: 22010107
[5] Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M, Hasegawa Y, Kitano H, Matsuoka M. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol, 2006, 140:580-590.
pmid: 16407447
[6] Chen W W, Cheng Z J, Liu L L, Man M, You X M, Wang J, Zhang F, Zhou C L, Zhang Z, Zhang H, You S M, Wang Y P, Luo S, Zhang J H, Wang J L, Wang J, Zhao Z C, Guo X P, Lei C L, Zhang X, Lin Q B, Ren Y L, Zhu S S, Wan J M. Small Grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. Plant Sci, 2019, 288:110208.
doi: 10.1016/j.plantsci.2019.110208
[7] Zhang Y X, Yu C S, Lin J Z, Liu J, Liu B, Wang J, Huang A B, Li H Y, Zhao T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One, 2017, 12:e0180825.
doi: 10.1371/journal.pone.0180825
[8] Chen X, Lu S C, Wang Y F, Zhang X, Lu B, Luo L Q, Xi D D, Shen J B, Ma H, Ming F. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant J, 2015, 82:302-314.
doi: 10.1111/tpj.2015.82.issue-2
[9] Langridge P, Fleury D. Making the most of ‘omics’ for crop breeding. Trends Biotechnol, 2011, 29:33-40.
doi: 10.1016/j.tibtech.2010.09.006 pmid: 21030098
[10] Van Emon J M. The omics revolution in agricultural research. J Agric Food Chem, 2016, 64:36-44.
doi: 10.1021/acs.jafc.5b04515
[11] Edwards D, Batley J. Plant bioinformatics: from genome to phenome. Trends Biotechnol, 2004, 22:232-237.
pmid: 15109809
[12] Mochida K, Shinozaki K. Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol, 2010, 51:497-423.
doi: 10.1093/pcp/pcq027
[13] Wang X D, Zheng M, Liu H F, Zhang L, Chen F, Zhang W, Fan S H, Peng M L, Hu M L, Wang H Z, Zhang J F, Hua W. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. BMC Biotechnol Biofuels, 2020, 13:42.
[14] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块. 作物学报, 2020, 46:385-394.
Ma J, Cao Y Y, Wang L F, Li J J, Wang H, Fan Y P, Li H Y. Identification of gene co-expression modules of maize plant height and ear height by WGCNA. Acta Agron Sin, 2020, 46:385-394 (in Chinese with English abstract).
[15] 巨飞燕, 张思平, 刘绍东, 马慧娟, 陈静, 葛常伟, 沈倩, 张小萌, 刘瑞华, 赵新华, 张永江, 庞朝友. 利用WGCNA进行棉花果枝节间伸长相关基因共表达模块鉴定. 棉花学报, 2019, 31:403-413.
Ju F Y, Zhang S P, Liu S D, Ma H J, Chen J, Ge C W, Shen Q, Zhang X M, Liu R H, Zhao X H, Zhang Y J, Pang C Y. Identification of co-expression modules of genes related to internode elongation of cotton fruiting branches by WGCNA. Cotton Sci, 2019, 31:403-413 (in Chinese with English abstract).
[16] Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varshney R K, Liao B S, Jiang H F. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut ( Arachis hypogaeaL.). Sci Rep, 2016, 6:39478.
doi: 10.1038/srep39478 pmid: 27995991
[17] Zhang X G, Zhang J H, He X Y, Wang Y, Ma X L, Yin D M. Genome wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci, 2017, 8:1611.
doi: 10.3389/fpls.2017.01611
[18] 彭振英, 单雷, 田海莹, 孟静静, 郭峰, 王兴军, 张智猛, 丁红, 万书波, 李新国. 利用远缘杂交培育半匍匐密枝型高产花生新品系. 中国油料作物学报, 2019, 41:490-496.
Peng Z Y, Shan L, Tian H Y, Meng J J, Guo F, Wang X J, Zhang Z M, Ding H, Wan S B, Li X G. Breeding of semi-sprawl and dense-branching high yield peanut by distant hybridization. Chin J Oil Crop Sci, 2019, 41:490-496 (in Chinese with English abstract).
[19] 鲁清, 刘浩, 李海芬, 陈小平, 洪彦彬, 刘海燕, 李少维, 周桂元, 梁炫强. 花生不同株型主要农艺性状的相关分析及其对单株产量的影响. 热带作物学报, 2019, 40:1115-1121.
Lu Q, Liu H, Li H F, Chen X P, Hong Y B, Liu H Y, Li S W, Zhou G Y, Liang X Q. Correlation analysis of main agronomic traits of different plant types and path analysis of yield per plant in peanut ( Arachis hypogaea L.). Chin J Trop Crop, 2019, 40:1115-1121 (in Chinese with English abstract).
[20] 彭振英, 单雷, 张智猛, 李新国, 万书波. 花生株型与高产. 花生学报, 2019, 48(2):69-72.
Peng Z Y, Shan L, Zhang Z M, Li X G, Wan S B. High yield and plant type of peanut. J Peanut Sci, 2019, 48(2):69-72 (in Chinese with English abstract).
[21] 胡珀, 韩天富. 植物茎秆性状形成与发育的分子基础. 植物学通报, 2008, 25:1-13.
Hu P, Han T F. Molecular basis of stem trait formation and development in plants. Chin Bull Bot, 2008, 25:1-13 (in Chinese with English abstract).
[22] Hedden P. The genes of the green revolution. Trends Genet, 2003, 19:5-9.
pmid: 12493241
[23] Würschum T, Langer S M, Longin C F H, Tucker M R, Leiser W L. A modern green revolution gene for reduced height in wheat. Plant J, 2017, 92:892-903.
doi: 10.1111/tpj.13726
[24] Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J Z, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA, 2011, 108: 11034-11039.
doi: 10.1073/pnas.1019490108
[25] 王健, 朱锦懋, 林青青, 李晓娟, 滕年军, 李振声, 李滨, 张爱民, 林金星. 小麦茎秆结构和细胞壁化学成分对抗压强度的影响. 科学通报, 2006, 51:679-685.
Wang J, Zhu J M, Lin Q Q, Li X J, Teng N J, Li Z S, Li B, Zhang A M, Lin J X. Effects of stem structure and cell wall chemical composition on resistance to compressive strength in wheat. Sci Bull, 2006, 51:679-685.
[26] 谢星光, 戴传超, 苏春沦, 周家宇, 王宏伟, 王兴祥. 内生真菌对花生残茬腐解及土壤酚酸含量的影响. 生态学报, 2015, 35:3536-3845.
Xie X G, Dai C C, Su C L, Zhou J Y, Wang H W, Wang X X. Effects of endophytic fungus on decay of peanut residues and phenolic acid concentrations in soil. Acta Ecol Sin, 2015, 35:3536-3845 (in Chinese with English abstract).
[27] Xie L Q, Yang C J, Wang X L. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot, 2011, 62:4495-4506.
doi: 10.1093/jxb/err164
[28] Muro-Villanueva F, Mao X Y, Chapple C. Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr Opin Biotechnol, 2019, 56:202-208.
doi: 10.1016/j.copbio.2018.12.008
[29] Liu Q Q, Luo L, Zheng L Q. Lignins: biosynthesis and biological functions in plants. Int J Mol Sci, 2018, 19:335.
doi: 10.3390/ijms19020335
[30] Yeats T H, Bacic A, Johnson K L. Plant glycosylphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. J Integr Plant Biol, 2018, 8:649-669.
[31] Dai X X, You C J, Chen G P, Li X H, Zhang Q F, Wu C Y. OsBC1L4encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol, 2011, 75:333-345.
doi: 10.1007/s11103-011-9730-z
[32] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15:573-581.
doi: 10.1016/j.tplants.2010.06.005
[33] Liu J J, Osbourn A, Ma P D. MYB transcription factors as regualtors of phenylpropanoid metabolism in plants. Mol Plant, 2015, 8:689-708.
doi: 10.1016/j.molp.2015.03.012
[34] Legay S, Sivadon P, Blervacq A S, Pavy N, Baghdady, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation inArabidopsis and poplar. New Phytol, 2010, 188:774-786.
doi: 10.1111/nph.2010.188.issue-3
[35] Zhang Y X, Yu C S, Lin J Z, Liu J, Liu B, Wang J, Huang A B, Li H Y, Zhao T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One, 2017, 12:e0180825.
doi: 10.1371/journal.pone.0180825
[36] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf, 2008, 9:559.
doi: 10.1186/1471-2105-9-559
[37] Wang H S, Gu L J, Zhang X G, Liu M L, Jiang H Y, Cai R H, Zhao Y, Cheng B J. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Mol Biol, 2018, 98:187-203.
doi: 10.1007/s11103-018-0763-4
[38] Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10:79-87.
doi: 10.1016/j.tplants.2004.12.010
[39] Chen X, Lu S C, Wang Y F, Zhang X, Lv B, Luo L Q, Li D D, Shen J B, Ma H, Ming F. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant J, 2015, 82:302-314.
doi: 10.1111/tpj.2015.82.issue-2
[40] Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, Novák O, Morreel K, Lacombe B, Martinez Y, Pfrunder S Jin X, Renou J P, Thibaud J B, Ljung K, Fischer U, Martinoia E, Boerjan W, Goffner D. ArabidopsisWAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun, 2013, 4:2625.
doi: 10.1038/ncomms3625
[41] 郝晓云, 蔡永智, 钱雯婕, 袁哈利, 李榕, 李鸿彬. 植物GDSL脂肪酶家族研究进展. 植物生理学报, 2013, 49:1286-1290.
Hao X Y, Cai Y Z, Qian W J, Yuan H L, Li R, Li H B. Advances in research of GDSL-lipase family in plants. Plant Physiol J, 2013, 49:1286-1290 (in Chinese with English abstract).
[42] Du C Q, Li X S, Chen J, Chen W J, Li B, Li C Y, Wang L, Li J L, Zhao X Y, Lin J Z, Liu X M, Luan S, Yu F. A Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. Proc Natl Acad Sci USA, 2016, 113:8326-8334.
doi: 10.1073/pnas.1606728113
[43] Huang P, Yoshida H, Yano K, Kinoshita S, Kawai K, Koketsu E, Hattori M, Takehara S, Huang J, Hirano K, Ordonio R L, Matsuoka M, Ueguchi-Tanaka M. OsIDD2, a zinc finger and INDETERMINATE DOMAIN protein, regulates secondary cell wall formation. J Integr Plant Biol, 2018, 60:130-143.
doi: 10.1111/jipb.12557
[44] Naran R, Pierce M, Mort A J. Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons. Plant J, 2007, 50:95-107.
doi: 10.1111/j.1365-313X.2007.03033.x
[45] Liwanag A J M, Ebert B, Verhertbruggen Y, Rennie E A, Rautengarten C, Oikawa A, Andersen M C F, Clausen M H, Scheller H V. Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a b-1,4-galactan β-1,4-galactosyltransferase. Plant Cell, 2012, 24:5024-5036.
doi: 10.1105/tpc.112.106625
[46] Gou J Y, Miller L M, Hou G C, Yu X H, Chen X Y, Liu C J. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell, 2012, 24:50-65.
doi: 10.1105/tpc.111.092411
[47] 张保才, 周奕华. 植物细胞壁形成机制的新进展. 中国科学: 生命科学, 2015, 45:644-556.
Zhang B C, Zhou Y H. Plant cell wall formation and regulation. Sci Sin Vitae, 2015, 45:644-556 (in Chinese with English abstract).
[48] 范春芬, 王艳婷, 彭良才, 丰胜求. 植物细胞壁伸展蛋白的功能与利用. 植物生理学报, 2018, 54:1279-1287.
Fan C F, Wang Y T, Peng L C, Feng S Q. Plant extensins function and their potential genetic manipulation in crops. Plant Physiol J, 2018, 54:1279-1287 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[14] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[15] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!