欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1834-1840.doi: 10.3724/SP.J.1006.2021.04187

• 研究简报 • 上一篇    

过氧化氢浸种对花生种子发芽及生理代谢的影响

郝西(), 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收*()   

  1. 河南省农业科学院经济作物研究所 / 农业农村部黄淮海油料作物重点实验室 / 河南省油料作物遗传改良重点实验室, 河南郑州 450002
  • 收稿日期:2020-08-12 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-02-19
  • 通讯作者: 汤丰收
  • 作者简介:E-mail: hx1997@163.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000900);河南省现代农业产业技术体系项目(S2012-5)

Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut

HAO Xi(), CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou*()   

  1. Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, Henan, China
  • Received:2020-08-12 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-02-19
  • Contact: TANG Feng-Shou
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Henan Agricultural Research System(S2012-5)

摘要:

为明确过氧化氢浸种对低温条件下花生发芽及种子生理代谢的影响, 以花生品种开农176为材料, 测定了过氧化氢浸种后的种子发芽及相关生理指标。结果表明, 过氧化氢浸种显著提高了花生的发芽能力, 发芽势从0提高到24.45%, 发芽率从39.33%提高到90.99%。过氧化氢提高了花生种子赤霉素含量, 同时降低了脱落酸含量, 发芽0、24、48 h的赤霉素含量分别比对照提高10.82%、5.73%、18.64%, 脱落酸含量分别比对照降低44.98%、36.45%、39.70%。同时, 提高了抗氧化酶SOD、CAT的活性以及可溶性糖、可溶性蛋白的含量, 降低了丙二醛的含量; 促进了大分子贮藏物质脂肪、蛋白质、淀粉的分解代谢, 为种子发芽提供更多的ATP和蛋白质、核酸的合成底物。研究表明, H2O2通过介导抗氧化酶、ABA和GA以及贮藏物质的分解来促进低温胁迫下花生种子的萌发。

关键词: 花生, 浸种, 过氧化氢, 发芽, 生理代谢

Abstract:

To investigate the effects of hydrogen peroxide soaking on peanut germination and seed physiological metabolism, the seed germination and related physiological indexes after seed soaking were determined using peanut variety Kainong 176 as experimental material. The results showed that the germination vigor of peanut was increased from 0 to 24.45%, and the germination percentage was increased from 39.33% to 90.99% by hydrogen peroxide soaking. Hydrogen peroxide treatment increased the content of gibberellin in peanut seeds and decreased the content of abscisic acid at germination stage. The contents of gibberellin in germinating seeds at 0, 24, and 48 hour(s) were 10.82%, 5.73%, and 18.64% higher than those of control, and the contents of abscisic acid were 44.98%, 36.45%, and 39.70% lower than that of control, respectively. At the same time, hydrogen peroxide treatment enhanced the activities of antioxidant enzyme SOD and CAT, increased the contents of soluble sugar and soluble protein, decreased the content of MDA, promoted the catabolism of macromolecular storage substances such as fat, protein, and starch, and provided more ATP and substrates for protein and nucleic acid synthesis. Studies revealed that hydrogen peroxide could promote peanut seed germination under low-temperature stress by mediating antioxidant enzymes, ABA and GA, and storage matter decomposition.

Key words: peanut, soaking, hydrogen peroxide, germination, physiological metabolism

表1

H2O2浸种处理对花生发芽的影响 "

处理
Treatment
萌发率
Germination rate (%)
发芽势
Germination vigor (%)
发芽率
Germination percentage (%)
发芽指数
Germination index
对照CK 72.79±2.21 B 0±0 A 39.33±1.83 A 0±0 A
H2O2浸种H2O2 soaking 97.06±2.94 A 24.45±6.80 B 90.99±2.76 B 2.14±0.49 B

图1

H2O2处理对花生种子发芽过程中赤霉素和脱落酸含量的影响 CK0′、0 h、24 h、48 h分别代表干种子、浸种结束种子(发芽0 h)、发芽24 h种子、发芽48 h种子。误差线表示3次重复的标准差。柱上标以不同小写字母表示差异达0.05显著水平。"

图2

H2O2处理对花生种子发芽过程中SOD和POD活性的影响 CK0′、0 h、24 h、48 h分别代表干种子、浸种结束种子(发芽0 h)、发芽24 h种子、发芽48 h种子。误差线表示3次重复的标准差。柱上标以不同小写字母表示差异达0.05显著水平。"

图3

H2O2处理对花生种子发芽过程中CAT活性的影响 CK0′、0 h、24 h、48 h分别代表干种子、浸种结束种子(发芽0 h)、发芽24 h种子、发芽48 h种子。误差线表示3次重复的标准差。柱上标以不同小写字母表示差异达0.05显著水平。"

图4

H2O2处理对花生种子发芽过程中可溶性糖和可溶性蛋白含量的影响 CK0′、0 h、24 h、48 h分别代表干种子、浸种结束种子(发芽0 h)、发芽24 h种子、发芽48 h种子。误差线表示3次重复的标准差。柱上标以不同小写字母表示差异达0.05显著水平。"

图5

H2O2处理对花生种子发芽过程中丙二醛含量的影响 CK0′、0 h、24 h、48 h分别代表干种子、浸种结束种子(发芽0 h)、发芽24 h种子、发芽48 h种子。误差线表示3次重复的标准差。柱上标以不同小写字母表示差异达0.05显著水平。"

图6

H2O2处理对花生种子发芽过程中游离脂肪酸、总氨基酸、ATP含量及α-淀粉酶活性的影响 CK0′、0 h、24 h、48 h分别代表干种子、浸种结束种子(发芽0 h)、发芽24 h种子、发芽48 h种子。误差线表示3次重复的标准差。柱上标以不同小写字母表示差异达0.05显著水平。"

[1] 万书波. 我国花生产业面临的机遇与科技发展战略. 中国农业科技导报, 2009, 11(1):7-12.
Wan S B. Opportunities facing peanut industry in China and strategies for its science and technology development. J Agric Sci Technol, 2009, 11(1):7-12 (in Chinese with English abstract).
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42:161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42:161-166 (in Chinese with English abstract).
[3] 唐月异, 王传堂, 高华援, 凤桐, 张树伟, 王秀贞, 张建成, 禹山林. 花生种子吸胀期间耐低温性及其与品质性状的相关研究. 核农学报, 2011, 25:436-442.
Tang Y Y, Wang C T, Gao H Y, Feng T, Zhang S W, Wang X Z, Zhang J C, Yu S L. Low temperature tolerance during seed imbibition and its relationship to main quality traits in peanut. J Nucl Agric Sci, 2011, 25:436-442 (in Chinese with English abstract).
[4] 常博文, 钟鹏, 刘杰, 唐中华, 高亚冰, 于洪久, 郭炜. 低温胁迫和赤霉素对花生种子萌和幼苗生理响应的影响. 作物学报, 2019, 45:118-130.
Chang B W, Zhong P, Liu J, Tang Z H, Gao Y B, Yu H J, Guo W. Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut. Acta Agron Sin, 2019, 45:118-130 (in Chinese with English abstract).
[5] 王传堂, 唐月异, 王秀贞, 吴琪, 王志伟, 宫清轩, 冯昊, 杜祖波, 李秋. 高油酸花生新品系丰产性与播种出苗期耐低温高湿田间评价. 山东农业科学, 2019, 51(9):110-114.
Wang C T, Tang Y Y, Wang X Z, Wu Q, Wang Z W, Gong Q X, Feng H, Du Z B, Li Q. Evaluation on productivity of new high oleic peanut lines and field tolerance to low temperature and high moisture during sowing to emergence period. Shandong Agric Sci, 2019, 51(9):110-114 (in Chinese with English abstract).
[6] 陈小姝, 刘海龙, 王绍伦, 杨富军, 高华援, 孙晓苹, 李春雨, 吕永超, 朱晓敏, 宁洽, 周玉萍. 花生发芽至苗期耐低温性的鉴定及评价. 东北农业科学, 2019, 44(1):12-17.
Chen X S, Liu H L, Wang S L, Yang F J, Gao H Y, Sun X P, Li C Y, Lyu Y C, Zhu X M, Ning Q, Zhou Y P. Identification and evaluation of cold resistance of peanut during germination and seedling period. Northeast Agric Sci, 2019, 44(1):12-17 (in Chinese with English abstract).
[7] 陈昊, 徐日荣, 陈湘瑜, 张玉梅, 胡润芳, 蓝新隆, 唐兆秀, 林国强. 花生种子萌发吸胀阶段冷害抗性的鉴定及耐冷种质的筛选. 植物遗传资源学报, 2020, 21:192-200.
Chen H, Xu R R, Chen X Y, Zhang Y M, Hu R F, Lan X L, Tang Z X, Lin G Q. Identification of imbibitional chilling injury resistance for peanut and screening of imbibitional chilling-tolerance germplasm. J Plant Genet Resour, 2020, 21:192-200 (in Chinese with English abstract).
[8] 张高华, 于树涛, 王鹤, 王旭达. 高油酸花生发芽期低温胁迫转录组及差异表达基因分析. 遗传, 2019, 41:1050-1059.
Zhang G H, Yu S T, Wang H, Wang X D. Transcriptome profiling of high oleic peanut under low temperature during germination. Hereditas(Beijing), 2019, 41:1050-1059 (in Chinese with English abstract).
[9] 付晓记, 闵华, 唐爱清, 朱雪晶, 幸胜平, 何家林, 冯健雄. 低温对花生萌芽的影响及其调控技术研究现状. 河南农业科学, 2013, 42(1):1-4.
Fu X J, Min H, Tang A Q, Zhu X J, Xing S P, He J L, Feng J X. Recent progress on germination and regulation techniques of peanut under low temperature. Henan Agric Sci, 2013, 42(1):1-4 (in Chinese with English abstract).
[10] 任艳芳, 何俊瑜, 杨军, 韦愿娟. 外源H2O2对盐胁迫下小白菜种子萌发和幼苗生理特性的影响. 生态学报, 2019, 39:7745-7756.
Ren Y F, He J Y, Yang J, Wei Y J. Effects of exogenous hydrogen peroxide on seed germination and physiological characteristics of pakchoi seedlings ( Brassica chinensisL.) under salt stress. Acta Ecol Sin, 2019, 39:7745-7756 (in Chinese with English abstract).
[11] 朱利君, 闫秋洁, 陈光升, 胡进耀, 罗明华, 杨远兵. 外源H2O2通过介导抗氧化酶、ABA和GA促进高盐胁迫下黄瓜种子的萌发. 植物生理学报, 2019, 55:342-348.
Zhu L J, Yan Q J, Chen G S, Hu J Y, Luo M H, Yang Y B. Exogenous H2O2 promotes seed germination under high salinity by regulating antioxidant enzymes, ABA and GA interaction in cucumber (Cucumis sativus). Plant Physiol J, 2019, 55:342-348 (in Chinese with English abstract).
[12] 蔡凤香, 陈豆豆, 杨飞, 郑欣, 张思韬, 赵凤云. H2O2对水稻幼苗生长和生理的调节. 江苏农业科学, 2016, 44(3):74-77.
Cai F X, Chen D D, Yang F, Zheng X, Zhang S T, Zhao F Y. Effects of hydrogen peroxide on seedling growth and physiological characteristics of rice. Jiangsu Agric Sci, 2016, 44(3):74-77 (in Chinese with English abstract).
[13] 张曼, 戴蓉, 张顺凯, 江海东. H2O2浸种对油菜种子低温萌发的缓解效应. 南京农业大学学报, 2017, 40:963-970.
Zhang M, Dai R, Zhang S K, Jiang H D. Alleviation effects of seed soaking with H2O2 on seed germination in rape under low temperature stress. J Nanjing Agric Univ, 2017, 40:963-970 (in Chinese with English abstract).
[14] 马悦, 王荣华, 朱腾翔, 吴则东, 刘大丽, 王茂芊. 过氧化氢、硼酸、PEG对甜菜种子萌发的影响. 中国农学通报, 2020, 36(6):19-23.
Ma Y, Wang R H, Zhu T X, Wu Z D, Liu D L, Wang M Q. Hydrogen peroxide, boric acid and PEG-6000: effects on the germination of sugar beet seeds. Chin Agric Sci Bull, 2020, 36(6):19-23 (in Chinese with English abstract).
[15] 何士敏, 汪建华, 白珍明, 秦家顺. 过氧化氢浸种对大豆种子萌发的生理生化效应. 大豆科学, 2008, 27(1):176-180.
He S M, Wang J H, Bai Z M, Qin J S. Effect of H2O2 seed soaking on physiological and biochemical characters of soybean germinating. Soybean Sci, 2008, 27(1):176-180 (in Chinese with English abstract).
[16] Wen Y L, Bing X C, Zhong J C, Yin T G, Zhuang C, Jun L. Reactive oxygen species generated by NADPH oxidases promote radicle protrusion and root elongation during rice seed germination. Int J Mol Sci, 2017, 18:110-127.
doi: 10.3390/ijms18010110
[17] Kucera B, Cohn M, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005, 15:281-307.
doi: 10.1079/SSR2005218
[18] Bailly C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem J, 2019, 476:3019-3032.
doi: 10.1042/BCJ20190159
[19] Katsuya-Gaviria K, Caro E, Carrillo-Barral N, Iglesias-Fernández R. Reactive oxygen species (ROS) and nucleic acid modifications during seed dormancy. Plants, 2020, 9:679.
doi: 10.3390/plants9060679
[20] Liu Y, Ye N, Liu R, Chen M, Zhang J. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot, 2010, 61:2979-2990.
doi: 10.1093/jxb/erq125
[21] Yu Y L, Zhen S M, Wang S, Wang Y P, Cao H, Zhang Y Z, Li J R, Yan Y M. Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and H2O2 stresses during seed germination. BMC Genomics, 2016, 17:97.
doi: 10.1186/s12864-016-2416-9
[22] 王俊力, 王岩, 赵天宏, 曹莹, 刘玉莲, 段萌. 臭氧胁迫对大豆叶片抗坏血酸——谷胱甘肽循环的影响. 生态学报, 2011, 31:2068-2075.
Wang J L, Wang Y, Zhao T H, Cao Y, Liu Y L, Duan M. Effects of ozone on AsA—GSH cycle in soybean leaves. Acta Ecol Sin, 2011, 31:2068-2075 (in Chinese with English abstract).
[23] Christophe B. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem J, 2019, 476:3019-3032.
doi: 10.1042/BCJ20190159
[24] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40:1141-1156.
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40:1141-1156 (in Chinese with English abstract).
[25] 牛晓雪, 牟萌, 李保华, 董学会. FeSO4引发提高秦艽种子萌发的生理机制. 中国生态农业学报, 2018, 26:1828-1835.
Niu X X, Mu M, Li B H, Dong X H. Physiological mechanism of FeSO4 priming improvement of seed germination performances of Gentiana macrophylla. Chin J Eco-Agric, 2018, 26:1828-1835 (in Chinese with English abstract).
[26] 房元瑾, 孙子淇, 苗利娟, 齐飞艳, 黄冰艳, 郑峥, 董文召, 汤丰收, 张新友. 花生籽仁外观和营养品质特征及食用型花生育种利用分析. 植物遗传资源学报, 2018, 19:875-886.
Fang Y J, Sun Z Q, Miao L J, Qi F Y, Huang B Y, Zheng Z, Dong W Z, Tang F S, Zhang X Y. Characterization of kernel appearance and nutritional quality in peanut accessions and Its application for food-use peanut breeding. J Plant Genet Resour, 2018, 19:875-886 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[7] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[10] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[13] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[14] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
[15] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!