作物学报 ›› 2022, Vol. 48 ›› Issue (4): 825-839.doi: 10.3724/SP.J.1006.2022.14080
晋敏姗1(), 曲瑞芳1, 李红英1,3, 韩彦卿2,3, 马芳芳1,3, 韩渊怀1,3, 邢国芳1,3,*()
JIN Min-Shan1(), QU Rui-Fang1, LI Hong-Ying1,3, HAN Yan-Qing2,3, MA Fang-Fang1,3, HAN Yuan-Huai1,3, XING Guo-Fang1,3,*()
摘要:
糖转运蛋白(sugar transporter proteins, STPs)是一类主要转运己糖的单糖转运蛋白, 在作物的生长发育和抗逆过程中发挥着重要作用。谷子是绿色旱作农业的主栽作物, 也是C4光合作用机理和禾本科抗逆基因挖掘的模式植物, 目前有关谷子STP基因功能的研究还鲜有报道。因此, 本研究利用生物信息学方法, 对包括谷子在内的6种禾本科作物的STPs基因进行全基因组鉴定, 重点对谷子SiSTPs基因的理化性质、染色体定位、系统进化、基因结构、保守结构域、组织表达模式, 并对其参与谷子干旱和低磷胁迫以及白发病抗性响应进行了深入分析。在谷子、狗尾草、高粱、玉米、小麦和水稻中分别鉴定出STP基因家族成员24、26、23、22、33和27个, 系统进化分析聚为4类。谷子的24个SiSTP基因不均匀的分布在7条染色体上, 其编码氨基酸的大小为499~581 aa, 这些SiSTP蛋白都具有Sugar_tr (PF00083)保守结构域, 并且在启动子区存在大量的光响应以及逆境响应元件, 分析发现谷子SiSTPs基因在进化过程中受到了强烈的纯化选择压力, 存在明显的组织表达特异性, 且受光诱导, 不同成员在低磷胁迫、干旱胁迫和白发病侵染过程中表达存在差异。本研究为阐明谷子STP蛋白的功能以及响应逆境胁迫机理提供理论基础。
[1] |
Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. Plant Cell, 2002, 14:S185-S205.
doi: 10.1105/tpc.010455 |
[2] |
Smeekens S, Hellmann H A. Sugar sensing and signaling in plants. Front Plant Sci, 2014, 5:113-114.
doi: 10.3389/fpls.2014.00113 pmid: 24723932 |
[3] |
Kong W L, An B G, Zhang Y, Yang J, Li M S, Sun T, Li Y S. Sugar transporter proteins (STPs) in gramineae crops: comparative analysis, phylogeny, evolution, and expression profiling. Cells, 2019, 8:560-573.
doi: 10.3390/cells8060560 |
[4] | Büttner M. The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol, 2010, 12:3541-3547. |
[5] |
Williams L E, Lemoine R, Sauer N. Sugar transporters in higher plants—a diversity of roles and complex regulation. Trends Plant Sci, 2000, 5:283-290.
pmid: 10871900 |
[6] |
Naohiro A, Tatsuro H, Scofield G N, Whitfeld P R, Furbank R T. The sucrose transporter gene family in rice. Plant Cell Physiol, 2003, 44:223-232.
pmid: 12668768 |
[7] |
Johnson D A, Thomas M A. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence. Mol Biol Evol, 2007, 24:2412-2423.
doi: 10.1093/molbev/msm184 |
[8] | Meng Y, Wang S. Rice MtN3/saliva family genes and their homologues in cellular organisms. Mol Plant, 2013, 6:655-674. |
[9] |
Chen L Q, Cheung L S, Feng L, Tanner W, Frommer W B. Transport of sugars. Annu Rev Biochem, 2015, 84:865-894.
doi: 10.1146/biochem.2015.84.issue-1 |
[10] |
Weschke W, Panitz R, Gubatz S, Wang Q, Wobus U. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J, 2003, 33:395-411.
doi: 10.1046/j.1365-313X.2003.01633.x |
[11] |
Lalonde S, Wipf D, Frommer W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 2004, 55:341-372.
pmid: 15377224 |
[12] |
Kühn C, Franceschi V R, Schulz A, Lemoine R, Frommer W B. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science, 1997, 275:1298-1300.
pmid: 9036853 |
[13] | 袁进成, 刘颖慧. 植物糖转运蛋白研究进展. 中国农学通报, 2013, 29(36):287-294. |
Yuan J C, Liu Y H. Genetics and functional properties of sugar transporters in plants. Chin Agric Sci Bull, 2013, 29(36):287-294 (in Chinese with English abstract). | |
[14] |
Chang A B, Lin R, Studley W K, Tran C V, Saier M H. Phylogeny as a guide to structure and function of membrane transport proteins (review). Mol Membr Biol, 2004, 21:171-178.
doi: 10.1080/09687680410001720830 |
[15] |
Saier M H. Families of transmembrane sugar transport proteins. Mol Microbiol, 2000, 35:699-710.
pmid: 10692148 |
[16] |
Sauer N, Friedländer K, Gräml-Wicke U. Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J, 1990, 9:3045-3050.
pmid: 2209537 |
[17] |
Scholz-Starke J, Büttner M, Sauer N. AtSTP6, a new pollen- specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol, 2003, 131:70-77.
pmid: 12529516 |
[18] |
Norholm M H H, Nour-Eldin H H, Brodersen P, Mundy J, Halkier B A. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Lett, 2006, 580:2381-2387.
pmid: 16616142 |
[19] |
Schneidereit A, Scholz-Starke J, Büttner M. Functional characterization and expression analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis. Plant Physiol, 2003, 133:182-190.
pmid: 12970485 |
[20] |
Sherson S M, Hemmann G, Wallace G, Forbes S, Smith S M. Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars. Plant J, 2000, 24:849-857.
pmid: 11135118 |
[21] |
Otori K, Tanabe N, Tamoi M, Shigeoka S. Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis. Biosci Biotechnol Biochem, 2019, 83:472-481.
doi: 10.1080/09168451.2018.1550355 |
[22] |
Truernit E, Schmid J, Epple P, Illig J, Sauer N. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell, 1996, 8:2169-2182.
pmid: 8989877 |
[23] | 毛常青. 玉米糖转运蛋白基因的鉴定、系统发育和表达分析. 四川农业大学硕士学位论文,四川温江, 2019. |
Mao C Q. Identification, Phylogenetic and Expression Analysis of Sugar Transporter Gene in Maize. MS Thesis of Sichuan Agricultural University, Wenjiang, Sichuan,China, 2019 (in Chinese with English abstract). | |
[24] |
Büttner M, Truernit E, Baier K. Scholz-Starke J, Sontheim M, Lauterbach C, Huss V A R, Sauer N. AtSTP3, a green leaf- specific, low affinity monosaccharide-H+ symporter of Arabidopsis thaliana. Plant Cell Environ, 2000, 23:175-184.
doi: 10.1046/j.1365-3040.2000.00538.x |
[25] |
Fotopoulos V, Gilbert M J, Pittman J K, Marvier A C, Buchanan A J, Sauer N, Hall J L, Williams L E. The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol, 2003, 132:821-829.
pmid: 12805612 |
[26] | 李国顺, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54:459-470. |
Li G S, Liu F, Liu M, Cheng R H, Xia E J, Diao X M. Current status and future prospective of foxtail millet production and seed industry in China. Sci Agric Sin, 2021, 54:459-470 (in Chinese with English abstract). | |
[27] | 刁现民. 中国谷子产业与产业技术体系. 北京: 中国农业科学技术出版社, 2011. |
Diao X M. China’s Millet Industry and Industrial Technology System. Beijing: China Agricultural Science and Technology Press, 2011 (in Chinese). | |
[28] | 贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29:292-301. |
Jia G Q, Diao X M. Current status and perspectives of research on foxtail millet (Setaria italica(L.) P. Beauv): a potential model of plant functional genomics studies. Chin Bull Life Sci, 2017, 29:292-301 (in Chinese with English abstract). | |
[29] |
Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini-foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6:1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[30] |
Diao X M. Production and genetic improvement of minor cereals in China. Crop J, 2017, 5:103-114.
doi: 10.1016/j.cj.2016.06.004 |
[31] |
Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X W, Wu X M, Mitros T, Triplett J, Yang X H, Ye C Y, Mauro- Herrera M, Wang L, Li P H, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nat Biotechnol, 2012, 30:555-561.
doi: 10.1038/nbt.2196 pmid: 22580951 |
[32] |
Zhang Z, Liao H, Lucas W J. Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants. J Integr Plant Biol, 2014, 56:192-220.
doi: 10.1111/jipb.12163 |
[33] | Lata C, Prasad M. Setavia genome sequencing: an overview. J Plant Biochem Biotechol, 2013, 22:257-260. |
[34] |
Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet, 2013, 45:957-961.
doi: 10.1038/ng.2673 |
[35] |
Saier M H. Families of transmembrane sugar transport proteins. Mol Microbiol, 2010, 35:699-710.
doi: 10.1046/j.1365-2958.2000.01759.x |
[36] |
Chen C J, Chen H, Zhang Y, Thomas H R, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13:1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[37] | 徐志军, 刘洋, 徐磊, 安东升. 高粱糖转运蛋白基因家族全基因组鉴定、分类及表达分析. 华北农学报, 2019, 34(5):65-73. |
Xu Z J, Liu Y, Xu L, An D S. Genome-wide identification, classification and expression analysis of sugar transporter gene family in sorghum bicolor. Acta Agric Boreali-Sin, 2019, 34(5):65-73 (in Chinese with English abstract). | |
[38] |
Schofield R A, Bi Y-M, Kant S, Rothstein S J. Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant Cell Environ, 2010, 32:271-285.
doi: 10.1111/pce.2009.32.issue-3 |
[39] |
Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot Pierre, La Camera S. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Mol Biol, 2014, 85:473-484.
doi: 10.1007/s11103-014-0198-5 pmid: 24817131 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[3] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[4] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[5] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[6] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[7] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[8] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[9] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[10] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[11] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
[12] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[13] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
[14] | 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062. |
[15] | 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2a和GmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032. |
|