欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2546-2559.doi: 10.3724/SP.J.1006.2022.14148

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

苎麻CCRs基因家族3类成员的生化特性与表达差异

唐映红1,3,4(), 刘芳2, 陈建荣2,*(), 毛凯权2, 李辉1,3, 万海清1   

  1. 1湖南文理学院生命与环境科学学院, 湖南常德 415000
    2长沙学院生物与环境工程学院, 湖南长沙 410022
    3常德市农业生物大分子研究中心, 湖南常德 415000
    4常德市人工智能与生物医药研究中心, 湖南常德 415000
  • 收稿日期:2021-08-15 接受日期:2022-01-05 出版日期:2022-10-12 网络出版日期:2022-02-22
  • 通讯作者: 陈建荣
  • 作者简介:第一作者联系方式: 唐映红, E-mail: yinghongtang2019@163.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家自然科学基金青年基金项目(31301374);湖南省自然科学基金青年基金项目(2021JJ40378);湖南文理学院博士科研启动项目(19BSQD35)

Biochemical characteristics and expression differences of three members of CCRs in ramie (Boehmeria nivea)

TANG Ying-Hong1,3,4(), LIU Fang2, CHEN Jian-Rong2,*(), MAO Kai-Quan2, LI Hui1,3, WAN Hai-Qing1   

  1. 1College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, Hunan, China
    2School of Biological and Environmental Engineering, Changsha University, Changsha 410022, Hunan, China
    3Changde Research Centre Agricultural Biological Macromolecule, Changde 415000, Hunan, China
    4Changde Research Centre for Artificial Intelligence and Biomedicine, Changde 415000, Hunan, China
  • Received:2021-08-15 Accepted:2022-01-05 Published:2022-10-12 Published online:2022-02-22
  • Contact: CHEN Jian-Rong
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    Youth Fund Project of National Natural Science Foundation(31301374);Youth Fund Project of Hunan Natural Science Foundation(2021JJ40378);Doctoral Research Start Project of Hunan University of Arts and Science(19BSQD35)

摘要:

肉桂酰辅酶A还原酶(CCR)是木质素生物合成的关键酶, 在植物中多以基因家族形式存在。本研究通过苎麻转录组信息, 筛选并克隆了4个苎麻CCR基因家族成员(BnCCRBnCCR-1BnCCR-2BnCCR-3)。序列分析结果发现4个BnCCRs可以分为3类, BnCCR属于bona fide CCR类群, BnCCR-1为CCR类似蛋白, 而BnCCR-2BnCCR-3序列在NADPH结合功能域、催化三联体以及CCR底物结合位点上均与bona fide CCR都有差异, 形成了苎麻中一个新的CCR类群。跨膜结构分析显示, BnCCR含有1个跨膜螺旋区, 其他3个BnCCRse无跨膜螺旋区。结构分析显示, 4个BnCCRs的二级和三级结构存在差异, BnCCR-2同源建模模板不同于其他3个BnCCRs。时空表达谱分析发现, BnCCR在快速生长期的木质部具有较高表达水平, 而BnCCR-2在快速生长期的韧皮部具有非常高的表达水平。体外酶活测定进一步研究发现, BnCCR具有典型的bona fide CCR催化活性和底物适应性, 而BnCCR-2的表现不同于典型CCR的底物适应性, 对肉桂酰CoA和芥子酰CoA表现出结合特异性。因此, 苎麻中BnCCR参与木质素的生物合成, 而BnCCR-2是具有不同于典型CCR结构、组织表达和体外生化功能的一个新类群, BnCCR-2可能不参与或并不仅仅参与木质素的生物合成, 这为研究CCR蛋白家族的进化提供了新的参考。

关键词: 苎麻, 肉桂酰辅酶A还原酶, 表达差异, 催化特异性

Abstract:

Cinnamoyl-CoA reductases (CCR) is a key enzyme in lignin biosynthesis. CCR mostly exists in the form of gene family in plants. In this study, four family members of CCR (BnCCR, BnCCR-1, BnCCR-2, and BnCCR-3) were screened and cloned by ramie transcriptome information. Sequence analysis revealed that the four BnCCRs can be divided into three categories. BnCCR belonged to bona fide CCR group, BnCCR-1 was a CCR like protein, while BnCCR-2 and BnCCR-3 sequences were different from bona fide CCR in NADPH binding domain, catalytic triad, and CCR substrate binding site, and formed a new group in ramie. Transmembrane structure analysis showed that BnCCR contained two transmembrane regions, and the other three BnCCRs didn’t contain transmembrane regions. Structural analysis indicated that the secondary and tertiary structure of the four BnCCRs were different, and the BnCCR-2 homologous modeling template was different from the other three BnCCRs. The qRT-PCR analysis demonstrated that BnCCR had higher expression levels in xylem at rapid growth stage, BnCCR-2 had the highest expression levels in phloem at rapid growth stage. In vitro enzyme activity analysis further found that BnCCR had typical bona fide CCR catalytic activity and substrate adaptability, while BnCCR-2 was different from the substrate adaptability of typical CCR, and had substrate specificity for cinnamoyl CoA and sinapoyl CoA. Therefore, BnCCR was involved in lignin biosynthesis, while BnCCR-2 was a new group with structure, tissue expression and in vitro biochemical function different from typical CCR. BnCCR-2 may not participate or not only participate in lignin biosynthesis, which provides a new reference for studying the evolution of CCR protein family.

Key words: ramie (Boehmeria nivea), cinnamoyl-CoA reductase, expression difference, catalytic specificity

表1

试验中基因克隆和qRT-PCR所需引物"

引物用途
Primer function
引物名称
Primer name
引物序列
Primer sequence (5'-3')
产物长度
Amplication size (bp)
退火温度
Tm (℃)
基因克隆
Gene cloning
BnCCR-F
BnCCR-R
AAGCGAAAATGCCAGTAGAC
TCAACCATACAAGTTACAACCG
1343 55.0
BnCCR-1F
BnCCR-1R
AATGGTTTAGGATTGAGAAAGTGG
GCTGAACAACAACTGCATCACAATA
1195 63.0
BnCCR-2F
BnCCR-2R
CTCTCATCACAATTTACAACCC
ATTCACTCTACGTGAGCCACT
944 52.3
BnCCR-3F
BnCCR-3R
ATGGACTGTGAAAAACCTGTCG
GATAAATCAACCCACCACAACAT
979 50.9
荧光定量PCR
qRT-PCR
BnCCR-P1
BnCCR-P2
CCCGATGTTGTGGTTGATGAGTC
ACCAAATCCACGCCTTTCTCC
137 60.0
BnCCR-1P1
BnCCR-1P2
AAGACGAGACGCTGGTCAGTT
GACGCCGATTCCCTCATAA
110 58.9
BnCCR-2P1
BnCCR-2P2
GAATTTATGGCAGATGTGGAGGTA
AACAACGGCTGTGATTGAAGAAG
111 61.2
BnCCR-3P1
BnCCR-3P2
TGGATTGGGAGGTAAGAGGA
TGCTAGTGCTTGCCACAACT
197 56.8
内参基因
Reference gene
Actin I-P1
Actin I-P2
CGTTGAACCCTAAGGC
ATCCAGCACGATACCAG
137

表2

试验中原核表达载体构建所需引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
蛋白分子量
Molecular weight (kD)
退火温度
Tm (℃)
BnCCR-BamH I
BnCCR-Hind III
CGCGGATCCATGCCAGTAGACAGCGCTTTGCCAG
CCCAAGCTTCTAAGATTGGATCTTGATGGAATCTTCTTGGG
37 70.7
BnCCR-1 BamH I
BnCCR-1 Sma I
CGCGGATCCATGATGGGGGAGAGAGTGTGTGTG
TCCCCCGGGTTAGCTTAGGGGTAGGACGCCGA
35 66.4
BnCCR-2 BamH I
BnCCR-2 Hind III
CGCGGATCCATGGCACCAACAGTCTGTGTAATG
CCCAAGCTTTCACTCTACGTGAGCCACTCTTTC
33 61.6
BnCCR-3 Sac I
BnCCR-3 Sal I
CGAGCTCATGGACTGTGAAAAACCTGTCG
ACGCGTCGACCTAGCAACAAGCAGTGCTCTCA
34 59.2

附表1

注释为CCR基因的Unigene"

基因 ID
Gene ID
基因长度
Gene length (bp)
Nr ID Nr得分
Nr score
Nr 注释
Nr annotation
CL21616 1530 gi|316939060|gb|ADU64758.1| 610 肉桂酰辅酶A还原酶(巴西橡胶树)
Cinnamoyl-CoA reductase (Hevea brasiliensis)
CL14670 1357 gi|270315112|gb|ACZ74588.1| 352 肉桂酰辅酶A还原酶-类似蛋白1 (柳枝稷)
Cinnamoyl CoA reductase-like 1 (Panicum virgatum)
CL3762 1221 gi|229368454|gb|ACQ59093.1| 403 肉桂酰辅酶A还原酶1 (陆地棉)
Cinnamoyl-CoA reductase 1 (Gossypium hirsutum)
CL15530 1120 gi|21553548|gb|AAM62641.1| 424 肉桂酰辅酶A还原酶-类似蛋白(拟南芥)
Cinnamoyl-CoA reductase-like (Arabidopsis thaliana)

图1

BnCCRs基因氨基酸序列比对 空心三角形和实心三角形分别表示保守位点NADP(H)结合基序和NADP+特异基序; 实心圆球表示参与催化活性的位点; 星星表示鲜明特征。"

图2

BnCCRs氨基酸序列进化树分析 红色实心圆点表示苎麻中的4个肉桂酰辅酶A还原酶基因:BnCCR、BnCCR-1、BnCCR-2、BnCCR-3。"

附图1

BnCCRs蛋白质跨膜区分析 红条矩形表示跨膜螺旋区; 蓝线表示胞内环; 洋红线表示胞外。"

图3

BnCCRs蛋白结构预测 黄色条带代表β折叠; 粉色条带代表α螺旋; 白色条带代表β转角和无规卷曲; 红色棒状氨基酸残基表示R38(X)5K44基序; 蓝色、土黄色和紫色棒状氨基酸残基分别表示短链脱氢酶酶超家族的保守位点催化三联体S123-Y157-K161; 绿色棒状氨基酸残基表示CCR蛋白的重要底物结合位点H202; 浅蓝色圆球表示NAP配体。"

图4

BnCCRs的时空表达谱分析 R: 快速生长期; M: 成熟期; L: 成熟后期。"

图5

BnCCRs重组蛋白的纯化 M: 蛋白170分子量标准; CK: 对照; 1: 诱导全菌; 2: 上清; 3: 目的蛋白。"

图6

BnCCR重组蛋白催化5种混合底物的色谱图"

图7

BnCCR-2重组蛋白催化5种混合底物的色谱图。"

表3

BnCCR和BnCCR-2重组蛋白的酶活性分析"

底物
Substrate
Km (μmol L-1) Vmax (nkat mg-1 protein) Kcat (s-1) Kcat/Km (mmol L-1 s-1)
BnCCR BnCCR-2 BnCCR BnCCR-2 BnCCR BnCCR-2 BnCCR BnCCR-2
肉桂酰CoA
Cinnamoyl CoA
183.77 168.01 3.82 8.06 0.15 0.29 0.83 1.71
芥子酰CoA
Sinapoyl CoA
391.62 197.68 7.68 4.35 0.31 0.16 0.78 0.79
对香豆酰CoA
p-coumaroyl CoA
123.90 ND 4.55 ND 0.18 ND 1.47 ND
阿魏酰CoA
Feruloyl CoA
806.38 ND 13.01 ND 0.52 ND 0.65 ND
咖啡酰CoA
Caffeoyl CoA
ND ND ND ND ND ND ND ND

附图2

BnCCR重组蛋白分别催化4种底物的色谱图"

附图3

BnCCR-2重组蛋白分别催化2种底物的色谱图"

附图4

BnCCR和BnCCR-2重组蛋白催化不同底物的米氏方程曲线"

[1] Zhao Q. Lignification: flexibility, biosynthesis and regulation. Trends Plant Sci, 2016, 21: 713-721.
doi: 10.1016/j.tplants.2016.04.006
[2] 郭亚玉, 许会敏, 赵媛媛, 吴鸿洋, 林金星. 植物木质化过程及其调控的研究进展. 中国科学: 生命科学, 2020, 50: 111-122.
Guo Y Y, Xu H M, Zhao Y Y, Wu H X, Lin J X. Plant lignification and its regulation. Sci Sin (Vitae), 2020, 50: 111-122 (in Chinese with English abatract).
doi: 10.2298/SOS1801111K
[3] Day A, Ruel K, Neutelings G, Cronier D, David H, Hawkins S, Chabbert B. Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta, 2005, 222: 234-245.
doi: 10.1007/s00425-005-1537-1
[4] 袁有美, 唐映红, 刘芳, 陈建荣. 免耕种植水土保持用苎麻木质纤维主要成分分析. 中国农学通报, 2015, 31(31): 242-246.
Yuan Y M, Tang Y H, Liu F, Chen J R. Analysis of fiber main ingredients in no-till planting ramie. Chin Agric Sci Bull, 2015, 31(31): 242-246. (in Chinese with English abstract)
[5] 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望. 作物学报, 2021, 47: 997-1019.
doi: 10.3724/SP.J.1006.2021.04121
Xu Y, Zhang L L, Qi J M, Zhang L M, Zhang L W. Genomics and genetic improvement in main bast fiber crops: advances and perspectives. Acta Agron Sin, 2021, 47: 997-1019. (in Chinese with English abstract)
[6] Sonawane P, Vishwakarma R K, Khan B M. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll- CCRH1) from Leucaena leucocephala. Int J Biol Macromol, 2013, 58: 154-159.
doi: 10.1016/j.ijbiomac.2013.03.050
[7] Barakat A, Yassin N B M, Park J S, Choi A, Herr J, Carlson J E. Comparative and phylogenomic analyses of cinnamoyl-CoA reductase and cinnamoyl-CoA-reductase-like gene family in land plants. Plant Sci, 2011, 181: 249-257.
doi: 10.1016/j.plantsci.2011.05.012
[8] Labeeuw L, Martone P T, Boucher Y, Case R J. Ancient origin of the biosynthesis of lignin precursors. Biol Direct, 2015, 10: 23.
[9] Escamilla-Trevino L L, Shen H, Uppalapati S R, Ray T, Tang Y, Hernandez T, Yin Y, Xu Y, Dixon R A. Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol, 2010, 185: 143-155.
doi: 10.1111/j.1469-8137.2009.03018.x pmid: 19761442
[10] Zhou R, Jackson L, Shadle G, Nakashima J, Temple S, Chen F, Dixon R A. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc Natl Acad Sci USA, 2010, 107: 17803-17808.
doi: 10.1073/pnas.1012900107
[11] Chao N, Li N, Qi Q, Li S, Lyu T, Jiang X N, Gai Y. Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR. Planta, 2017, 245: 61-75.
doi: 10.1007/s00425-016-2591-6 pmid: 27580618
[12] Baltas M, Lapeyre C, Bedos-Belval F, Maturano M, Saint-Aguet P, Roussel L, Duran H, Grima-Pettenati J. Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. Plant Physiol Biochem, 2005, 43: 746-753.
doi: 10.1016/j.plaphy.2005.06.003
[13] Sonawane P, Patel K, Vishwakarma R K, Srivastava S, Singh S, Gaikwad S, Khan B M. Probing the active site of cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala. Int J Biol Macromol, 2013, 60: 33-38.
doi: 10.1016/j.ijbiomac.2013.05.005
[14] Bomati E K, Noel J P. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell, 2005, 17: 1598-1611.
pmid: 15829607
[15] Ma Q H. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. J Exp Bot, 2007, 58: 2011-2021.
doi: 10.1093/jxb/erm064
[16] Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry, 2001, 57: 1187-1195.
pmid: 11430991
[17] Goffner D, Campbell M M, Campargue C, Clastre M, Borderies G, Boudet A, Boudet A M. Purification and characterization of cinnamoyl-coenzyme A: NADP oxidoreductase in Eucalyptus gunnii. Plant Physiol, 1994, 106: 625-632.
pmid: 12232355
[18] Pinçon G, Maury S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M. Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth. Phytochemistry, 2001, 57: 1167-1176.
pmid: 11430989
[19] 李雪平, 彭镇华, 高志民, 胡陶. 抑制COMT基因表达对转基因烟草木质素合成的影响. 分子植物育种, 2012, 10: 689-692.
Li X P, Peng Z H, Gao Z M, Hu T. The Effects of depressing expression of COMT on lignin synthesis of transgenic tobacco. Mol Plant Breed, 2012, 10: 689-692. (in Chinese with English abstract)
[20] Li Y, Kim J I, Pysh L, Chapple C. Four isoforms of Arabidopsis thaliana 4-coumarate: CoA ligase (4CL) have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol, 2015, 169: 2409-2421.
[21] Wang Q, Dai X R, Pang H Y, Cheng Y X, Huang X, Li H, Yan X J, Lu F C, Wei H R, Sederoff R R, Li Q Z. BEL1-like homeodomain protein BLH6a is a negative regulator of CAl5H2 in sinapyl alcohol monolignol biosynthesis in poplar. Front Plant Sci, 2021, 12: 1-14.
[22] Chen J R, Liu F, Tang Y H, Yuan Y M, Guo Q Q. Transcriptome sequencing and profiling of expressed genes in phloem and xylem of ramie (Boehmeria nivea L. Gaud). PLoS One, 2014, 10: e110623.
[23] 唐映红, 陈建荣, 刘芳, 袁有美, 郭清泉, 昌洪涛. 苎麻肉桂酰辅酶A还原酶基因cDNA序列的克隆与分析. 作物学报, 2015, 41: 1324-1332.
doi: 10.3724/SP.J.1006.2015.01324
Tang Y H, Chen J R, Liu F, Yuan Y M, Guo Q Q, Chang H T. cDNA Cloning and analysis of Cinnamoyl-CoA reductase gene from Boehmeria nivea. Acta Agron Sin, 2015, 41: 1324-1332. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01324
[24] Tang Y H, Liu F, Mao K Q, Xing H C, Chen J R, Guo Q Q. Cloning and characterization of the key 4-coumarate CoA ligase genes in Boehmeria nivea. South Afr J Bot, 2018, 116: 123-130.
doi: 10.1016/j.sajb.2018.02.398
[25] Tang Y H, Liu F, Xing H C, Mao K Q, Chen G, Guo Q Q, Chen J R. Correlation analysis of lignin accumulation and expression of key genes involved in lignin biosynthesis of ramie (Boehmeria nivea). Genes, 2019, 10: 389.
[26] Luan M B, Jian J B, Chen P, Chen J H, Chen J H, Gao Q, Gao G, Zhou J H, Chen K M, Guang X M, Chen J K, Zhang Q Q, Wang X F, Fang L, Sun Z M, Bai M Z, Fang X D, Zhao S C, Xiong H P, Yu C M, Zhu A G. Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich. Mol Ecol Resour, 2018, 18: 639-645.
doi: 10.1111/1755-0998.12766
[27] Chao N, Li S, Li N, Qi Q, Jiang W T, Jiang X N, Gai Y. Two distinct cinnamoyl-CoA reductases in Selaginella moellendorffii offer insight into the divergence of CCRs in plants. Planta, 2017, 246: 33-43.
doi: 10.1007/s00425-017-2678-8 pmid: 28321576
[28] Pan H, Zhou R, Louie G V, Mühlemann J K, Bomati E K, Bowman M E, Dudareva N, Dixon R A, Noel J P, Wang X Q. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. Plant Cell, 2014, 26: 3709-3727.
doi: 10.1105/tpc.114.127399
[29] Sattler S A, Walker A M, Vermerris W, Sattler S E, Kang C. Structural and biochemical characterization of Cinnamoyl-CoA reductases. Plant Physiol, 2017, 173: 1031-1044.
doi: 10.1104/pp.16.01671 pmid: 27956488
[30] Chao N, Jiang W T, Wang X C, Jiang X N, Gai Y. Novel motif is capable of determining CCR and CCR-like proteins based on the divergence of CCRs in plants. Tree Physiol, 2019, 39: 2019-2026.
doi: 10.1093/treephys/tpz098 pmid: 31748812
[31] Jones L, Ennos A R, Turner S R. Cloning and characterization of irregular xylem4 (irx4) a severely lignin-deficient mutant of Arabidopsis. Plant J, 2001, 26: 205-216.
pmid: 11389761
[32] 宋恩慧, 蔡诚, 魏国, 高慧, 项艳. RNA干涉培育低木质素杨树. 安徽林业科技, 2012, 38(2): 58-62.
Song E H, Cai C, Wei G, Gao H, Xiang Y. Research on RNA- interference breeding of low- lignin poplar varieties. Anhui For Sci Technol, 2012, 38(2): 58-62 (in Chinese with English abatract).
[33] Wadenbäck J, von Arnold S, Egertsdotter U, Walter M H, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res, 2008, 17: 379-392.
pmid: 17610137
[34] Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA, 2006, 103: 230-235.
doi: 10.1073/pnas.0509875103
[1] 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030.
[2] 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455.
[3] 唐映红, 陈建荣, 刘芳, 袁有美, 郭清泉, 昌洪涛. 苎麻肉桂酰辅酶A还原酶基因cDNA序列的克隆与分析[J]. 作物学报, 2015, 41(09): 1324-1332.
[4] 刘昱翔,陈建荣,彭彦,黄妤,赵燕,黄丽华,郭清泉,张学文. 两种苎麻纤维素合酶基因cDNA序列的克隆及表达[J]. 作物学报, 2014, 40(11): 1925-1935.
[5] 马田田,彭琦,陈松,张洁夫. 核盘菌诱导下甘蓝型油菜防御相关基因表达差异分析[J]. 作物学报, 2014, 40(03): 416-423.
[6] 周精华,余伟林,邢虎成,揭雨成,钟英丽,敬礼恒. 苎麻ACC合酶基因(BnACS1)的克隆和表达分析[J]. 作物学报, 2012, 38(12): 2306-2311.
[7] 夏家平,郭会君,谢永盾,赵林姝,古佳玉,赵世荣,李军辉,刘录祥. 小麦叶绿素缺失突变体Mt135的叶绿体基因差异表达分析[J]. 作物学报, 2012, 38(11): 2122-2130.
[8] 邹自征,陈建华,栾明宝,郭劲霞,王超,王晓飞,许英,孙志民. 应用RSAP、SRAP和SSR分析苎麻种质亲缘关系[J]. 作物学报, 2012, 38(05): 840-847.
[9] 周精华, 邢虎成, 揭雨成, 钟英丽, 朱守晶, 蒋杰, 王亮. 苎麻Δ1-吡咯啉-5-羧酸合成酶(P5CS)基因的克隆和表达分析[J]. 作物学报, 2012, 38(03): 549-555.
[10] 佘玮, 揭雨成, 邢虎成, 鲁雁伟, 黄明, 康万利, 王栋. 苎麻耐镉品种差异及其筛选指标分析[J]. 作物学报, 2011, 37(02): 348-354.
[11] 栾明宝, 陈建华, 许英, 王晓飞, 孙志民. 苎麻核心种质构建方法[J]. 作物学报, 2010, 36(12): 2099-2106.
[12] 马雄风,喻春明,唐守伟,朱爱国,王延周,朱四元,刘建新,熊和平. 苎麻Actinl基因克隆及其在韧皮部纤维不同发育阶段的表达[J]. 作物学报, 2010, 36(1): 101-108.
[13] 马雄风,喻春明,唐守伟,郭三堆,张锐,王延周,朱爱国,朱四元,熊和平. 根癌农杆菌介导的转双价抗虫基因(CryIA+CpTI)苎麻[J]. 作物学报, 2010, 36(05): 788-793.
[14] 符家平,汪波,刘立军,杨金雨,王绪霞,邢秀龙,彭定祥. 根癌农杆菌介导转Bt基因苎麻的获得及其抗虫鉴定[J]. 作物学报, 2009, 35(10): 1771-1777.
[15] 廖亮,李同建,刘中来,邓辉胜,徐玲玲,潘其辉,赖占均,石庆华. 基于细胞学和DNA序列的苎麻与其野生近缘类群系统关系研究[J]. 作物学报, 2009, 35(10): 1778-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[4] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[5] 陈光尧;王国槐;罗峰;聂明建. 甘蓝型油菜成熟角果内源激素对带壳种子发芽的影响[J]. 作物学报, 2007, 33(08): 1324 -1328 .
[6] 朱昀;赵宝存;葛荣朝;沈银柱;黄占景. 小麦T型细胞质雄性不育系、保持系mRNA差异显示及育性相关基因的研究[J]. 作物学报, 2005, 31(03): 398 -401 .
[7] 司怀军;柳俊;谢从华. 马铃薯classⅠpatatin基因在试管块茎形成中的功能[J]. 作物学报, 2006, 32(09): 1406 -1409 .
[8] 许耀奎. 化学诱变剂EMS对春小麦诱变效应的研究[J]. 作物学报, 1985, 11(03): 215 -216 .
[9] 姜华; 陈静;高晓玲;万佳;王平荣;汪旭东;徐正君. ABA对水稻愈伤组织、不定胚发育及其植株再生的影响[J]. 作物学报, 2006, 32(09): 1379 -1383 .
[10] 刘建卫;吴显荣. 我国主要高粱品种含氰势(HCN-P)的分析[J]. 作物学报, 1986, 12(02): 143 -144 .