欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1824-1833.doi: 10.3724/SP.J.1006.2021.04212

• 研究简报 • 上一篇    下一篇

不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应

赵婧(), 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟*(), 闫晓艳*()   

  1. 吉林省农业科学院大豆研究所 / 大豆国家工程研究中心, 吉林长春 130033
  • 收稿日期:2020-09-18 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-03-01
  • 通讯作者: 张伟,闫晓艳
  • 作者简介:E-mail: zhao114434260@163.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000905);吉林省现代农业产业技术示范推广(2020-004)

Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean

ZHAO Jing(), MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei*(), YAN Xiao-Yan*()   

  1. National Engineering Research Center of Soybean / Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
  • Received:2020-09-18 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-03-01
  • Contact: ZHANG Wei,YAN Xiao-Yan
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000905);Demonstration and Popularization of Modern Agricultural Industrial Technology in Jilin Province(2020-004)

摘要:

土壤中磷含量与植物铁的吸收密切相关, 为研究供铁充足条件下不同P∶Fe配比对不同磷效率基因型大豆农艺性状和磷/铁利用率的影响, 本文以前期筛选到的磷高效和磷低效大豆品种为试验材料, 采用沙培方式和裂区设计研究不同P∶Fe比对大豆生物学性状的影响及基因型差异, 并利用因子得分综合评价磷高效和磷低效基因型对不同P∶Fe处理的响应, 以解析农艺性状与大豆体内磷/铁利用率的关系, 从而为磷、铁肥合理施用提供理论依据。结果表明: (1) R5期, 磷高效基因型在各处理下的株高、茎粗、根干重和地上部干重增长相对较快, 且均大于磷低效基因型; 磷高效和磷低效基因型在P∶Fe比为100∶100处理下的R5期单株根干重较低, 而百粒重较大。此外, 磷高效和磷低效基因型的籽粒磷利用率在P∶Fe比为1000∶100时降至最低。(2) 典型相关分析表明, 磷高效基因型R5期的茎粗与叶片铁利用率呈正相关关系, 而磷低效基因型R5期的地上部干重与叶片磷利用率呈负相关关系。(3) R8期单株地上部干重和R3期叶片磷利用率的增加有助于磷高效基因型单株粒重的增加, 而R3期单株根重的增加反而会导致磷高效基因型单株粒重的下降。R3期株高、R3期和R8期地上部干重的增加都有助于磷低效基因型单株粒重的增加, 而R3期、R5期和R8期的茎粗以及R5期叶片铁利用率的增加反而导致磷低效基因型单株粒重下降。而且, R8期单株地上部干重对磷高效和磷低效基因型的直接正向贡献均最大。(4) 利用因子得分综合评价发现, P∶Fe≤100∶100时, 磷高效和磷低效基因型在P∶Fe比为100∶100处理下的综合表现最好; 当P∶Fe≥500∶100时, 磷高效和磷低效基因型在P∶Fe比为1000∶100处理下的综合表现最好。综上, 鼓粒初期可以作为筛选不同磷效率基因型的一个重要时期。在铁供应充足情况下, 应考虑到土壤磷素累积和植酸对磷素效率影响问题, 无论是磷高效还是磷低效基因型施P∶Fe比达到1∶1时整体表现最好。

关键词: 磷高效, 磷低效, 农艺性状, 磷利用率, 铁利用率

Abstract:

The phosphorus content in soil is closely related to the iron absorption in plant. In this study, 15 agronomic traits were analyzed by principal component analysis in sand culture and split blot design, with P-efficient and P-inefficient soybean varieties screened in the early stage as the experimental materials. To analyze the relationship between agronomic traits and P/Fe utilization efficiency, and to provide the theoretical basis for the rational application of P and Fe fertilizer in soybean, the effects of different P:Fe ratios on biological traits and genotypic differences were studied in response to P-efficient and P-inefficient genotypes under different P:Fe treatments by factor scores in soybean. The results were as follows: (1) At R5 stage, plant height, stem diameter, root dry weight, and shoot dry weight of P-efficient genotypes were increased relatively rapidly under each treatment, and all of them were higher than those of P-inefficient genotypes. When P:Fe ratio was 100:100, root dry weight per plant at R5 stage was lower, while 100-seed weight was higher. In addition, when P:Fe ratio was 100:100, P utilization efficiency of the two soybean genotypes were the lowest. (2) Canonical correlation analysis revealed that stem diameter at R5 stage of P-efficient genotypes was positively correlated with Fe utilization efficiency in leaves, while shoot dry weight of P-inefficient genotypes was negatively correlated with P utilization efficiency in leaves. (3) The increase of P utilization efficiency of leaves at R3 stage and shoot dry weight at R8 stage were beneficial to the increase of seed weight per plant of P-efficient genotypes, while the increase of P-efficient genotypes at R3 stage would lead to the decrease of seed weight per plant of P-efficient genotypes. The increase of plant height at R3 stage, shoot dry weight at R3 and R8 stages contributed to the increase of seed weight per plant of P-inefficient genotypes, while the increase of stem diameter at R3, R5, and R8 stages, and Fe utilization efficiency of leaves at R5 stage resulted in the decrease of seed weight per plant of P-inefficient genotypes. Furthermore, shoot dry weight at R8 stage had the largest direct positive contribution to both P-efficient and P-inefficient genotypes. (4) Comprehensive evaluation by factor score showed that when P:Fe ≤ 100:100, the comprehensive performance of P-efficient genotypes and P- inefficient genotypes were the best when P:Fe ratio was 100:100. When P:Fe ≥ 500:100, the comprehensive performance of P-efficient genotypes and P-inefficient genotypes were the best when P:Fe ratio was 1000:100. In conclusion, the early stage of seed filling can be an important stage for screening soybean genotypes with different P efficiency. P:Fe ratio at 1:1 was better for both P-efficient and P-inefficient genotypes under sufficient Fe supply, considering the accumulation of phosphate fertilizer in soil and effect of phytates in seed on P efficiency.

Key words: P-efficient, P-inefficient, agronomic traits, P utilization efficiency, Fe utilization efficiency

表1

主区试验设计"

处理
Treatment
磷浓度
P concentration
(μmol L-1)
磷:铁
P:Fe
CK 0 0:100
P1 100 100:100
P2 500 500:100
P3 1000 1000:100

图1

磷:铁比对不同大豆基因型农艺性状的影响 R3: 始荚期; R5: 鼓粒期; R8: 成熟期。"

图2

磷:铁比对不同大豆基因型磷/铁利用率的影响 R3: 始荚期; R5: 鼓粒期; R8: 成熟期。"

表2

不同磷:铁比条件下大豆光合叶绿素荧光参数与磷、铁性状的典型相关性分析"

基因型
Genotype
典型相关系数
Canonical correlation coefficient
PP-value 典型向量
Canonical variables
磷高效基因型 P-efficient
genotypes
0.92 0.0145 UE = - 0.1774X1 + 0.3527X2 - 0.5376X3 + 0.6918X4 - 0.8259X5 + 1.6345X6 + 0.3873X7 - 0.5418X8 - 0.3599X9 + 0.0221X10 - 0.7607X11 + 0.8133X12 - 0.0339X13
VE = 0.4051Y1 + 0.6116Y2 - 0.4141Y3 + 0.2499Y4 - 0.3933Y5 + 0.3567Y6
磷低效基因型 P-inefficient
genotypes
0.98 0.0059 UIE = 0.7518X1 - 0.2609X2 - 0.2263X3 - 0.4150X4 - 0.5712X5 + 0.4853X6 - 0.4017X7 + 0.8477X8 + 0.3437X9 + 0.2264X10 - 0.1210X11 - 0.2134X12 + 0.0590X13
VIE = 0.5590Y1 - 0.6724Y2 + 0.0917Y3 - 0.6286Y4 - 0.7682Y5 + 0.6182Y6

表3

单株粒重的逐步回归方程"

基因型
Genotype
回归方程
Regression equation
决定系数
R2
P
P-value
剩余标准差
Residual standard deviation
杜宾-沃森检验
Durbin-Watson test
磷高效基因型
P-efficient genotypes
WE= 1.34 - 0.60X3 + 0.25X12 + 1.02Y4 0.89 1.00E-07 0.0118 2.20
磷低效基因型
P-inefficient genotypes
WIE = 6.84 + 0.027X1- 0.67X2+ 0.22X4 - 0.87X6 - 0.74X10 + 0.24X12- 0.22Y2 0.87 5.41E-06 0.0196 1.62

表4

磷高效基因型单株粒重与各性状间的通径分析"

变量
Variable
直接通径系数
Direct path coefficient
X3 X12 Y4
X3 -0.2481 -0.0755 0.0791
X12 0.9028 0.0208 -0.0083
Y4 0.1610 -0.1220 -0.0465

表5

磷低效基因型单株粒重与各性状间的通径分析"

变量
Variable
直接通径系数
Direct path
coefficient
X1 X2 X4 X6 X10 X12 Y2
X1 0.2277 0.1770 0.2169 -0.2246 -0.0942 0.1118 0.0425
X2 -0.4223 0.0954 0.1693 -0.1133 0.0647 -0.1678 0.0080
X4 0.3424 0.1442 -0.2088 -0.1718 -0.1147 0.1520 0.0236
X6 -0.4367 0.1171 -0.1096 0.1347 0.0029 -0.0101 0.0182
X10 -0.4472 0.0479 0.0610 0.0878 0.0029 0.4820 0.0480
X12 0.7848 0.0324 0.0903 0.0663 0.0056 -0.2746 0.0470
Y2 -0.1587 -0.0610 0.0214 -0.0509 0.0501 0.1354 -0.2326

表6

磷高效基因型在各处理下的综合评价"

处理Treatment 基因型
Genotype
C1 C2 C3 C4 C5 C6 CE ACE
CK 长农15 Changnong 15 -0.543 0.283 0.114 -0.045 -0.022 0.042 -0.171 -0.265
吉育69 Jiyu 69 -0.923 0.392 -0.073 -0.184 0.023 -0.154 -0.919
九农36 Jiunong 36 1.191 -0.432 -0.188 -0.218 0.081 -0.122 0.312
吉农23 Jinong 23 -1.036 -0.340 0.130 -0.112 -0.097 0.056 -1.399
吉育95 Jiyu 95 -0.311 0.135 0.013 -0.058 -0.004 -0.046 -0.270
抗线6号Kangxian 6 0.736 -0.013 0.410 -0.144 -0.069 -0.062 0.857
P1 长农15 Changnong 15 -0.197 0.275 0.399 0.241 0.057 -0.009 0.765 0.127
吉育69 Jiyu 69 -1.117 0.379 0.077 0.071 0.088 -0.036 -0.538
九农36 Jiunong 36 1.149 -0.463 0.318 0.108 0.035 0.065 1.212
吉农23 Jinong 23 -0.742 -0.313 0.232 -0.106 0.034 0.057 -0.838
吉育95 Jiyu 95 0.008 -0.258 0.315 0.032 -0.045 -0.006 0.048
抗线6 Kangxian 6 -0.057 -0.191 0.307 -0.020 0.023 0.053 0.114
P2 长农15 Changnong 15 -0.190 0.517 0.001 0.012 0.025 0.055 0.421 0.019
吉育69 Jiyu 69 -0.538 0.068 0.244 -0.041 -0.080 0.035 -0.312
九农36 Jiunong 36 0.266 -0.396 -0.346 -0.091 0.175 0.003 -0.390
吉农23 Jinong 23 -0.732 -0.199 -0.340 -0.187 0.076 0.128 -1.254
吉育95 Jiyu 95 0.386 0.162 -0.306 0.112 -0.025 0.037 0.365
抗线6 Kangxian 6 0.625 0.047 0.329 0.195 0.147 -0.058 1.285
P3 长农15 Changnong 15 -0.942 0.071 -0.446 0.237 0.024 -0.007 -1.064 0.119
吉育69 Jiyu 69 -0.930 0.194 -0.095 -0.039 -0.167 -0.060 -1.098
九农36 Jiunong 36 1.139 -0.671 -0.142 0.053 -0.143 -0.035 0.202
吉农23 Jinong 23 -0.363 -0.156 -0.461 0.016 -0.023 0.015 -0.973
吉育95 Jiyu 95 0.606 -0.086 -0.341 0.329 -0.082 -0.025 0.402
抗线6号Kangxian 6 2.517 0.996 -0.151 -0.161 -0.032 0.074 3.243

表7

磷低效基因型在各处理下的综合评价"

处理 Treatment 基因型
Genotype
C1 C2 C3 C4 C5 C6 C7 CE ACE
CK 合丰25 Hefeng 25 0.040 -0.624 0.120 -0.105 -0.031 -0.045 0.017 -0.628 -0.096
吉农18 Jinong 18 -0.062 -0.891 -0.019 0.052 0.108 -0.041 -0.060 -0.913
欧科豆25 Oukedou 25 0.247 0.237 0.093 0.021 0.116 0.039 -0.002 0.752
九农27 Jiunong 27 0.206 0.879 0.324 -0.021 0.073 -0.070 -0.011 1.379
吉农21 Jinong 21 -0.490 0.384 0.005 -0.218 0.146 -0.073 -0.035 -0.281
绥农22 Suinong 22 0.166 -0.737 -0.193 -0.335 0.166 0.077 -0.028 -0.884
P1 合丰25 Hefeng 25 -0.927 -0.445 0.229 0.224 0.006 0.022 -0.003 -0.895 0.106
吉农18 Jinong 18 0.279 -0.237 0.006 0.159 0.160 0.056 0.028 0.451
欧科豆25 Oukedou 25 -0.317 0.209 -0.116 0.050 0.035 0.006 -0.041 -0.174
九农27 Jiunong 27 1.376 -0.051 0.280 0.102 0.043 -0.098 0.000 1.652
吉农21 Jinong 21 0.428 -0.359 -0.041 0.095 0.061 -0.104 0.010 0.090
绥农22 Suinong 22 -0.837 0.360 -0.177 0.199 0.073 -0.096 -0.009 -0.487
P2 合丰25 Hefeng 25 -0.395 -0.254 -0.006 0.175 -0.121 -0.005 -0.001 -0.607 -0.075
吉农18 Jinong 18 -0.117 0.071 0.227 0.047 0.067 0.253 0.114 0.662
处理 Treatment 基因型
Genotype
C1 C2 C3 C4 C5 C6 C7 CE ACE
欧科豆25 Oukedou 25 -0.304 0.333 0.034 0.018 -0.006 -0.063 0.031 0.043
九农27 Jiunong 27 0.932 -0.035 0.054 -0.186 -0.100 -0.047 0.026 0.646
吉农21 Jinong 21 -0.543 0.424 -0.067 -0.165 0.060 -0.021 -0.030 -0.342
绥农22 Suinong 22 -0.551 0.031 -0.318 -0.048 -0.062 -0.081 0.179 -0.850
P3 合丰25 Hefeng 25 -0.502 -0.469 0.150 -0.073 -0.222 0.058 -0.031 -1.090 0.064
吉农18 Jinong 18 1.439 0.200 -0.542 0.172 -0.037 0.075 -0.022 1.285
欧科豆25 Oukedou 25 -0.272 0.333 -0.059 0.040 -0.109 0.095 -0.163 -0.137
九农27 Jiunong 27 0.907 0.057 0.124 -0.055 -0.231 -0.046 0.004 0.761
吉农21 Jinong 21 0.156 0.585 0.002 -0.091 -0.043 0.138 0.025 0.772
绥农22 Suinong 22 -0.860 0.001 -0.110 -0.057 -0.155 -0.029 0.006 -1.204
[1] Manschadi A M, Kaul H P, Vollmann J, Eitzinger J, Wenzel W. Developing phosphorus-efficient crop varieties: an interdisciplinary research framework. Field Crops Res, 2014, 162:87-98.
doi: 10.1016/j.fcr.2013.12.016
[2] 丁广大, 陈水森, 石磊, 蔡红梅, 叶祥盛. 植物耐低磷胁迫的遗传调控机理研究进展. 植物营养与肥料学报, 2013, 19:733-744.
Ding G D, Chen S S, Shi L, Cai H M, Ye X S. Research advances in genetic regulation mechanism of plant tolerance to low-phosphorus stress. Plant Nutr Fert Sci, 2013, 19:733-744 (in Chinese with English abstract).
[3] 苑乂川, 陈小雨, 李明明, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应. 作物学报, 2019, 45:601-612.
Yuan Y C, Chen X Y, Li M M, Jia Y T, Han Y H, Xing G F. Screening of germplasm tolerant to low phosphorus of seedling stage and response of root protective enzymes to low phosphorus in foxtail millet. Acta Agron Sin, 2019, 45:601-612 (in Chinese with English abstract).
[4] 郑金凤, 米少艳, 婧姣姣, 白志英, 李存东. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46:1984-1993.
Zheng J F, Mi S Y, Jing J J, Bai Z Y, Li C D. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low phosphorus stress in wheat substitution. Sci Agric Sin, 2013, 46:1984-1993 (in Chinese with English abstract).
[5] 林郑和, 陈荣冰, 郭少平. 植物对缺磷的生理适应机制研究进展. 作物杂志, 2010, (5):5-9.
Lin Z H, Chen R B, Guo S P. Research progress on physiological adaptability of plants to phosphorus deficiency. Crops, 2010, (5):5-9 (in Chinese with English abstract).
[6] 赵婧, 邱强, 张鸣浩, 张伟, 闫晓艳. 植物体内磷铁平衡与缺铁胁迫的关系研究进展. 作物研究, 2016, 30:343-346.
Zhao J, Qiu Q, Zhang M H, Zhang W, Yan X Y. Research progress on the relationship between P-Fe balance and Fe deficiency stress. Crop Res, 2016, 30:343-346 (in Chinese with English abstract).
[7] Sánchez-Rodríguez A R, del Campillo M, Torrent J. The severity of iron chlorosis in sensitive plants is related to soil phosphorus levels. J Sci Food Agric, 2014, 94:2766-2773.
doi: 10.1002/jsfa.2014.94.issue-13
[8] Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky J G, Herrera-Estrella L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana.Plant Cell Physiol, 2005, 46:174-184.
[9] Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud M C. Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie, 2006, 88:1767-1771.
pmid: 16757083
[10] Ward J T, Lahner B, Yakubova E, Salt D E, Raghothama K G. The effect of iron on the primary root elongation of Arabidopsisduring phosphate deficiency. Plant Physiol, 2008, 147:1181-1191.
doi: 10.1104/pp.108.118562
[11] Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol, 2009, 25:262-274.
[12] Rothstein S J. Returning to our roots: mating plant biology research relevant to future challenges in agriculture. Plant Cell, 2007, 19:2695-2699.
pmid: 17873097
[13] Bournier M, Tissot N, Mari S, Boucherez J, Lacombe E, Briat J F, Gaymard F. Arabidopsisferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. Plant Cell, 2013, 288:22670-22680.
[14] 王贤, 刘晓萌, 杨青春. 磷铁营养对大豆种子铁和植酸积累的影响. 大豆科学, 2010, 29:651-654.
Wang X, Liu X M, Yang Q C. Effects of iron and phosphorus nutrition on the contents of iron and phytic acid in soybean seeds. Soybean Sci, 2010, 29:651-654 (in Chinese with English abstract).
[15] 赵婧, 邱强, 刘庆君, 张鸣浩, 张伟, 闫晓艳. 磷水平对不同铁效率大豆生长和生理特性的影响. 大豆科学, 2016, 35:609-615.
Zhao J, Qiu Q, Liu Q J, Zhang M H, Zhang W, Yan X Y. Effect of phosphorus levels on soybean growth and physiological traits of soybean variety with different iron efficiency. Soybean Sci, 2016, 35:609-615 (in Chinese with English abstract).
[16] Cordell D, Drangert J O, White S. The story of phosphorus: Global food security and food for thought. Global Environ Change, 2009, 19:292-305.
doi: 10.1016/j.gloenvcha.2008.10.009
[17] Dawson C J, Hilton J. Fertilizer availability in a resource limited world: production and recycling of nitrogen and phosphorus. Food Policy, 2011, 36:S14-S22.
doi: 10.1016/j.foodpol.2010.11.012
[18] Zhang Z, Hong L, William J L. Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants. J Integr Plant Biol, 2014, 56:192-220.
doi: 10.1111/jipb.12163
[19] García M J, Romera F J, Lucena C, Alcántara E, Pérez-Vicente R. Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies. Plant Physiol, 2015, 169:51-60.
doi: 10.1104/pp.15.00708 pmid: 26175512
[20] Lucena C, Romera F J, García M J, Alcántara E, Pérez-Vicente R. Ethylene Participates in the regulation of Fe deficiency responses in strategy I plants and in rice. Front Plant Sci, 2015, 6:1237-1251.
[21] Song L, Liu D. Ethylene and plant responses to phosphate deficiency. Front Plant Sci, 2015, 6:796-810.
doi: 10.3389/fpls.2015.00796 pmid: 26483813
[22] Neumann G. The role of ethylene in plant adaptations for phosphate acquisition in soils: a review. Front Plant Sci, 2016, 6:1224-1233.
[23] Rodriguez-Lucena P, Ropero E, Hernandez-Apaolaza L, Lucena J J. Iron supply to soybean plants through the foliar application of IDHA/Fe3+: effect of plant nutritional status and adjuvants. J Sci Food Agric, 2010, 90:2633-2640.
doi: 10.1002/jsfa.v90:15
[24] Fageria N K, Baligar V C, Li Y C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutr, 2008, 31:1121-1157.
doi: 10.1080/01904160802116068
[25] Ha S, Tran L S. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Crit Rev Biotechnol, 2014, 34:16-30.
doi: 10.3109/07388551.2013.783549
[26] Xing D, Wu Y. Effect of phosphorus deficiency on photosynthetic inorganic carbon assimilation of three climber plant species. Bot Stud, 2014, 55:1-8.
doi: 10.1186/1999-3110-55-1
[27] Veneklaas E J, Lambers H, Bragg J, Finnegan P M, Lovelock C E, Plaxton W C, Price C A, Scheible W, Shane M W, White P J, Raven J A. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol, 2012, 195:306-320.
doi: 10.1111/nph.2012.195.issue-2
[28] Rose T J, Pariasca-Tanaka J, Rose M T, Fukuta Y, Wissuwa M. Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crops Res, 2010, 119:154-160.
doi: 10.1016/j.fcr.2010.07.004
[29] Liu X, Glahn R P, Arganosa G C, Warkentin T D. Iron bioavailability in low phytate pea. Crop Sci, 2015, 55:320-330.
doi: 10.2135/cropsci2014.06.0412
[30] Sánchez-Rodríguez A R, del Campillo M C, Torrent J. Phosphate aggravates iron chlorosis in sensitive plants grown on model calcium carbonate-iron oxide systems. Plant Soil, 2013, 373:31-42.
doi: 10.1007/s11104-013-1785-y
[31] Zohlen A. Chlorosis in wild plants: is it a sign of iron deficiency. J Plant Nutr, 2002, 25:2205-2228.
doi: 10.1081/PLN-120014071
[1] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[2] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[3] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[4] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[5] 孙现军,姜奇彦,胡正,张惠媛,徐长兵,邸一桓,韩龙植,张辉. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报, 2019, 45(11): 1656-1663.
[6] 翟俊鹏,李海霞,毕惠惠,周思远,罗肖艳,陈树林,程西永,许海霞. 普通小麦主要农艺性状的全基因组关联分析[J]. 作物学报, 2019, 45(10): 1488-1502.
[7] 徐益,张列梅,祁建民,苏梅,方书生,张力岚,方平平,张立武. 黄麻纤维产量与主要农艺性状的相关分析[J]. 作物学报, 2018, 44(6): 859-866.
[8] 江红,孙石,宋雯雯,吴存祥,武婷婷,胡水秀,韩天富. 不同地理来源MGIII组大豆品种生育期结构分析及E基因型鉴定[J]. 作物学报, 2018, 44(10): 1448-1458.
[9] 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异[J]. 作物学报, 2018, 44(05): 657-671.
[10] 郑立飞,尚一斐,李学军,冯浩,魏永胜. 结构方程模型在冬小麦农艺性状与产量关系分析中的应用[J]. 作物学报, 2017, 43(09): 1395-1400.
[11] 段绍光,金黎平*,李广存,卞春松,徐建飞,胡军,屈冬玉. 马铃薯品种遗传多样性分析[J]. 作物学报, 2017, 43(05): 718-729.
[12] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[13] 司二静,张宇,汪军成,孟亚雄,李葆春,马小乐,尚勋武,王化俊. 大麦农艺性状与SSR标记的关联分析[J]. 作物学报, 2015, 41(07): 1064-1072.
[14] 罗巧玲,郑琪,许云峰,李立会,韩方普,许红星,李滨,马朋涛,安调过. 390份小麦-黑麦种质材料主要农艺性状分析及优异材料的GISH与FISH鉴定[J]. 作物学报, 2014, 40(08): 1331-1339.
[15] 罗俊杰,欧巧明,叶春雷,王方,王镛臻,陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选[J]. 作物学报, 2014, 40(07): 1259-1273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!