欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (1): 203-214.doi: 10.3724/SP.J.1006.2022.13032

• 耕作栽培·生理生化 • 上一篇    下一篇

磷肥对甜玉米籽粒植酸和锌有效性的影响

苏达1,2(), 颜晓军2, 蔡远扬3, 梁恬4, 吴良泉2, MUHAMMAD AtifMuneer2, 叶德练1,2,*()   

  1. 1福建农林大学农学院 / 作物遗传育种与综合利用教育部重点实验室, 福建福州 350002
    2福建农林大学资源与环境学院/国际镁营养研究所, 福建福州 350002
    3吉林大学植物科学学院, 吉林长春 130062
    4福建农林大学林学院, 福建福州 350002
  • 收稿日期:2021-04-18 接受日期:2021-07-12 出版日期:2022-01-12 网络出版日期:2021-08-06
  • 通讯作者: 叶德练
  • 作者简介:E-mail: suda@fafu.edu.cn
  • 基金资助:
    福建省自然科学基金项目(2019J01374);福建省自然科学基金项目(2020J01534);国家自然科学基金项目(31701367);国际镁营养研究所基金项目(IMI2018-12)

Effects of phosphorus fertilizer on kernel phytic acid and zinc bioavailability in sweet corn

SU Da1,2(), YAN Xiao-Jun2, CAI Yuan-Yang3, LIANG Tian4, WU Liang-Quan2, MUHAMMAD Atif Muneer2, YE De-Lian1,2,*()   

  1. 1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2College of Resources and Environment / International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    3College of Plant Science, Jilin University, Changchun 130062, Jilin, China
    4College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2021-04-18 Accepted:2021-07-12 Published:2022-01-12 Published online:2021-08-06
  • Contact: YE De-Lian
  • Supported by:
    Fujian Province Natural Science(2019J01374);Fujian Province Natural Science(2020J01534);National Natural Science Foundation of China(31701367);International Magnesium Institute Foundation(IMI2018-12)

摘要:

为明确磷肥对甜玉米籽粒营养特性的影响, 利用不同品种的磷肥定位试验以及磷肥梯度水平试验, 探讨甜玉米籽粒植酸、磷(P)、锌(Zn)含量及Zn有效性的时间(不同灌浆期)和空间(果穗上、中、下部; 籽粒果皮、胚乳和胚)变化及其对外源磷肥的响应特性。试验结果表明, 甜玉米籽粒的P和植酸含量随磷肥用量的增加而增加, Zn含量及其有效性则呈现下降趋势。磷肥投入对吐丝后16~24 d籽粒的植酸、P和Zn的积累(mg plant-1)的影响最为显著, 而对不同灌浆时期Zn有效性均表现出抑制效应。在中磷水平下, 果穗不同穗位籽粒植酸(g kg-1)和Zn有效性的差异并不显著。高磷水平显著提高了中、下部果穗植酸的含量, 但对不同穗位籽粒Zn含量和Zn有效性均存在抑制效应。对籽粒内不同部位(果皮、胚乳和胚)进行比较, 植酸、P以及Zn含量均以胚中含量最高, 积累量占比则以胚乳中最高; 而Zn有效性以胚中最高。高磷处理可显著提高籽粒内不同部位植酸和磷含量, 降低Zn含量及其有效性。综上, 合理磷肥施用可促进籽粒Zn积累, 而过量磷肥投入会显著增加不同灌浆时期, 以及胚乳和胚中的植酸含量和积累量, 并最终对甜玉米不同穗位籽粒和籽粒内不同部位Zn有效性都产生一定程度的抑制效应, 相关研究或为甜玉米籽粒Zn有效性的提高提供理论参考。

关键词: 甜玉米, 植酸, 生物强化, 锌有效性, 品质

Abstract:

To clarify the effects of phosphorus fertilizer on nutritional characteristics of sweet corn kernels, the temporal (different filling stages) and spatial (upper, middle, and lower cob; kernel skin dregs, endosperm and embryo) variations of phytic acid (PA), phosphorus (P) and zinc (Zn) contents and Zn bioavailability of sweet corn kernels and their responses to exogenous phosphorus fertilizer were investigated using filed phosphorus fertilizer experiment (P fertilizer location experiment for sweet corn genotypes and P fertilizer level experiment). The results were as follows: P fertilizer mainly inhibited Zn bioavailability by suppressing Zn concentration in sweet corn kernels, and increased PA concentrations concurrently. P fertilizer input showed significant effects on the accumulation of PA, P, and Zn (mg plant-1) after 16-24 days of silking, while inhibitory effects were detected on Zn bioavailability at different kernel filling stages. There was no significant difference in the kernel of PA (g kg-1) and zinc bioavailability among different cob positions under medium P treatment. However, the high P level significantly improved the accumulation of PA in the middle and lower cob, while the inhibitory effect was found on the kernel of Zn concentration and Zn bioavailability at all cob positions. Among different parts of the kernel (skin dregs, endosperm, and embryo), the concentrations of PA, P, and Zn were the highest values in the embryo and their accumulation were the highest value in the endosperm, while Zn bioavailability was also the highest in the embryo. High P treatment significantly increased PA and P concentrations and decreased Zn concentration and its bioavailability at different kernel positions. Hence, optimized phosphorus fertilizer application could promote kernel Zn accumulation, while excessive P fertilizer input significantly increased PA accumulation at different filling stages, as well as in the endosperm and embryo, and eventually had a significant inhibitory effect on kernel Zn bioavailability in sweet corn at different cob and kernel positions. This study provides a theoretical reference for the biofortification of Zn in sweet corn seeds.

Key words: sweet corn, phytic acid, biofortification, zinc bioavailability, quality

表1

磷肥处理对不同甜玉米品种籽粒植酸和磷含量的影响"

磷肥水平
P levels
品种 Genotype
万甜2015号
Wantian 2015
广良甜31号
Guangliangtian 31
闽双色4号
Minshuangse 4
先甜5号
Xiantian 5
粤甜28号
Yuetian 28
永珍7号
Yongzhen 7
植酸含量 Concentration of PA (g kg-1)
无磷肥处理CK 7.87±0.06 7.39±0.08 7.87±0.01 7.48±0.09 7.82±0.04 7.82±0.05
高磷肥处理HP 8.07±0.02 8.06±0.11 8.30±0.04 7.99±0.05 8.11±0.02 8.09±0.03
DD-value 0.20* 0.67** 0.43** 0.51** 0.29** 0.27*
变化率 Fluctuating rate (%) 2.54 9.07 5.46 6.82 3.71 3.45
磷含量 Concentration of P (g kg-1)
无磷肥处理CK 3.32±0.03 3.15±0.14 3.10±0.08 3.40±0.12 3.95±0.11 3.40±0.03
高磷肥处理HP 3.91±0.06 3.63±0.06 3.76±0.07 4.35±0.18 3.83±0.03 3.78±0.04
DD-value 0.59** 0.48* 0.66** 0.95* 0.12 0.38**
变化率 Fluctuating rate (%) 17.77 15.24 21.29 27.94 3.04 11.18

图1

磷肥处理对不同甜玉米品种籽粒锌含量、[PA]/[Zn]以及TAZ的影响 CK: 无磷肥处理; HP: 高磷肥处理。*、**和***分别代表同一品种内两种磷水平下的差异显著性达0.05、0.01和0.001水平。Zn: 锌; [PA]/[Zn]: 植酸与锌的摩尔比; TAZ: Zn有效性; WT: 万甜2015号; GLT: 广良甜31号; MSS: 闽双色4号; XT: 先甜5号; YT: 粤甜28号; YZ: 永珍7号。"

图2

磷水平对先甜5号甜玉米不同灌浆时期籽粒重的影响 小写字母表示同一灌浆时期内不同磷水平之间的差异显著性(P < 0.05)。大写字母表示同一磷水平内不同灌浆时期的差异显著性(P < 0.05)。P0、P1、P2、P3 表示磷肥水平分别为0、75、150 和 300 kg hm-2。"

图3

磷水平对先甜5号甜玉米不同灌浆时期籽粒植酸、磷和锌含量以及积累量的影响 小写字母表示同一灌浆时期内不同磷水平之间的差异显著性(P < 0.05)。大写字母表示同一磷水平内不同灌浆时期的差异显著性(P < 0.05)。处理同图2。"

图4

磷水平对先甜5号甜玉米不同灌浆时期籽粒锌有效性([PA]/[Zn], TAZ)的影响 小写字母表示同一灌浆时期内不同磷水平之间的差异显著性。大写字母表示同一磷水平内不同灌浆时期的差异显著性。处理同图2。[PA]/[Zn]: 植酸与锌的摩尔比; TAZ: Zn有效性。"

表2

磷肥处理对先甜5号甜玉米果穗不同部位(上、中和下部)籽粒植酸、磷、锌含量、[PA]/[Zn] 以及TAZ的影响"

果穗穗位
Cob position
磷肥水平
P levels
植酸含量
Concentration of PA (g kg-1)
磷含量
Concentration of P
(g kg-1)
锌含量
Concentration of Zn (mg kg-1)
[植酸]/[锌]摩尔比 [PA]/[Zn] 锌有效性
TAZ (mg Zn d-1)
上部
Upside
P0 7.90±0.12 ab A 3.96±0.17 b AB 82.96±1.89 a A 9.45±0.07 b B 2.82±0.02 a A
P1 7.87±0.02 ab A 5.14±0.02 a A 67.22±2.17 b A 11.63±0.40 a A 2.30±0.08 b B
P2 8.21±0.14 a A 5.14±0.06 a A 68.16±3.38 b A 11.99±0.43 a A 2.24±0.08 b A
P3 7.72±0.11 b B 5.09±0.06 a A 61.72±2.92 b A 12.43±0.43 a B 2.15±0.07 b A
中部
Middle
P0 7.91±0.12 b A 4.19±0.10 b A 73.68±2.77 a B 10.66±0.25 b A 2.51±0.06 a B
P1 8.04±0.12 b A 4.96±0.03 a AB 68.64±3.44 ab A 11.64±0.41 b A 2.30±0.09 ab B
P2 8.20±0.05 ab A 5.03±0.06 a A 63.06±3.32 b A 12.94±0.61 a A 2.08±0.10 bc A
P3 8.51±0.15 a A 5.01±0.06 a A 59.49±0.93 b A 14.17±0.10 a A 1.89±0.01 c B
下部
Bottom
P0 7.16±0.11 c B 3.65±0.10 c B 66.96±2.11 a B 10.61±0.27 c A 2.50±0.06 a B
P1 7.03±0.10 c B 4.84±0.08 b B 68.36±1.42 a A 10.19±0.11 c B 2.60±0.03 a A
P2 7.90±0.08 b A 4.99±0.03 ab A 64.08±2.54 ab A 12.26±0.38 b A 2.18±0.07 b A
P3 8.47±0.17 a A 5.10±0.05 a A 59.03±0.99 b A 14.22±0.09 a A 1.89±0.01 c B

图5

磷肥处理对鲜甜5号籽粒内不同部位(果皮、胚乳和胚)粒重(左)及积累量占比(右)的影响 小写字母表示同一籽粒部位内不同磷水平之间的差异显著性(P < 0.05)。处理同图2。"

图6

磷肥处理对鲜甜5号籽粒内不同部位(果皮、胚乳和胚)内植酸、磷、锌含量和积累量的影响 小写字母表示同一籽粒部位内不同磷水平之间的差异显著性(P < 0.05)。大写字母表示同一磷水平内籽粒内不同部位间的差异显著性(P < 0.05)。处理同图2。"

图7

磷肥处理对鲜甜5号甜玉米籽粒内不同部位(果皮、胚乳和胚)锌有效性的影响 小写字母表示同一籽粒部位内不同磷水平之间的差异显著性(P < 0.05)。大写字母表示同一磷水平内籽粒不同部位间的差异显著性(P < 0.05)。处理同图2。[PA]/[Zn]: 植酸与锌的摩尔比; TAZ: Zn有效性。"

[1] Mehta B, Hossain F, Muthusamy V, Baveja A, Zunjare R, Jha S K, Gupta H S. Microsatellite-based genetic diversity analyses of sugary1-, shrunken2- and double mutant-sweet corn inbreds for their utilization in breeding programme. Physiol Mol Biol Plants, 2017, 23:411-420.
[2] 李余良, 刘建华, 郑锦荣, 胡建广. 高温胁迫下甜玉米雌穗发育基因差异表达谱分析. 作物学报, 2013, 39:269-279.
Li Y L, Liu J H, Zheng J R, Hu J G. Gene expression profile of sweet corn ears under heat stress. Acta Agron Sin, 2013, 39:269-279 (in Chinese with English abstract).
[3] Poulsen K H, Nagy R, Gao L, Smith S E, Bucher M, Smith F A, Jakobsen I. Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol, 2005, 168:445-453.
[4] Zhu X K, Li C Y, Jiang Z Q, Huang L L, Feng C N, Guo W S, Peng Y X. Responses of phosphorus use efficiency, grain yield, and quality to phosphorus application amount of weak-gluten wheat. J Integr Agric, 2012, 11:1103-1110.
[5] 颜晓军, 叶德练, 苏达, 李芳, 郑朝元, 吴良泉. 磷肥用量对甜玉米磷素吸收利用的影响. 作物学报, 2021, 47:169-176.
Yan X J, Ye D L, Su D, Li F, Zheng C Y, Wu L Q. Effects of phosphorus application on phosphorus uptake and utilization of sweet corn. Acta Agron Sin, 2021, 47:169-176 (in Chinese with English abstract).
[6] Stewart W M, Dibb D W, Johnston A E, Smyth T J. The contribution of commercial fertilizer nutrients to food production. Agron J, 2005, 97:1-6.
[7] Zhang W, Liu D, Liu Y, Chen X, Zou C. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.). J Agric Food Chem, 2017, 65:1473-1482.
[8] Fukushima A, Perera I, Hosoya K, Akabane T, Hirotsu N. Genotypic differences in the effect of P fertilization on phytic acid content in rice grain. Plants, 2020, 9:146.
[9] Jackson C A, Windes J M, Bregitzer P, Obert D, Price W, Brown B. Phosphorus fertility effects on the expression of the low phytic acid barley phenotype. Crop Sci, 2009, 49:1800-1806.
[10] Coelho C M M, Santos J C P, Tsai S M, Vitorello V A. Seed phytate content and phosphorus uptake and distribution in dry bean genotypes. Brazil J Plant Physiol, 2002, 14:51-58.
[11] Buerkert A, Haake C, Ruckwied M, Marschner H. Phosphorus application affects the nutritional quality of millet grain in the Sahel. Field Crops Res, 1998, 57:223-235.
[12] Israel D W, Kwanyuen P, Burton J W, Walker D R. Response of low seed phytic acid soybeans to increases in external phosphorus supply. Crop Sci, 2007, 47:2036-2046.
[13] Aimić D, Sudar R, Ledenčan T, Jambrović A, Zdunić Z, Brkić I, Kovačević V. Genetic variation of bioavailable iron and zinc in grain of a maize population. J Cereal Sci, 2009, 50:392-397.
[14] Borg S, Brinch-Pedersen H, Tauris B, Holm P B. Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil, 2009, 325:15-24.
[15] Xue Y, Yue S, Liu D, Zhang W, Chen X, Zou C. Dynamic zinc accumulation and contributions of pre- and/or post-silking zinc uptake to grain zinc of maize as affected by nitrogen supply. Front Plant Sci, 2019, 10:1203.
[16] Raboy V, Gerbasi P F, Young K A, Stoneberg S D, Pickett S G, Bauman A T, Murthy P P N, Sheridan W F, Ertl D S. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol, 2000, 124:355-368.
[17] Su D, Zhou L J, Zhao Q, Pan G, Cheng F M. Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (Oryza sativa L.) grains. J Agric Food Chem, 2018, 66:1601-1611.
[18] Wei Y, Shohag M J I, Wang Y, Lu L, Wu C, Yang X. Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination. J Agric Food Chem, 2012, 60:1871-1879.
[19] Liang J, Han B Z, Nout M J, Hamer R J. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem, 2008, 110:821-828.
[20] Miller L V, Krebs N F, Hambidge K M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J Nutr, 2007, 137:135-141.
[21] Cheah Z X, Kopittke P M, Harper S M, Meyer G, O’Hare T J, Bell M J. Speciation and accumulation of Zn in sweetcorn kernels for genetic and agronomic biofortification programs. Planta, 2019, 250:219-227.
[22] White P J, Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets: iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol, 2009, 182:49-84.
[23] Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot, 2004, 55:353-364.
[24] Zhang Y, Sun Y, Ye Y, Karim M R, Xue Y, Yan P, Meng Q, Cui Z, Cakmak I, Zhang F, Zou C. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Res, 2012, 125:1-7.
[25] Ma G, Jin Y, Li Y, Zhai F, Kok F J, Jacobsen E, Yang X. Iron and zinc deficiencies in China: what is a feasible and cost-effective strategy? Public Health Nutr, 2008, 11:632-638.
[26] Prasad A S. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr, 2013, 4:176-190.
[27] Yakoob M Y, Theodoratou E, Jabeen A, Imdad A, Eisele T P, Ferguson J, Jhass A, Rudan I, Campbell H, Black R E, Bhutta Z A. Preventive zinc supplementation in developing countries: impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Public Health, 2011, 11:S23.
[28] Feil B, Moser S B, Jampatong S, Stamp P. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci, 2005, 45:516-523.
[29] Chen X, Liu Y, Zhao Q, Cao W, Chen X, Zou C. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environ Pollut, 2020, 262:114348.
[30] Zhang W, Zhang W, Wang X, Liu D, Zou C, Chen X. Quantitative evaluation of the grain zinc in cereal crops caused by phosphorus fertilization. A meta-analysis. Agron Sustain Dev, 2021, 41:6.
[31] Lott J N A, Ockenden I, Raboy V, Batten G D. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res, 2000, 10:11-33.
[32] Lestienne I, Icard-Vernière C, Mouquet C, Picq C, Trèche S. Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem, 2005, 89:421-425.
[33] Adams C L, Hambidge M, Raboy V, Dorsch J A, Sian L, Westcott J L, Krebs N F. Zinc absorption from a low-phytic acid maize. Am J Clin Nutr, 2002, 76:556-559.
[34] Zhang W, Liu D, Li C, Chen X, Zou C. Accumulation, partitioning, and bioavailability of micronutrients in summer maize as affected by phosphorus supply. Eur J Agron, 2017, 86:48-59.
[35] Horvatić M, Gačć M, Filajdić M. Accumulation of zinc and molar ratio of phytic acid and zinc during maize grain maturation. J Agron Crop Sci, 1998, 180:233-239.
[36] 陆大雷, 郭换粉, 董策, 陆卫平. 普通、甜、糯玉米果穗不同部位籽粒淀粉理化特性和颗粒分布差异. 作物学报, 2011, 37:331-338.
Lu D L, Guo H F, Dong C, Lu W P. Starch physicochemical characteristics and granule size distribution at apical, middle and basal ear positions in normal, sweet, and waxy maize. Acta Agron Sin, 2011, 37:331-338 (in Chinese with English abstract).
[37] 崔丽娜, 高荣岐, 孙爱清, 董树亭, 张华永. 不同基因型玉米籽粒类胡萝卜素与花色苷色素积累规律. 作物学报, 2010, 36:818-825.
Cui L N, Gao R Q, Sun A Q, Dong S T, Zhang H Y. Regularity of carotenoids and anthocyanins accumulation in various genotypes of maize kernel. Acta Agron Sin, 2010, 36:818-825 (in Chinese with English abstract).
[38] An L, Tao Y, Chen H, He M, Xiao F, Li G, Ding Y. Embryo-endosperm interaction and its agronomic relevance to rice quality. Front Plant Sci, 2020, 11:587641.
[39] Wu Y, Messing J. Proteome balancing of the maize seed for higher nutritional value. Front Plant Sci, 2014, 5:240.
[40] Suri D J, Tanumihardjo S A. Effects of different processing methods on the micronutrient and phytochemical contents of maize: from A to Z. Compr Rev Food Sci Food Saf, 2016, 15:912-926.
[1] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[2] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[3] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[4] 李博, 张驰, 曾玉玲, 李秋萍, 任洪超, 卢慧, 杨帆, 陈虹, 王丽, 陈勇, 任万军, 邓飞. 播期对四川盆地杂交籼稻米饭食味品质的影响[J]. 作物学报, 2021, 47(7): 1360-1371.
[5] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[6] 赵杰, 李绍平, 程爽, 田晋钰, 邢志鹏, 陶钰, 周磊, 刘秋员, 胡雅杰, 郭保卫, 高辉, 魏海燕, 张洪程. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162-1174.
[7] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914.
[8] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[9] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[10] 车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 窦志, 徐强, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953-1965.
[11] 颜晓军, 叶德练, 苏达, 李芳, 郑朝元, 吴良泉. 磷肥用量对甜玉米磷素吸收利用的影响[J]. 作物学报, 2021, 47(1): 169-176.
[12] 田景山, 张煦怡, 王文敏, 杨延龙, 随龙龙, 张鹏鹏, 张亚黎, 张旺锋, 勾玲. 棉花脱叶催熟剂对纤维品质的影响及应用时间的确定[J]. 作物学报, 2020, 46(9): 1388-1397.
[13] 韩展誉,管弦悦,赵倩,吴春艳,黄福灯,潘刚,程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7): 1087-1098.
[14] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[15] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!