欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2774-2785.doi: 10.3724/SP.J.1006.2022.14189

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小豆Dirigent基因家族鉴定及锈菌侵染对不同成员表达的影响

柯希望(), 苑梦琦(), 徐晓丹, 殷丽华, 郭永霞, 左豫虎*()   

  1. 黑龙江八一农垦大学农学院 / 黑龙江省作物有害生物互作生物学及生态防控重点实验室 / 国家杂粮工程技术研究中心,黑龙江大庆 163319
  • 收稿日期:2021-10-18 接受日期:2022-02-25 出版日期:2022-11-12 网络出版日期:2022-03-23
  • 通讯作者: 左豫虎
  • 作者简介:第一作者联系方式: 柯希望, E-mail: kexylh@163.com
    苑梦琦: E-mail: 2896834372@qq.com第一联系人:** 同等贡献。
  • 基金资助:
    本研究由国家自然科学基金项目(32102173);黑龙江省自然科学基金项目(YQ2020C034);黑龙江八一农垦大学研究生创新项目(YJSCX2021-Y50)

Dirigent gene family identification and expression profiling of Vigna angularis responsive to Uromyces vignae infection

KE Xi-Wang(), YUAN Meng-Qi(), XU Xiao-Dan, YIN Li-Hua, GUO Yong-Xia, ZUO Yu-Hu*()   

  1. College of Agriculture, Heilongjiang Bayi Agricultural University / Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology Ecological Control / National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang, China
  • Received:2021-10-18 Accepted:2022-02-25 Published:2022-11-12 Published online:2022-03-23
  • Contact: ZUO Yu-Hu
  • Supported by:
    The National Natural Science Foundation of China(32102173);The Heilongjiang Provincial Natural Science Foundation of China(YQ2020C034);The Innovative Research Program for Graduates of Heilongjiang Bayi Agricultural University(YJSCX2021-Y50)

摘要:

为明确Dirigent (DIR)基因在小豆抗锈病中的作用,采用生物信息学方法,对小豆DIR基因家族(VaDIRs)进行了全基因组鉴定,结果发现小豆中共有33个DIR基因,其中29个成员分别定位在8条染色体上,系统进化分析表明,VaDIRs包括DIR-a、DIR-b/d、DIR-e和DIR-f四个亚家族,对VaDIRs成员启动子区顺式作用元件的分析发现,VaDIRs启动子区均包含激素、病原体应答等元件。对小豆抗锈病品种接种后不同时间的转录组数据分析发现,差异表达基因中共有17个VaDIRs成员,其中6个于接种后24 h显著上调,2个于接种后24 h和48 h均高量表达。进一步应用qRT-PCR技术对上述8个基因在抗、感品种中应答锈菌侵染的表达分析表明,高抗品种中VaDIR14VaDIR16VaDIR33的表达量在锈菌侵染不同阶段均显著高于感病品种。上述结果表明,VaDIRs家族成员可作为正调节因子参与小豆对锈病的抗性。

关键词: 小豆(Vigna angularis), 小豆锈病, 豇豆单胞锈菌(Uromyces vignae), DIR基因, 基因家族

Abstract:

To clarify the role of Dirigent (DIR) gene family of adzuki bean (Vigna angularis) in response to Uromyces vignae infection, genome-wide identification of the DIR family genes of V. angularis (VaDIRs) was conducted. A total of 33 VaDIRs in the V. angularis genome were identified, among which 29 members were located on 8 chromosomes, respectively. Phylogenetic analysis showed that VaDIRs consisted of 4 subfamilies (DIR-a, DIR-b/d, DIR-e, and DIR-f). Cis-acting elements analysis of the promoter of VaDIRs indicated that all members of VaDIRs contained hormones and pathogen responsive elements. Transcriptomic data of the rust resistant cultivar at different times after inoculation revealed that 17 VaDIRs members were differentially expressed, among which 6 VaDIRs were significantly upregulated at 24 hours post inoculation (hpi), and 2 members were highly expressed both at 24 and 48 hpi. The relative expression of the genes mentioned above were further confirmed in different resistant cultivars responsive to U. vignae infection by qRT-PCR. Results demonstrated that VaDIR14, VaDIR16, and VaDIR33 in resistant cultivar were significantly induced than those in the susceptible cultivar during the fungal infection. In short, our results indicated that members of VaDIRs could be used as positive regulators in resistant cultivar to prevent U. vignae infection.

Key words: Vigna angularis, adzuki bean rust, Uromyces vignae, DIR gene, gene family

表1

小豆DIR基因家族成员信息"

基因名称
Gene name
蛋白序列号
Protein sequence
基因组注释
Definition
染色体
Chr.
分子量
Molecular
weight (kD)
等电点
pI
氨基酸数量
Number of the amino acids (aa)
VaDIR1 XP_017433474.1 未知蛋白Uncharacterized protein 01 19.78 9.16 185
VaDIR2 XP_017433817.1 类抗病反应蛋白206
Disease resistance response protein 206-like
01 20.35 6.28 182
VaDIR3 XP_017434121.1 类引导蛋白11 Dirigent protein 11-like 01 19.98 6.05 180
VaDIR4 XP_017414154.1 类引导蛋白22 Dirigent protein 22-like 02 20.79 7.07 190
VaDIR5 XP_017414268.1 类引导蛋白16 Dirigent protein 16-like 02 25.10 4.87 245
VaDIR6 XP_017412750.1 类引导蛋白16 Dirigent protein 16-like 02 27.37 5.10 266
VaDIR7 XP_017417575.1 类引导蛋白24 Dirigent protein 24-like 03 45.28 4.74 431
VaDIR8 XP_017416488.1 类引导蛋白25 Dirigent protein 25-like 03 24.22 5.78 224
VaDIR9 XP_017417865.1 类引导蛋白22 Dirigent protein 22-like 03 21.15 9.49 194
VaDIR10 XP_017416739.1 类引导蛋白22 Dirigent protein 22-like 03 20.98 9.40 192
VaDIR11 XP_017417602.1 类引导蛋白22 Dirigent protein 22-like 03 20.47 9.01 188
VaDIR12 XP_017417783.1 类引导蛋白2 Dirigent protein 2-like 03 20.34 5.22 186
VaDIR13 XP_017417792.1 类引导蛋白2 Dirigent protein 2-like 03 20.34 5.22 186
VaDIR14 XP_017417756.1 类引导蛋白22 Dirigent protein 22-like 03 24.04 6.59 216
VaDIR15 XP_017417215.1 类引导蛋白22 Dirigent protein 22-like 03 24.02 6.37 216
VaDIR16 XP_017417998.1 类引导蛋白22 Dirigent protein 22-like 03 24.17 7.07 216
VaDIR17 XP_017424454.1 类引导蛋白21 Dirigent protein 21-like 05 20.53 5.67 186
VaDIR18 XP_017426991.1 类引导蛋白11 Dirigent protein 11-like 06 21.11 8.83 196
VaDIR19 XP_017432020.1 类引导蛋白19 Dirigent protein 19-like 08 14.76 6.72 134
VaDIR20 XP_017432805.1 类引导蛋白2 Dirigent protein 2-like 08 19.32 9.45 177
VaDIR21 XP_017432829.1 类引导蛋白2 Dirigent protein 2-like 08 18.78 8.09 175
VaDIR22 XP_017438130.1 类引导蛋白22 Dirigent protein 22-like 10 15.03 6.32 135
VaDIR23 XP_017441922.1 类抗病反应蛋白206
Disease resistance response protein 206-like
11 21.32 8.58 189
VaDIR24 XP_017441955.1 类抗病反应蛋白206
Disease resistance response protein 206-like
11 20.22 6.95 183
VaDIR25 XP_017441660.1 类引导蛋白22 Dirigent protein 22-like 11 21.49 9.32 192
VaDIR26 XP_017441835.1 类引导蛋白22 Dirigent protein 22-like 11 21.02 9.25 189
VaDIR27 XP_017442075.1 类引导蛋白22 Dirigent protein 22-like 11 21.17 9.30 192
VaDIR28 XP_017442076.1 类引导蛋白22 Dirigent protein 22-like 11 20.49 9.30 187
VaDIR29 XP_017441889.1 类引导蛋白22 Dirigent protein 22-like 11 20.43 6.05 188
VaDIR30 XP_017411398.1 类引导蛋白9 Dirigent protein 9-like / 26.77 6.30 248
VaDIR31 XP_017411409.1 类引导蛋白10 Dirigent protein 10 like / 31.22 4.88 296
VaDIR32 XP_017405347.1 类引导蛋白22 Dirigent protein 22-like / 21.78 6.97 190
VaDIR33 XP_017411321.1 未知蛋白 Uncharacterized protein / 18.71 6.28 173

图1

小豆DIR基因家族染色体定位 由线相连的2个基因为基因对, 由线相连的多个基因表示多个基因构成的基因簇。NW_016114851.1、NW_016115358.1和NW_016115450.1为未组装到染色体上的scaffolds。"

图2

采用最大似然法构建的小豆与其他植物DIR基因家族成员的系统发育树 蓝色代表DIR-a, 绿色代表DIR-b/d, 玫红色代表DIR-c, 紫色代表DIR-e, 黄色代表DIR-f, 粉色代表DIR-g。系统发育树上的数字为bootstrap值。"

图3

小豆DIR基因家族的基因结构与蛋白保守基序分布 A: 保守结构域; B: 基因内含子-外显子结构。UTR: 非编码区; CDS: 蛋白编码序列; —: 内含子。"

图4

小豆DIR基因家族启动子顺式作用元件分布 TGA-element: 生长素响应元件; Myb: 参与植物的细胞分化、激素和环境因子的应答; as-1: 生长素和水杨酸响应元件; ERE: 乙烯响应元件; ABRE: 脱落酸响应元件; TGACG-motif: 茉莉酸甲酯响应元件; CGTCA-motif: 茉莉酸甲酯响应元件; TC-rich repeats: 防御和应激反应中涉及到的顺式元件; ARE: 厌氧诱导的必须调控元件; W-box: 诱导子、受伤及病原体应答, 结合WRKY类转录因子; TATC-box: 赤霉素响应元件; P-box: 赤霉素响应元件; WUN-motif: 创伤应答元件; LTR: 低温响应元件; TCA-element: 水杨酸响应元件; GARE-motif: 赤霉素响应元件; SARE: 水杨酸响应元件; AuxRR-core: 生长素响应元件。"

图5

小豆DIR基因家族成员在响应锈菌侵染下的表达量分析 图中数值为log2 ratio的值, log2 ratio=log2 (接种后表达量/对照表达量), 正值为接种后24 h或48 h显著上调表达, 负值为显著下调表达。"

图6

抗、感不同小豆品种接种锈菌后10 d的发病情况及叶面夏孢子堆数量统计 A, B: “QH1”和“BQH”接种锈菌后10 d的发病情况; C: 不同品种接种后10 d叶面夏孢子堆数统计, *表示差异显著(P < 0.05)。BQH: 宝清红。"

表2

用于qRT-PCR分析的VaDIRs引物和内参基因的引物"

基因
Gene
上游引物
Upstream primer (5°-3°)
下游引物
Downstream primers (5°-3°)
产物长度
Product length (bp)
VaDIR9 GGAAAGGCCCAAGGTGTTTA GCGTGCTGCCATTGTATTTC 103
VaDIR12 CGTCACCGCCACTTACTATC GTCGTGGAAGAAGAAGTGAAGA 91
VaDIR14 GCCACCTTCTACCAAACTATCT GGAGGGTTTGTCGTTTGTTATG 105
VaDIR15 GACCCACTGACCATCGGACCTG CTGCGAGCAAGAACAAAGCCAC 260
基因
Gene
上游引物
Upstream primer (5°-3°)
下游引物
Downstream primers (5°-3°)
产物长度
Product length (bp)
VaDIR16 TCTTGTTTCTGGCACCTTCTAC GTCTGATCGTCAATGGGTTCTC 206
VaDIR18 CCCATCTCAGCCACAACAACCG CACTTCCTTCCACGCCATTCAC 129
VaDIR28 AGGTGGTCGGAAGAATTGAG GCTGCTGCCATTGTACTTTC 110
VaDIR33 ATGTTTCAGCAATCGGCGTTCA CAAGACCACGAGCAAAGGCAAA 148
VaACT CTAAGGCTAATCGTGAGAA CGTAAATAGGAACCGTGT 165

图7

小豆DIR基因家族部分成员在锈菌侵染下的定量表达分析 R: 高抗锈病品种“QH1”; S: 高感品种“BQH”; Inoculation: 接种锈菌夏孢子; *表示同一时间不同处理差异显著(P < 0.05)。BQH: 宝清红。"

[1] 国家统计局农村社会经济调查司. 中国农村统计年鉴-2019. 北京: 中国统计出版社, 2020. pp 121-215.
Rural Socioeconomic Investigation Department, National Bureau of Statistics of China. The Yearly Statistical Book of Rural China-2019. Beijing: China Statistics Press, 2020. pp 121-215. (in Chinese)
[2] 何宁, 王雪扬, 曹良子, 曹大为, 洛育, 姜连子, 孟英, 冷春旭, 唐晓东, 李一丹, 万书明, 卢环, 程须珍. 光温处理对小豆苗期生理性状及叶绿素合成前体的影响. 作物学报, 2019, 45: 460-468.
He N, Wang X Y, Cao L Z, Cao D W, Luo Y, Jiang L Z, Meng Y, Leng C H, Tang X D, Li Y D, Wan S M, Lu H, Cheng X Z. Effects of photoperiods and temperatures on physiological characteristics and chlorophyll synthesis precursors of adzuki bean seedlings. Acta Agron Sin, 2019, 45: 460-468. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84002
[3] 郑素娇, 柯希望, 殷丽华, 崔冬梅, 张海涛, 台莲梅, 左豫虎. 黑龙江省一株红小豆锈病病原菌鉴定. 微生物学报, 2015, 55: 425-432.
Zheng S J, Ke X W, Yin L H, Cui D M, Zhang H T, Tai L M, Zuo Y H. Identification of a fungal isolate causing adzuki bean rust in Heilongjiang. Acta Microbiol Sin, 2015, 55: 425-432. (in Chinese with English abstract)
[4] 刘春红. 黄瓜低霜霉威残留性相关基因CsDIR16的鉴定及功能分析. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2017.
Liu C H. Identification and Functional Analysis of the Propamcarb-related Gene CsDIR16 in Cucumber. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2017. (in Chinese with English abstract)
[5] 陈家璐, 张智俊, 刘笑雨, 朱丰晓. 毛竹Dirigent基因家族的全基因组鉴定与分析. 植物生理学报, 2019, 55: 1406-1417.
Chen J L, Zhang Z J, Liu X Y, Zhu F X. Genome-wide identification and analysis of Dirigent gene family in moso bamboo (Phyllostachys edulis). Plant Physiol J, 2019, 55: 1406-1417. (in Chinese with English abstract)
[6] Liao Y, Liu S, Jiang Y, Hu C Zhang X, Cao X, Xu Z, Gao X, Li L, Zhu J, Chen R. Genome-wide analysis and environmental response profiling of dirigent family genes in rice (Oryza sativa). Genes Genom, 2017, 39: 47-62.
doi: 10.1007/s13258-016-0474-7
[7] 宋敏. 小麦JRL和DIR基因家族的鉴定与分析. 南京农业大学博士学位论文, 江苏南京, 2013.
Song M. Characterization of Wheat JRL Gene and DIR Gene Families. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013. (in Chinese with English abstract)
[8] 马金洋, 杨瑾冬, 李卿, 张磊. 丹参Dirigent基因家族的发现与生物信息学分析. 基因组学与应用生物学, 2017, 36: 1594-1610.
Ma J Y, Yang J D, Li Q, Zhang L. Discovery and bioinformatics analysis of Dirigent multigene family in Salvia miltiorrhiza. Genom Appl Biol, 2017, 36: 1594-1610. (in Chinese with English abstract)
[9] 张洪伟, 李继刚, 郑建坡, 曲占良. 马铃薯晚疫病抗性相关基因StDIR1的克隆与表达. 华北农学报, 2012, 27(2): 23-29.
Zhang H G, Li J G, Zheng J P, Qu Z L. Cloning and expression of a potato Dirigent-like gene (StDIR1) responsive to infection by Phytophthora infestans. Acta Agric Boreali-Sin, 2012, 27(2): 23-29. (in Chinese with English abstract)
[10] 王维东. 杜仲Dirigent编码基因克隆及表达分析. 贵州大学硕士学位论文, 贵州贵阳, 2017.
Wang W D. Cloning and Expression Analysis of Dirigent Protein in Eucommia ulmoides. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2017. (in Chinese with English abstract)
[11] Ralph S G, Jancsik S, Bohlmann J. Dirigent proteins in conifer defense: II. Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry, 2007, 68: 1975-1991.
doi: 10.1016/j.phytochem.2007.04.042
[12] Ma Q, Liu Y. TaDIR13, a Dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance. Plant Mol Biol Rep, 2015, 33: 143-152.
doi: 10.1007/s11105-014-0737-x
[13] 吴仁花, 王丽丽, 王智, 商海红, 刘霞, 朱燕, 亓岽东, 邓馨. 复苏植物牛耳草引导蛋白基因的克隆与表达. 自然科学进展, 2008, 18: 1111-1118.
Wu R H, Wang L L, Wang Z, Shang H H, Liu X, Zhu Y, Qi D D, Deng X. Cloning and expression of the DIR gene of the resurrection plant Boea hygrometrica. Prog Nat Sci, 2008, 18: 1111-1118. (in Chinese with English abstract)
[14] Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012, 31: 1801-1812.
doi: 10.1007/s00299-012-1293-1
[15] 张金鹏. 小豆感染豇豆单胞锈菌的早期分子检测及差异表达蛋白鉴定. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2020.
Zhang J P. Early Molecular Detection and Identification of Differential Expressed Proteins of Adzuki bean Infected with Uromyces vignae. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2020. (in Chinese with English abstract)
[16] Stavely J R. The modified Cobb scale for estimating bean rust intensity. Annu Rep Bean Improv Coop, 1985, 28: 31-32.
[17] 姚宁涛, 祝建波, 邓福军. 改良TRIzol法快速提取棉叶片总RNA. 生物技术通报, 2010, (7): 125-127.
Yao N T, Zhu J B, Deng F J. Fast extraction of high-quality total RNA in the cotton leaf with improved TRIzol method. Biotechnol Bull, 2010, (7): 125-127.
[18] Kang Y, Satyawan D, Shim S, Lee T, Lee J, Hwang W, Kim S, Lestari P, Laosatit K, Kim K, Ha T, Chitikineni A, Kim M, Ko J, Gwag J, Moon J, Lee Y, Park B, Varshney R, Lee S. Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep, 2015, 5: 8069.
[19] Chen C J, Chen H, Zhang Y, Hannah R T, Margaret H F, He Y, Xia R. TBtools—an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[20] Ma X, Xu W, Liu T, Chen R, Zhu H, Zhang H, Cai C, Li S. Functional characterization of soybean (Glycine max) DIRIGENT genes reveals an important role of GmDIR27 in the regulation of pod dehiscence. Genomics, 2021, 113: 979-990.
doi: 10.1016/j.ygeno.2020.10.033
[21] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096
[22] Chi C, Shen Y, Yin L, Ke X, Han D, Zuo Y. Selection and validation of reference genes for gene expression analysis in Vigna angularis using quantitative real-time RT-PCR. PLoS One, 2016, 11: e0168479.
doi: 10.1371/journal.pone.0168479
[23] Yin Z, Ke X, Huang D, Gao X, Voegele R T, Kang Z, Huang L. Validation of reference genes for gene expression analysis in Valsa mali var. mali using real-time quantitative PCR. World J Microbiol Biotechnol, 2013, 29: 1563-1571.
doi: 10.1007/s11274-013-1320-6
[24] Khan A, Li R J, Sun J T, Ma F, Zhang H X, Jin J H, Ali M, Haq S U, Wang J E, Gong Z H. Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Sci Rep, 2018, 8: 5500.
doi: 10.1038/s41598-018-23761-0
[25] 郭宝生, 师恭曜, 王凯辉, 刘素恩, 赵存鹏, 王兆晓, 耿军义, 华金平. 黄萎病菌侵染下陆地棉Dirigent-like蛋白基因表达差异分析. 中国农业科学, 2014, 47: 4349-4359.
Guo B S, Shi G Y, Wang K H, Liu S E, Zhao C P, Wang Z X, Geng J Y, Hua J P. Expression differences of Dirigent-like protein genes in upland cotton responsed to infection by Verticillium dahliae. Sci Agric Sin, 2014, 47: 4349-4359. (in Chinese with English abstract)
[26] Song M, Peng X. Genome-wide identification and characterization of DIR genes in Medicago truncatula. Biochem Genet, 2019, 57: 487-506.
doi: 10.1007/s10528-019-09903-7 pmid: 30649641
[27] Davin L B, Wang H B, Crowell A L, Bedgar D L, Martin D M, Sarkanen S, Lewis N G. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (Dirigent) protein without an active center. Science, 1997, 275: 362-367.
pmid: 8994027
[28] 陈雪萍, 荆凌云, 王嘉, 荐红举, 梅家琴, 徐新福, 李加纳, 刘列钊. 甘蓝型油菜茎秆菌核病抗性与木质素含量及其单体G/S的相关性分析及QTL定位. 作物学报, 2017, 43: 1280-1289.
Chen X P, Jing L Y, Wang J, Jian H J, Mei J Q, Xu X F, Li J N, Liu L Z. Correlation analysis of sclerotinia resistance with lignin content and monomer G/S and its QTL mapping in Brassica napus L. Acta Agron Sin, 2017, 47: 4349-4359. (in Chinese with English abstract)
[29] Ralph S, Park J, Bohlmann J, Mansfield S D. Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound-and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol, 2006, 60: 21-24.
doi: 10.1007/s11103-005-2226-y
[30] Li L, Sun W, Zhou P, Wei H, Wang P, Li H, Rehman S, Li D, Zhuge Q. Genome-wide characterization of dirigent proteins in populus: gene expression variation and expression pattern in response to Marssonina brunnea and phytohormones. Forests, 2021, 12: 507.
doi: 10.3390/f12040507
[31] Borges A F, Ferreira R B, Monteiro S. Transcriptomic changes following the compatible interaction Vitis vinifera-Erysiphe necator. Paving the way towards an enantioselective role in plant defense modulation. Plant Physiol Biochem, 2013, 68: 71-80.
doi: 10.1016/j.plaphy.2013.03.024
[1] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[5] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[6] 马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子III型PRX基因家族全基因组鉴定及干旱胁迫下表达分析[J]. 作物学报, 2022, 48(10): 2517-2532.
[7] 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545.
[8] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[9] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[10] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[11] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[12] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[13] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[14] 时丽洁,蒋枞璁,王方梅,杨平,冯宗云. 大麦蛋白质二硫键异构酶基因家族的鉴定与表达分析[J]. 作物学报, 2019, 45(9): 1365-1374.
[15] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .