欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1712-1723.doi: 10.3724/SP.J.1006.2021.04164

• 研究论文 • 上一篇    下一篇

北方主栽花生品种的源库特征及其分类

高芳(), 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东*(), 杨东清*()   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2020-07-22 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-02-20
  • 通讯作者: 李向东,杨东清
  • 作者简介:E-mail: 15563177918@163.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000900);山东省重大科技创新工程项目(2018YFJH0601-3);山东省现代农业产业技术体系创新团队项目(SDAIT-04-01)

Source-sink characteristics and classification of peanut major cultivars in North China

GAO Fang(), LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong*(), YANG Dong-Qing*()   

  1. College of Agronomy / State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2020-07-22 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-02-20
  • Contact: LI Xiang-Dong,YANG Dong-Qing
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Shandong Key Research and Development Program(2018YFJH0601-3);Innovation Team Project for Modern Agricultural Industrious Technology System of Shandong Province(SDAIT-04-01)

摘要:

大田栽培条件下, 以中国北方主栽的13个花生品种为试验材料, 对单株叶面积、开花数、成果率等18个源库性状进行测定和计算, 利用主成分分析、聚类分析等统计方法, 筛选花生源库性状评价指标, 对比不同品种的源库性状差异和产量差异, 并进行源库类型划分。结果表明, 结荚期和饱果期的叶面积、开花数量、成果率和荚果充实度可以作为评价花生源库关系的主要指标。根据源库特征及产量表现可以把花生品种分为源库协调型、源大库小型、源足库少型和源足库多型4类。源库协调型品种叶片净同化率高, 花期持续时间和开花数量适中, 有效果比例和荚果充实度高, 易获得高产。源大库小型品种叶面积过大, 叶片净同化率和单位叶面积荚果产量低, 荚果充实度低, 限制产量提高。源足库多型品种产量限制因素为花期长, 花数多, 成果率低, 无效果针和荚果消耗营养, 有效荚果饱满度不足。源足库少型品种产量限制因素为开花持续时间短, 花量少。因此, 在花生生产中, 应该针对不同源库类型品种, 采取相应措施控制叶源大小和开花量, 防止叶源冗余、花多不实和果多不饱, 提高有效果比例和荚果饱满度, 增加荚果产量。

关键词: 花生, 源, 库, 评价指标, 产量

Abstract:

To explore whether and how source-sink theory was involved in mediating peanut high yield formation, a field experiment was conducted using 13 major peanut cultivars in North China. Principal component analysis and cluster analysis were used to evaluate natural indicators for the characterization and classification of source-sink types such as leaf area (LA) per plant, number of flowers, and pod rate. The results showed that LA per plant, number of flowers, pod rate, and pod plumpness at the pod-setting and pod-filling stages could be the major characteristics to evaluate source-sink relationship. Based on the source-sink indicators and yield components, these peanut cultivars could be classified into four categories, including source-sink coordination type, large source-few sink type, sufficient source-few sink type, and sufficient source-large sink type. The source-sink coordination type varieties could achieve high yield mainly due to the higher net assimilation rate at the pod-setting stage, the moderate florescence and number of flowers, and the higher economic pods ratio and pod fullness. Large source-few sink type cultivars had higher LA, but lower net assimilation rate and smaller contribution of the leaf area to the yield formation, thus decreased the pod yield. Sufficient source-large sink type cultivars had longer florescence and more flowers compared to others types, leading to reduce the pod rate and pod plumpness, which was the main limiting factor to increase the pod yield. On the contrary, both florescence and the number of flowers per plant of sufficient source-few sink type cultivars were less than others types. In summary, to prevent the redundancy of leaf source, more flowers but less pegs, and more pods but less kernels and to promote the effective proportions and pod fullness resulting in higher pod yield in peanut production, corresponding measures should be taken to control leaf area and amount of flowering according to different source-sink types peanut cultivars.

Key words: peanut, source, sink, evaluation indicator, yield

表1

供试花生品种及来源"

品种
Cultivar
品种来源
Origin
丰花1号 Fenghua 1 山东农业大学 Shandong Agricultural University
山花9号 Shanhua 9 山东农业大学 Shandong Agricultural University
青花7号 Qinghua 7 青岛农业大学 Qingdao Agricultural University
潍花8号 Weihua 8 潍坊市农业科学院 Weifang Academy of Agricultural Sciences
潍花16号 Weihua 16 潍坊市农业科学院 Weifang Academy of Agricultural Sciences
花育33号 Huayu 33 山东省花生研究所 Shandong Peanut Research Institute
花育36号 Huayu 36 山东省花生研究所 Shandong Peanut Research Institute
冀花5号 Jihua 5 河北省农林科学院 Hebei Academy of Agricultural and Forestry Sciences
冀花18155 Jihua 18155 河北省农林科学院 Hebei Academy of Agricultural and Forestry Sciences
中花24 Zhonghua 24 中国农业科学院油料作物研究所 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences
日花1号 Rihua 1 日照市东港花生研究所 Rizhao Donggang Peanut Research Institute
豫花15号 Yuhua 15 河南省农业科学院 Henan Academy of Agricultural Sciences
豫花9326 Yuhua 9326 河南省农业科学院 Henan Academy of Agricultural Sciences

表2

花生各源、库指标变异幅度(2019年)"

特征
Characteristic
性状
Trait
变异范围
Range of variation
变异系数
Coefficient of variation (%)
源性状
Source traits
花针期LA LA at pegging stage (cm 2) 860.37-2100.63 29.37
结荚期LA LA at pod setting stage (cm2) 1717.71-2910.91 18.87
饱果期LA LA at pod filling stage (cm2) 650.05-1442.52 26.42
花针期LDM LDM at pegging stage (g) 7.05-11.44 13.91
结荚期LDM LDM at pod setting stage (g) 9.47-15.63 18.87
饱果期LDM LDM at pod filling stage (g) 4.05-9.24 25.01
库性状
Sink traits
开花数Number of flowers (ind) 67.43-124.10 17.11
开花持续时间Florescence (d) 29.00-46.00 14.80
成针率Peg rate (%) 36.67-26.95 18.89
成果率Pod rate (%) 8.66-24.20 21.27
源库综合性状
Source-sink comprehensive traits
花针期PTR PTR at pegging stage (%) 0.24-11.85 65.76
结荚期PTR PTR at pod setting stage (%) 26.71-49.48 17.61
收获指数HI 0.39-0.59 12.14
单位叶面积对产量贡献 LAC (mg cm-2) 8.88-24.86 33.41
单位叶面积负荷量 LAL (ind m-2) 144.48-396.01 23.97
产量性状
Output targets
荚果充实度 Pod plumpness (%) 31.02-63.85 19.63
有效果比例 EPR (%) 40.75-76.21 16.10
产量 Yield (kg hm-2) 6024.69-7944.44 7.88

表3

花生源库性状主成分分析的方差贡献率"

主成分
Principal components
特征值
Eigenvalue
贡献率
Contribution rate (%)
累计贡献率
Accumulative contribution rate (%)
1 5.155 28.640 28.640
2 2.935 16.305 44.945
3 2.915 16.197 61.142
4 2.563 14.239 75.381
5 2.397 13.315 88.696

表4

花生源库性状的主成分载荷矩阵"

性状
Trait
第1主成分
Component 1
第2主成分
Component 2
第3主成分
Component 3
第4主成分
Component 4
第5主成分
Component 5
花针期LA LA at pegging stage -0.740 0.236 0.430 0.024 0.185
结荚期LA LA at pod setting stage -0.962 -0.091 -0.077 -0.085 0.010
饱果期LA LA at pod filling stage 0.042 -0.115 0.228 0.952 0.024
花针期叶LDM LDM at peg setting stage (g) -0.355 0.091 -0.152 -0.359 0.480
结荚期叶LDM LDM at pod setting stage (g) -0.942 -0.118 0.019 -0.113 0.049
饱果期叶LDM LDM at pod filling stage (g) 0.050 -0.137 0.243 0.930 -0.128
花针期PTR PTR at peg setting stage (%) 0.595 0.101 -0.069 0.064 0.703
结荚期PTR PTR at pod setting stage (%) 0.742 0.471 -0.260 -0.208 -0.080
收获指数 HI (%) 0.529 0.466 0.069 -0.589 0.136
开花持续期 Florescence (d) -0.246 -0.191 0.865 0.200 -0.233
开花数 Number of flower (ind) -0.089 -0.122 0.901 0.272 -0.176
成针率 Peg rate (%) -0.445 -0.269 0.161 -0.076 0.759
成果率 Pod rate (%) -0.131 0.422 -0.363 -0.048 0.731
有效果比例 EPR (%) 0.182 0.894 -0.276 -0.251 0.039
单位叶面积负荷量 LAL (ind m-2) 0.254 -0.305 0.800 0.119 0.378
单位叶面积对产量贡献 LAC (mg cm-2) 0.896 0.326 0.021 -0.072 -0.071
荚果充实度 Pod plumpness (%) 0.197 0.920 -0.217 -0.093 0.087
产量 Yield (kg hm-2) 0.507 0.471 0.182 -0.192 0.491

表5

主成分得分"

品种
Cultivar
第1主成分
Component 1
第2主成分
Component 2
第3主成分
Component 3
第4主成分
Component 4
第5主成分
Component 5
综合得分
Synthetic component
丰花1号Fenghua 1 -0.770 -1.463 0.217 2.314 -0.438 -0.172
山花9号Shanhua 9 -1.789 -3.702 4.855 2.508 0.526 0.110
青花7号Qinghua 7 -2.751 -0.774 0.691 0.488 -0.152 -0.849
潍花8号Weihua 8 3.421 3.136 0.469 0.444 -1.087 1.307
潍花16号Weihua 16 0.689 0.466 -0.866 -2.314 0.106 -0.206
花育33号Huayu 33 -3.084 1.008 0.213 -1.524 1.011 -0.864
花育36号Huayu 36 -2.696 -0.684 -2.668 -0.851 -0.798 -1.740
冀花5号Jihua 5 4.138 4.381 -1.945 -2.009 -0.561 1.380
冀花18155 Jihua 18155 2.176 1.317 -2.135 -2.613 1.744 0.397
中花24 Zhonghua 24 1.897 1.667 -0.918 1.076 2.478 1.296
日花1号Rihua 1 -0.934 -3.594 2.007 3.264 -4.181 -0.700
豫花15号Yuhua 15 0.721 0.808 0.691 0.195 0.058 0.548
豫花9326 Yuhua 9326 -1.019 -0.566 -0.614 -0.980 1.294 -0.508

表6

利用K-means动态聚类分析法划分源库类型"

组别
Classification
品种数
Number of
cultivars
品种名称
Cultivar name
I 2 冀花5号、潍花8号 Jihua 5, Weihua 8
II 4 潍花16号、冀花18155、中花24、豫花15号 Weihua 16, Jihua 18155, Zhonghua 24, Yuhua 15
III 3 丰花1号、山花9号、日花1号 Fenghua 1, Shanhua 9, Rihua 1
IV 4 青花7号、花育33号、花育36号、豫花9326 Qinghua 7, Huayu 33, Huayu 36, Yuhua 9326

图1

不同花生品种叶面积变化趋势"

表7

不同花生品种净同化率和单位叶面积对产量贡献的差异"

品种
Cultivar
结荚期净同化率
Net assimilation rate at pod setting stage (g m-2 d-1)
单位叶面积对产量贡献
Contribution of unit-leaf area to yield (mg cm-2)
2018 2019 2018 2019
花育33号 Huayu 33 3.19 c 3.64 d 10.79 c 10.19 c
花育36号 Huayu 36 3.32c 3.49 d 11.02 c 10.56 c
山花9号 Shanhua 9 4.50 b 5.31 b 13.95 c 12.74 c
中花24 Zhonghua 24 3.90 b 4.74 c 18.02 b 18.48 b
潍花8号 Weihua 8 5.59 a 6.84 a 23.46 a 24.86 a
冀花5号 Jihua 5 5.14 a 5.77 ab 19.88 b 23.26 a

表8

不同花生品种库性状差异(2019年)"

品种
Cultivar
开花持续时间
Florescence
(d)
单株开花数
Number of flower
per plant
成针率
Peg rate
(%)
成果率
Pod rate (%)
有效果比例
EPR
(%)
荚果充实度
Pod plumpness (%)
山花9号Shanhua 9 46 124.10 a 73.73 a 14.92 c 40.75 d 33.13 d
日花1号Rihua 1 42 99.30 b 42.27 de 8.66 d 45.82 d 31.02 e
潍花8号Weihua 8 34 98.95 b 52.05 cd 18.36 b 64.58 b 46.07 c
冀花5号Jihua 5 32 84.81 bc 36.67 e 17.49 bc 76.21 a 63.85 a
花育36号Huayu 36 29 70.05 c 59.46 bc 19.63 b 59.18 c 46.15 c
中花24 Zhonghua 24 31 75.10 c 67.88 ab 24.20 a 65.46 b 53.68 b

表9

不同类型花生品种产量差异"

品种
Cultivar
荚果产量Pod yield (kg hm-2) 品种
Cultivar
荚果产量Pod yield (kg hm-2)
2018 2019 2018 2019
丰花1号Fenghua 1 4746.91 cdef 6592.59 fg 冀花5号Jihua 5 6037.04 a 7944.44 a
山花9号Shanhua 9 5240.74 bc 7203.70 bcde 冀花18155 Jihua 18155 5530.86 ab 7549.38 ab
青花7号Qinghua 7 5055.56 bcde 6925.93 def 中花24 Zhonghua 24 4703.70 def 7432.10 bc
潍花8号Weihua 8 5222.22 bcd 7401.23 bcd 日花1号Rihua 1 4500.00 fg 6024.69 h
潍花16号Weihua 16 5129.63 bcde 6580.25 fg 豫花15号Yuhua 15 4666.67 ef 6864.20 ef
花育33号Huayu 33 4975.31 cdef 7037.04 cdef 豫花9326 Yuhua 9326 5141.98 bcde 7339.51 bcde
花育36号Huayu 36 4030.86 g 6197.53 gh 平均Average 4998.58 cdef 7007.12 cdef
[1] 李向东, 张永丽. 农学概论. 北京: 中国农业出版社, 2017. pp 49-51.
Li X D, Zhang Y L. General Introduction Agronomy. Beijing: China Agriculture Press, 2017. pp 49-51(in Chinese).
[2] Wang Y, Pang Y L, Chen K, Zhai L Y, Shen C C, Wang S, Xu J L. Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice. Crop J, 2020, 8:119-131.
doi: 10.1016/j.cj.2019.05.001
[3] Senthold A, Belay T K, Marcelo H L, Amador C, Daniel F C. Simulating the impact of source-sink manipulations in wheat. Field Crops Res, 2017, 202:47-56.
doi: 10.1016/j.fcr.2016.04.031
[4] 董桂春, 李进前, 董燕萍, 周娟, 田昊, 于小凤, 张传胜, 张岳芳, 余龙. 产量构成因素及穗部性状对籼稻品种库容的影响. 中国水稻科学, 2009, 23:523-528.
Dong G C, Li J Q, Dong Y P, Zhou J, Tian H, Yu X F, Zhang C S, Zhang Y F, Yu L. Effects of yield components and panicle traits on sink potential in conventional indica rice. Chin J Rice Sci, 2009, 23:523-528 (in Chinese with English abstract).
[5] 田艺心, 高凤菊, 曹鹏鹏, 王乐政, 华方静, 王士龄, 田文铎. 大豆叶面积指数、干物质积累分配与产量的关系. 山东农业大学学报(自然科学版), 2018, 49:750-754.
Tian Y X, Gao F J, Cao P P, Wang L Z, Hua F J, Wang S L, Tian W D. Relationship between leaf area index, dry matter accumulation distribution and yield of soybean. J Shandong Agric Univ(Nat Sci Edn), 2018, 49:750-754 (in Chinese with English abstract).
[6] Lyu X M, Zhang Y, Zhang Y X, Fan S J, Kong L G. Source-sink modifications affect leaf senescence and grain mass in wheat as revealed by proteomic analysis. BMC Plant Biol, 2020, 20:257.
doi: 10.1186/s12870-020-02447-8
[7] Sonnewald U, Fernie A R. Next-generation strategies for understanding and influencing source-sink relations in crop plants. Curr Opin Plant Biol, 2018, 43:63-70.
doi: S1369-5266(17)30150-4 pmid: 29428477
[8] Lucas B, Gustavo A S, Marıa E O. Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Res, 2004, 86:131-146.
doi: 10.1016/j.fcr.2003.08.002
[9] 姜慧芳, 任小平. 我国栽培种花生资源农艺和品质性状的遗传多样性. 中国油料作物学报, 2006, 28:421-426.
Jiang H F, Ren X P. Genetic diversity of peanut resource on morphological characters and seed chemical components in China. Chin J Oil Crop Sci, 2006, 28:421-426 (in Chinese with English abstract).
[10] 王余龙, 蔡建中, 徐永林, 华鹤良. 水稻籽粒受容活性及其控制途径: I. 籽粒含水率与受容活性的关系. 江苏农学院学报, 1990, 11(3):25-29.
Wang Y L, Cai J Z, Xu Y L, Hua H L. Activity of grain capacity and its regulation in rice: I. The relationship between grain water content and capacity activity. J Jiangsu Agric Coll, 1990, 11(3):25-29 (in Chinese with English abstract).
[11] 曹显祖, 朱庆森. 水稻品种的源库特征及其类型划分的研究. 作物学报, 1987, 13:265-272.
Cao X Z, Zhu Q S. Study on the characteristics of source and sink of rice varieties and their types. Acta Agron Sin, 1987, 13:265-272 (in Chinese with English abstract).
[12] 嵇军德. 花生品种抗旱性与开花结实特性的关系. 山东农业大学硕士学位论文, 山东泰安, 2015.
Ji J D. The Relationship between Drought Resistance and the Flowering and Podding Characteristics of Peanut Varieties. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2015 (in Chinese with English abstract).
[13] 王丽丽. 改变源-库比对花生籽仁品质和叶片衰老的影响. 山东农业大学硕士学位论文, 山东泰安, 2005.
Wang L L. The Effect of Altering Source-sink Ratio on Kernel Quality and Leaf Senescence in Peanut. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2005 (in Chinese with English abstract).
[14] 王丰, 张国平, 白朴. 水稻源库关系评价体系研究进展与展望. 中国水稻科学, 2005, 19:556-560.
Wang F, Zhang G P, Bai P. Achievement and prospects of research on evaluation of the relationship between source and sink in rice. Chin J Rice Sci, 2005, 19:556-560 (in Chinese with English abstract).
[15] 陈琛, 张家星, 李万元, 唐东南. 氮高效水稻主要源库性状的基本特点及其调控. 中国水稻科学, 2017, 31:185-194.
Chen C, Zhang J X, Li W Y, Tang D N. Fundamental features of source-sink characters and their regulation in high nitrogen efficiency rice lines. Chin J Rice Sci, 2017, 31:185-194 (in Chinese with English abstract).
[16] 葛勇. 基于库源关系的中棉所63杂种优势机理研究. 中国农业科学院硕士学位论文, 北京, 2016.
Ge Y. Study on Heterosis Mechanism of CCRI63 Based on Sink-source Relationship. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[17] 刘星, 邱慧珍, 张文明, 张春红, 王亚飞, 马兴. 连作马铃薯植株库源关系及其对块茎产量的调节机理. 应用生态学报, 2017, 28:1571-1582.
Liu X, Qiu H Z, Zhang W M, Zhang C H, Wang Y F, Ma X. Sink-source relationship of potato plants and its role involved in the reduction of tuber yield in continuous cropping system. Chin J Appl Ecol, 2017, 28:1571-1582 (in Chinese with English abstract).
[18] 宁运旺, 马洪波, 张辉, 汪吉东, 许仙菊, 张永春. 甘薯源库关系建立、发展和平衡对氮肥用量的响应. 作物学报, 2015, 41:432-439.
Ning Y W, Ma H B, Zhang H, Wang J D, Xu X J, Zhang Y C. Response of sweetpotato in source-sink relationship establishment, expanding, and balance to nitrogen application rates. Acta Agron Sin, 2015, 41:432-439 (in Chinese with English abstract).
[19] Wei H H, Meng T Y, Li X Y, Dai Q G, Zhang H C, Yin X Y. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Res, 2018, 215:23-38.
doi: 10.1016/j.fcr.2017.09.029
[20] Fernie A R, Bachem C W B, Helariutta Y, Neuhaus H E, Prat S, Ruan Y L, Stitt M, Sweetlove L J, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. Nat Plants, 2020, 6:55-66.
doi: 10.1038/s41477-020-0590-x
[21] 董桂春, 田昊, 张彪, 李进前, 于小凤, 王余龙. 不同库容量类型籼稻品种源库相关参数的基本特点. 作物学报, 2009, 35:1900-1908.
Dong G C, Tian H, Zhang B, Li J Q, Yu X F, Wang Y L. Characteristics of source-sink related parameters in conventional indica rice cultivars with different types of sink potential. Acta Agron Sin, 2009, 35:1900-1908 (in Chinese with English abstract).
[22] 徐富贤, 熊洪, 张林, 朱永川, 刘茂, 蒋鹏, 郭晓艺. 南方稻区杂交中籼稻高产品种的库源结构及其优化调控规律研究进展. 中国生态农业学报, 2016, 24:1285-1299.
Xu F X, Xiong H, Zhang L, Zhu Y C, Liu M, Jiang P, Guo X Y. Research progresses and prospects of sink-source structures and optimal regulation of high-yield varieties of hybrid rice in China. Chin J Eco-Agric, 2016, 24:1285-1299 (in Chinese with English abstract).
[23] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 230-257.
Ling Q H. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 230-257(in Chinese).
[24] 王夫玉, 黄丕生. 水稻群体源库特征及高产栽培策略研究. 中国农业科学, 1997, 30(5):26-33.
Wang F Y, Huang P S. Study on source-sink characteristics and high-yield cultivation strategies of rice population. Sci Agric Sin, 1997, 30(5):26-33 (in Chinese with English abstract).
[25] Yoshida S. Effects of CO2 enrichment at different stages of panicle development on yield components and yield of rice (Oryza sativa L.). Soil Sci Plant Nutr, 1973, 19:311-316.
doi: 10.1080/00380768.1973.10432600
[26] 石庆华, 徐益群, 张佩莲, 曾宪江, 潘晓华, 钟旭华. 籼粳杂交稻的氮素吸收特性及其对库源特征的影响. 江西农业大学学报, 1994, 16:333-339.
Shi Q H, Xu Y Q, Zhang P L, Zeng X J, Pan X H, Zhong X H. Effects of N uptake on the sink and source of indica-japonica F1 hybrids rice. Acta Agric Univ Jiangxiensis, 1994, 16:333-339 (in Chinese with English abstract).
[27] 崔菁菁, 徐克章, 石晶皎, 武志海, 陈展宇, 张治安, 吴春胜. 不同水稻品种库源的特征变化. 植物学报, 2015, 50:699-705.
Cui Q Q, Xu K Z, Shi J J, Wu Z H, Chen Z Y, Zhang Z A, Wu C S. Changes in sink-source variation characteristics of different rice varieties. Chin Bull Bot, 2015, 50:699-705 (in Chinese with English abstract).
[28] Huang L Y, Yang D S, Lia X X, Peng S B, Wang F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res, 2019, 233:49-58.
doi: 10.1016/j.fcr.2019.01.005
[29] Zhang H, Chen T, Liu L, Wang Z, Yang J, Zhang J. Performance in grain yield and physiological traits of rice in the Yangtze river basin of china during the last 60 yr. J Integr Agric, 2013, 12, 57-66.
doi: 10.1016/S2095-3119(13)60205-1
[30] Venkatraman S, Praveen K, Stephen P L. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Global Change Biol, 2017, 23:1626-1635.
doi: 10.1111/gcb.13526 pmid: 27860122
[31] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 286-288.
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 286-288(in Chinese).
[32] 陈琛, 于小凤, 赵步洪, 高英博, 舒小伟, 徐杰皎, 唐东南, 黄建晔, 王余龙, 姚友礼, 董桂春. 水稻大库容遗传群体源库性状、物质生产与分配的基本特征. 江苏农业学报, 2019, 35:1009-1014.
Chen C, Yu X F, Zhao B H, Gao Y B, Shu X W, Xu J J, Tang D N, Huang J Y, Wang Y L, Yao Y L, Dong G C. Fundamental features of source-sink properties, biomass production and distribution in rice genetic populations with high sink capacity type. Jiangsu J Agric Sci, 2019, 35:1009-1014 (in Chinese with English abstract).
[33] 曹显祖, 缪兴伯. 杂交中籼稻源库特征与高产栽培对策. 杂交水稻, 1989, 6(2):4-6.
Cao X Z, Miu X B. Source-sink characteristics of hybrid indica rice and high-yielding cultivation strategies. Hybrid Rice, 1989, 6(2):4-6 (in Chinese).
[34] Ricardo J H, Jorge B, María E O. Genetic improvement of peanut in Argentina between 1948 and 2004: links between phenology and grain yield determinants. Field Crops Res, 2015, 174:12-19.
doi: 10.1016/j.fcr.2015.01.005
[35] 王晓光, 蒋春姬, 赵新华, 于海秋, 曹敏建. 辽宁省引进的花生高产品种开花特性. 中国油料作物学报, 2013, 35:54-57.
Wang X G, Jiang C J, Zhao X H, Yu H Q, Cao M J. Flowering characteristics of high yield peanuts varieties introduced into Liaoning Province. Chin J Oil Crop Sci, 2013, 35:54-57 (in Chinese with English abstract).
[36] 王晓光, 赵新华, 蒋春姬, 于海秋, 曹敏建. 辽宁省引进的花生高产品种结荚特性研究. 中国油料作物学报, 2013, 35:400-404.
Wang X G, Zhao X H, Jiang C J, Yu H Q, Cao M J. Podding characteristics of high yielding peanut varieties introduced into Liaoning Province. Chin J Oil Crop Sci, 2013, 35:400-404 (in Chinese with English abstract).
[37] 江龙, 韦宏恩, 杨昌达, 陈天华. 不同水稻品种的源库特性与产量形成的关系. 山地农业生物学报, 1998, 17:318-322.
Jiang L, Wei H E, Yang C D, Chen T H. The research of the relationship between the source and sink characteristics of different kinds of rice and the formation of their output. J Mount Agric Biol, 1998, 17:318-322 (in Chinese with English abstract).
[38] 姜文洙, 吴涛, 唐曹甲子, 王彩芬, 马静, 强爱玲, 都兴林. 高产粳稻品种源库特征及评价体系的研究. 东北农业科学, 2019, 44(5):1-4.
Jiang W Z, Wu T, Tang C J Z, Wang C F, Ma J, Qiang A L, Du X L. Studies on characteristics and evaluation of source-sink in high-yield japonicarice. J Northeast Agric Sci, 2019, 44(5):1-4 (in Chinese with English abstract).
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[13] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[14] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[15] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!