作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1824-1833.doi: 10.3724/SP.J.1006.2021.04212
赵婧(), 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟*(), 闫晓艳*()
ZHAO Jing(), MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei*(), YAN Xiao-Yan*()
摘要:
土壤中磷含量与植物铁的吸收密切相关, 为研究供铁充足条件下不同P∶Fe配比对不同磷效率基因型大豆农艺性状和磷/铁利用率的影响, 本文以前期筛选到的磷高效和磷低效大豆品种为试验材料, 采用沙培方式和裂区设计研究不同P∶Fe比对大豆生物学性状的影响及基因型差异, 并利用因子得分综合评价磷高效和磷低效基因型对不同P∶Fe处理的响应, 以解析农艺性状与大豆体内磷/铁利用率的关系, 从而为磷、铁肥合理施用提供理论依据。结果表明: (1) R5期, 磷高效基因型在各处理下的株高、茎粗、根干重和地上部干重增长相对较快, 且均大于磷低效基因型; 磷高效和磷低效基因型在P∶Fe比为100∶100处理下的R5期单株根干重较低, 而百粒重较大。此外, 磷高效和磷低效基因型的籽粒磷利用率在P∶Fe比为1000∶100时降至最低。(2) 典型相关分析表明, 磷高效基因型R5期的茎粗与叶片铁利用率呈正相关关系, 而磷低效基因型R5期的地上部干重与叶片磷利用率呈负相关关系。(3) R8期单株地上部干重和R3期叶片磷利用率的增加有助于磷高效基因型单株粒重的增加, 而R3期单株根重的增加反而会导致磷高效基因型单株粒重的下降。R3期株高、R3期和R8期地上部干重的增加都有助于磷低效基因型单株粒重的增加, 而R3期、R5期和R8期的茎粗以及R5期叶片铁利用率的增加反而导致磷低效基因型单株粒重下降。而且, R8期单株地上部干重对磷高效和磷低效基因型的直接正向贡献均最大。(4) 利用因子得分综合评价发现, P∶Fe≤100∶100时, 磷高效和磷低效基因型在P∶Fe比为100∶100处理下的综合表现最好; 当P∶Fe≥500∶100时, 磷高效和磷低效基因型在P∶Fe比为1000∶100处理下的综合表现最好。综上, 鼓粒初期可以作为筛选不同磷效率基因型的一个重要时期。在铁供应充足情况下, 应考虑到土壤磷素累积和植酸对磷素效率影响问题, 无论是磷高效还是磷低效基因型施P∶Fe比达到1∶1时整体表现最好。
[1] |
Manschadi A M, Kaul H P, Vollmann J, Eitzinger J, Wenzel W. Developing phosphorus-efficient crop varieties: an interdisciplinary research framework. Field Crops Res, 2014, 162:87-98.
doi: 10.1016/j.fcr.2013.12.016 |
[2] | 丁广大, 陈水森, 石磊, 蔡红梅, 叶祥盛. 植物耐低磷胁迫的遗传调控机理研究进展. 植物营养与肥料学报, 2013, 19:733-744. |
Ding G D, Chen S S, Shi L, Cai H M, Ye X S. Research advances in genetic regulation mechanism of plant tolerance to low-phosphorus stress. Plant Nutr Fert Sci, 2013, 19:733-744 (in Chinese with English abstract). | |
[3] | 苑乂川, 陈小雨, 李明明, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应. 作物学报, 2019, 45:601-612. |
Yuan Y C, Chen X Y, Li M M, Jia Y T, Han Y H, Xing G F. Screening of germplasm tolerant to low phosphorus of seedling stage and response of root protective enzymes to low phosphorus in foxtail millet. Acta Agron Sin, 2019, 45:601-612 (in Chinese with English abstract). | |
[4] | 郑金凤, 米少艳, 婧姣姣, 白志英, 李存东. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46:1984-1993. |
Zheng J F, Mi S Y, Jing J J, Bai Z Y, Li C D. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low phosphorus stress in wheat substitution. Sci Agric Sin, 2013, 46:1984-1993 (in Chinese with English abstract). | |
[5] | 林郑和, 陈荣冰, 郭少平. 植物对缺磷的生理适应机制研究进展. 作物杂志, 2010, (5):5-9. |
Lin Z H, Chen R B, Guo S P. Research progress on physiological adaptability of plants to phosphorus deficiency. Crops, 2010, (5):5-9 (in Chinese with English abstract). | |
[6] | 赵婧, 邱强, 张鸣浩, 张伟, 闫晓艳. 植物体内磷铁平衡与缺铁胁迫的关系研究进展. 作物研究, 2016, 30:343-346. |
Zhao J, Qiu Q, Zhang M H, Zhang W, Yan X Y. Research progress on the relationship between P-Fe balance and Fe deficiency stress. Crop Res, 2016, 30:343-346 (in Chinese with English abstract). | |
[7] |
Sánchez-Rodríguez A R, del Campillo M, Torrent J. The severity of iron chlorosis in sensitive plants is related to soil phosphorus levels. J Sci Food Agric, 2014, 94:2766-2773.
doi: 10.1002/jsfa.2014.94.issue-13 |
[8] | Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky J G, Herrera-Estrella L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana.Plant Cell Physiol, 2005, 46:174-184. |
[9] |
Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud M C. Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie, 2006, 88:1767-1771.
pmid: 16757083 |
[10] |
Ward J T, Lahner B, Yakubova E, Salt D E, Raghothama K G. The effect of iron on the primary root elongation of Arabidopsisduring phosphate deficiency. Plant Physiol, 2008, 147:1181-1191.
doi: 10.1104/pp.108.118562 |
[11] | Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol, 2009, 25:262-274. |
[12] |
Rothstein S J. Returning to our roots: mating plant biology research relevant to future challenges in agriculture. Plant Cell, 2007, 19:2695-2699.
pmid: 17873097 |
[13] | Bournier M, Tissot N, Mari S, Boucherez J, Lacombe E, Briat J F, Gaymard F. Arabidopsisferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. Plant Cell, 2013, 288:22670-22680. |
[14] | 王贤, 刘晓萌, 杨青春. 磷铁营养对大豆种子铁和植酸积累的影响. 大豆科学, 2010, 29:651-654. |
Wang X, Liu X M, Yang Q C. Effects of iron and phosphorus nutrition on the contents of iron and phytic acid in soybean seeds. Soybean Sci, 2010, 29:651-654 (in Chinese with English abstract). | |
[15] | 赵婧, 邱强, 刘庆君, 张鸣浩, 张伟, 闫晓艳. 磷水平对不同铁效率大豆生长和生理特性的影响. 大豆科学, 2016, 35:609-615. |
Zhao J, Qiu Q, Liu Q J, Zhang M H, Zhang W, Yan X Y. Effect of phosphorus levels on soybean growth and physiological traits of soybean variety with different iron efficiency. Soybean Sci, 2016, 35:609-615 (in Chinese with English abstract). | |
[16] |
Cordell D, Drangert J O, White S. The story of phosphorus: Global food security and food for thought. Global Environ Change, 2009, 19:292-305.
doi: 10.1016/j.gloenvcha.2008.10.009 |
[17] |
Dawson C J, Hilton J. Fertilizer availability in a resource limited world: production and recycling of nitrogen and phosphorus. Food Policy, 2011, 36:S14-S22.
doi: 10.1016/j.foodpol.2010.11.012 |
[18] |
Zhang Z, Hong L, William J L. Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants. J Integr Plant Biol, 2014, 56:192-220.
doi: 10.1111/jipb.12163 |
[19] |
García M J, Romera F J, Lucena C, Alcántara E, Pérez-Vicente R. Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies. Plant Physiol, 2015, 169:51-60.
doi: 10.1104/pp.15.00708 pmid: 26175512 |
[20] | Lucena C, Romera F J, García M J, Alcántara E, Pérez-Vicente R. Ethylene Participates in the regulation of Fe deficiency responses in strategy I plants and in rice. Front Plant Sci, 2015, 6:1237-1251. |
[21] |
Song L, Liu D. Ethylene and plant responses to phosphate deficiency. Front Plant Sci, 2015, 6:796-810.
doi: 10.3389/fpls.2015.00796 pmid: 26483813 |
[22] | Neumann G. The role of ethylene in plant adaptations for phosphate acquisition in soils: a review. Front Plant Sci, 2016, 6:1224-1233. |
[23] |
Rodriguez-Lucena P, Ropero E, Hernandez-Apaolaza L, Lucena J J. Iron supply to soybean plants through the foliar application of IDHA/Fe3+: effect of plant nutritional status and adjuvants. J Sci Food Agric, 2010, 90:2633-2640.
doi: 10.1002/jsfa.v90:15 |
[24] |
Fageria N K, Baligar V C, Li Y C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutr, 2008, 31:1121-1157.
doi: 10.1080/01904160802116068 |
[25] |
Ha S, Tran L S. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Crit Rev Biotechnol, 2014, 34:16-30.
doi: 10.3109/07388551.2013.783549 |
[26] |
Xing D, Wu Y. Effect of phosphorus deficiency on photosynthetic inorganic carbon assimilation of three climber plant species. Bot Stud, 2014, 55:1-8.
doi: 10.1186/1999-3110-55-1 |
[27] |
Veneklaas E J, Lambers H, Bragg J, Finnegan P M, Lovelock C E, Plaxton W C, Price C A, Scheible W, Shane M W, White P J, Raven J A. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol, 2012, 195:306-320.
doi: 10.1111/nph.2012.195.issue-2 |
[28] |
Rose T J, Pariasca-Tanaka J, Rose M T, Fukuta Y, Wissuwa M. Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crops Res, 2010, 119:154-160.
doi: 10.1016/j.fcr.2010.07.004 |
[29] |
Liu X, Glahn R P, Arganosa G C, Warkentin T D. Iron bioavailability in low phytate pea. Crop Sci, 2015, 55:320-330.
doi: 10.2135/cropsci2014.06.0412 |
[30] |
Sánchez-Rodríguez A R, del Campillo M C, Torrent J. Phosphate aggravates iron chlorosis in sensitive plants grown on model calcium carbonate-iron oxide systems. Plant Soil, 2013, 373:31-42.
doi: 10.1007/s11104-013-1785-y |
[31] |
Zohlen A. Chlorosis in wild plants: is it a sign of iron deficiency. J Plant Nutr, 2002, 25:2205-2228.
doi: 10.1081/PLN-120014071 |
[1] | 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390. |
[2] | 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913. |
[3] | 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127. |
[4] | 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681. |
[5] | 孙现军,姜奇彦,胡正,张惠媛,徐长兵,邸一桓,韩龙植,张辉. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报, 2019, 45(11): 1656-1663. |
[6] | 翟俊鹏,李海霞,毕惠惠,周思远,罗肖艳,陈树林,程西永,许海霞. 普通小麦主要农艺性状的全基因组关联分析[J]. 作物学报, 2019, 45(10): 1488-1502. |
[7] | 徐益,张列梅,祁建民,苏梅,方书生,张力岚,方平平,张立武. 黄麻纤维产量与主要农艺性状的相关分析[J]. 作物学报, 2018, 44(6): 859-866. |
[8] | 江红,孙石,宋雯雯,吴存祥,武婷婷,胡水秀,韩天富. 不同地理来源MGIII组大豆品种生育期结构分析及E基因型鉴定[J]. 作物学报, 2018, 44(10): 1448-1458. |
[9] | 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异[J]. 作物学报, 2018, 44(05): 657-671. |
[10] | 郑立飞,尚一斐,李学军,冯浩,魏永胜. 结构方程模型在冬小麦农艺性状与产量关系分析中的应用[J]. 作物学报, 2017, 43(09): 1395-1400. |
[11] | 段绍光,金黎平*,李广存,卞春松,徐建飞,胡军,屈冬玉. 马铃薯品种遗传多样性分析[J]. 作物学报, 2017, 43(05): 718-729. |
[12] | 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142. |
[13] | 司二静,张宇,汪军成,孟亚雄,李葆春,马小乐,尚勋武,王化俊. 大麦农艺性状与SSR标记的关联分析[J]. 作物学报, 2015, 41(07): 1064-1072. |
[14] | 罗巧玲,郑琪,许云峰,李立会,韩方普,许红星,李滨,马朋涛,安调过. 390份小麦-黑麦种质材料主要农艺性状分析及优异材料的GISH与FISH鉴定[J]. 作物学报, 2014, 40(08): 1331-1339. |
[15] | 罗俊杰,欧巧明,叶春雷,王方,王镛臻,陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选[J]. 作物学报, 2014, 40(07): 1259-1273. |
|