欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3215-3224.doi: 10.3724/SP.J.1006.2022.13082

• 研究简报 • 上一篇    下一篇

丛枝菌根真菌对玉米籽粒氮素吸收和土壤细菌群落组成的影响

张富粮, 陈冰洁, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林()   

  1. 河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室 / 2011河南粮食作物协同创新中心 / 作物生长发育调控教育部重点实验室, 河南郑州 450002
  • 收稿日期:2021-12-29 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-20
  • 通讯作者: 张学林
  • 基金资助:
    河南省自然科学基金项目(182300410013);河南农业大学科技创新基金项目(30500712)

Effects of arbuscular mycorrhizae fungi on maize grain nitrogen uptake and the composition of soil bacteria communities

ZHANG Fu-Liang, CHEN Bing-Jie, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin()   

  1. Agronomy College, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science / Collaborative Innovation Center of Henan Grain Crops for 2011 / Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450002, Henan, China
  • Received:2021-12-29 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-20
  • Contact: ZHANG Xue-Lin
  • Supported by:
    Natural Science Foundation of Henan Province(182300410013);Science and Technology Innovation Fund of Henan Agricultural University(30500712)

摘要:

明确丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)通过调控土壤细菌群落组成影响玉米产量和籽粒氮素吸收的作用机制, 为玉米增产增效提供理论依据。2018和2019年2个玉米生育季, 采用分室(生长室和菌丝室)箱体装置, 设置氮肥形态和丛枝菌根真菌双因素试验, 测定玉米籽粒产量、籽粒氮素积累量、植株根系性状; 并采用Hiseq 2500 PE250高通量测序技术测定土壤细菌群落结构和多样性。结果表明, 不同形态氮肥处理下接种丛枝菌根真菌, 均显著增加玉米籽粒产量及其氮素积累量, 并显著改善玉米根系性状。与铵态氮肥处理均值相比, 硝态氮肥处理下分别提高玉米产量和籽粒氮素积累量14%和31%。与M0处理均值相比, 铵态氮肥处理下M1和M2处理产量分别增加65%和182%, 籽粒氮素积累量增加158%和813%; 硝态氮肥处理下产量分别增加48%和123%, 籽粒部氮素积累量增加106%和387%。NMDS 分析表明, 不同形态氮肥和丛枝菌根真菌均显著影响细菌群落组成。与铵态氮肥处理均值相比, 硝态氮肥处理目水平Tepidisphaerales相对丰度增加10%, Bradyrhizobium相对丰度降低5%。与M0处理均值相比, 铵态氮肥条件下M1和M2处理目水平Bradyrhizobium相对丰度分别增加21%和55%; 硝态氮条件下Bradyrhizobium相对丰度分别增加49%和74%, 其中 TepidisphaeralesBradyrhizobium的相对丰度与玉米籽粒氮素积累量呈显著正相关。本研究表明, 不同形态氮肥处理下玉米接种丛枝菌根真菌通过改善土壤细菌群落组成, 促进玉米产量和籽粒氮素积累量增加, 其中主要是增加了土壤目水平Tepidisphaerales和属水平Bradyrhizobium细菌的相对丰度。

关键词: 丛枝菌根真菌, 玉米产量, 籽粒氮素积累量, 土壤细菌

Abstract:

Clarifying the effect of arbuscular mycorrhizae fungi (AMF) on maize grain yield and their nitrogen (N) absorption by regulating the composition of soil bacterial communities, could provide a theoretical basis for increasing maize yield and improving nutrient use efficiency. In the maize growing season of 2018 and 2019, the two-factors pot experiment was carried out by compartment box device. The box was divided into two compartments, one was growth chamber (containing host plant and AMF) and the other was test chamber. The factors were N forms and mycorrhizae treatments. Maize grain yield, plant N content, and plant root properties were measured. The structure and diversity of the soil bacterial community in the test chamber were analyzed by Hiseq 2500 PE250 high-throughput sequencing technique. Compared with the NH4+-N fertilizer treatment, maize yield and grain N accumulation of the NO3--N fertilizer treatment increased by 14% and 31%. Compared with the M0, the presence of M1 and M2 increased maize yield by 65% and 182%, by 158% and 813% for grain N accumulation for the NH4+-N fertilizer treatment, respectively. For the NO3--N treatment, maize yield increased by 48% and 123%, by 106% and 387% for grain N accumulation, respectively. Nonmetric multidimensional scaling analysis showed that both N forms and mycorrhizae had significant effects on bacterial communities’ composition. Compared with the NH4+-N fertilizer treatment, the relative abundance of Tepidisphaerales of the NO3--N fertilizer treatment on order level increased by 10%, while on genus level, the Bradyrhizobium reduced by 5%. Compared with the M0, the presence of M1 and M2 increased the relative abundance of Bradyrhizobium by 21% and 55% for the NH4+-N fertilizer treatment, by 49% and 74% for the NO3--N treatment, respectively. Soil Tepidisphaerales on order level and Bradyrhizobium on genus level were significantly and positively related with grain N accumulation. In conclusion, the presence of arbuscular mycorrhizae fungi could increase maize grain yield and their N accumulation under both N forms, and the increase mainly through regulating the soil bacterial communities, especially the relative abundance of Tepidisphaerales and Bradyrhizobium.

Key words: arbuscular mycorrhizal fungi, maize yield, grain nitrogen uptake, soil bacteria

图1

不同形态氮肥和菌根真菌对玉米籽粒产量、氮素积累量的影响 M0、M1、M2分别代表对照、菌丝室只有AMF菌丝、菌丝室有根和菌丝。柱上不同小写字母表示处理间在0.05水平差异显著。"

表1

玉米籽粒产量、氮素积累量和根系特性的方差分析"

产量
Yield
(g plant-1)
籽粒氮素积累量
GNA
(mg plant-1)
总根长
Length
(cm plant-1)
根表面积
Surface area
(cm2 plant-1)
根直径
Diameter
(mm)
根体积
Volume
(cm3 plant-1)
2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
氮肥形态
Nitrogen form (N)
4.4 5.5* 12.9** 5.31* 4.25 0.001 3.55 0.006 2.52 0.4 1.7 0.04
菌根处理
Mycorrhizae (M)
82.9*** 56.5*** 86.9*** 283.5*** 8.17** 25.371*** 9.27** 43.118*** 2.02 1.6 8.5** 56.89***
氮肥形态×菌根处理N×M 0.3 1.7 0.3 0.6 0.02 2.973 0.27 4.332* 0.40 0.4 0.8 4.88*

图2

不同形态氮肥和菌根真菌对玉米总根长、根表面积、根直径、根体积的影响 处理同图1。柱上不同小写字母表示处理间在0.05水平差异显著, ns表示差异不显著。"

表2

2018年不同处理之间细菌观测OTU数、估计指数(Chao1、Ace、Shannon、Simpson)和覆盖度的比较"

处理
Treatment
OTU number Coverage Chao1 Ace Shannon Simpson
M0NH4+-N 1446 0.991 a 1794 b 1783 c 5.41 0.032
M1NH4+-N 1452 0.988 b 1848 ab 1819 abc 5.29 0.043
M2NH4+-N 1477 0.991 ab 1839 ab 1808 bc 5.43 0.033
M0NO3--N 1594 0.989 ab 1998 a 1960 abc 5.64 0.022
M1NO3--N 1644 0.989 ab 1997 a 1997 a 5.71 0.022
M2NO3--N 1626 0.989 ab 1993 a 1970 ab 5.78 0.016

图3

不同形态氮肥和菌根真菌处理门(A)、纲(B)、目(C)、科(D)、属(E)分类水平下土壤细菌群落相对丰度 处理同图1。"

图4

土壤细菌群落Nonmetric multidimensional scaling analysis (NMDS)分析 处理同图1。M0NH4+-N: 红色圆点; M1NH4+-N: 红色三角; M2NH4+-N: 红色长方形; M0NO3--N: 蓝色圆点; M1NO3--N: 蓝色三角; M2NO3--N: 蓝色长方形。"

图5

不同形态氮肥和菌根真菌处理对目水平(A)和属水平(B)细菌相对丰度的影响 处理同图1。柱上不同小写字母表示处理间在0.05水平差异显著。"

图6

玉米产量、籽粒氮素积累量与目水平(A, C)和属水平(B, D)细菌相对丰度的关系 *、**分别表示在0.05和0.01水平显著相关。"

[1] Dobermann A, Cassman K G. Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant Soil, 2002, 247: 153-175.
doi: 10.1023/A:1021197525875
[2] 宁堂原, 焦念元, 李增嘉, 张民, 赵春, 韩宾, 邵国庆. 施氮水平对不同种植制度下玉米氮利用及产量和品质的影响. 应用生态学报, 2006, 17: 2332-2336.
Ning T Y, Jiao N Y, Li Z J, Zhang M, Zhao C, Han B, Shao G Q. Effects of N application rate on N utilization, yield and quality of maize under different cropping systems. Chin J Appl Ecol, 2006, 17: 2332-2336. (in Chinese with English abstract)
[3] Wang C, Zheng M M, Hu A Y, Zhu C Q, Shen R F. Diazotroph abundance and community composition in an acidic soil in response to aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) cultivars under two nitrogen fertilizer forms. Plant Soil, 2018, 424: 463-478.
doi: 10.1007/s11104-017-3550-0
[4] 代新俊, 杨珍平, 陆梅, 李慧, 樊攀, 宋佳敏, 高志强. 不同形态氮肥及其用量对强筋小麦氮素转运、产量和品质的影响. 植物营养与肥料学报, 2019, 25: 710-720.
Dai X J, Yang Z P, Lu M, Li H, Fan P, Song J M, Gao Z Q. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat. J Plant Nutr Fert, 2019, 25: 710-720. (in Chinese with English abstract)
[5] Bloom A J, Randall L, Taylor A R, Silk W K. Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts. J Exp Bot, 2012, 63: 1997-2006.
doi: 10.1093/jxb/err410 pmid: 22213811
[6] 姜佰文, 高强, 王春宏, 张迪, 高飞, 邓宏志, 徐赫男. 氮素形态调控对春玉米生长发育、产量和品质的影响. 东北农业大学学报, 2018, 49(11): 35-41.
Jiang B W, Gao Q, Wang C H, Zhang D, Gao F, Deng H Z, Xu H N. Effect of nitrogen form regulations on growth and development, yield and quality of spring mazie. J Northeast Agric Univ, 2018, 49(11): 35-41. (in Chinese with English abstract)
[7] Buoso S, Tomasi N, Arkoun M, Maillard A, Jing L, Marroni F, Pluchon S, Pinton R, Zanin L. Transcriptomic and metabolomic profiles of Zea mays fed with urea and ammonium. Physiol Plant, 2021, 173: 935-953.
doi: 10.1111/ppl.13493 pmid: 34245168
[8] 陈永亮, 陈保冬, 刘蕾, 胡亚军, 徐天乐, 张莘. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014, 34: 4807-4815.
Chen Y L, Chen B D, Liu L, Hu Y J, Xu T L, Zhang S. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecol Sin, 2014, 34: 4807-4815 (in Chinese with English abstract).
[9] 张学林, 吴梅, 李晓立, 何堂庆, 张晨曦, 田明慧, 陈冰洁, 张富粮, 郝晓峰, 杨青华. 丛枝菌根真菌对灌浆前期玉米子粒氮代谢及产量和品质的影响. 河南农业大学学报, 2021, 55: 647-653.
Zhang X L, Wu M, Li X L, He T Q, Zhang C X, Tian M H, Chen B J, Zhang F L, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on nitrogen metabolism, yield and quality of grain in early grain filling stage in maize. J Henan Agric Univ, 2021, 55: 647-653. (in Chinese with English abstract)
[10] Tian Q Y, Chen F J, Liu J X, Zhang F S, Mi G H. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol, 2008, 165: 942-951.
doi: 10.1016/j.jplph.2007.02.011
[11] Shen Y, Zhu B. Arbuscular mycorrhizal fungi reduce soil nitrous oxide emission. Geoderma, 2021, 402: 115179.
[12] 姜德锋, 蒋家慧, 李敏, 刘润进, 李晓林. AM菌对玉米某些生理特性和籽粒产量的影响. 中国农业科学, 1998, 31(1): 15-20.
Jiang D F, Jiang J H, Li M, Liu R J, Li X L. Effects of arbuscular mycorrhizal fungi on physiological characteristics and grain yield of maize. Sci Agric Sin, 1998, 31(1): 15-20. (in Chinese with English abstract)
[13] Moreira H, Pereira S I A, Vega A, Castro P M L, Marques A P G C. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J Environ Manage, 2020, 257: 109982.
[14] Zhang L, Fan J Q, Ding X D, He X H, Zhang F S, Feng G. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem, 2014, 74: 177-183.
doi: 10.1016/j.soilbio.2014.03.004
[15] 唐浩琪, 张娜, 孙波, 梁玉婷. 典型农田土壤中丛枝菌根真菌-根际细菌互作及与氮磷利用的关系. 微生物学报, 2020, 60: 1117-1129.
Tang H Q, Zhang N, Sun B, Liang Y T. Effect of interaction between arbuscular mycorrhizal fungi and rhizosphere bacteria in farmland soils on nutrients utilization. Acta Microb Sin, 2020, 60: 1117-1129. (in Chinese with English abstract)
[16] Delgado-Baquerizo M, Grinyer J, Reich P B, Singh B K. Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct Ecol, 2016, 30: 1862-1873.
doi: 10.1111/1365-2435.12674
[17] 张晓丽, 张宏媛, 卢闯, 逄焕成, 靳存旺, 高喜, 程挨平, 李玉义. 河套灌区不同秋浇年限对土壤细菌群落的影响. 中国农业科学, 2019, 52: 3380-3392.
Zhang X L, Zhang H Y, Lu C, Pang H C, Jin C W, Gao X, Cheng A P, Li Y Y. Effects of the different autumn irrigation years on soil bacterial community in Hetao irrigation district. Sci Agric Sin, 2019, 52: 3380-3392. (in Chinese with English abstract)
[18] 沈菊培, 贺纪正. 微生物介导的碳氮循环过程对全球气候变化的响应. 生态学报, 2011, 31: 2957-2967.
Shen J P, He J Z. Responses of microbes-mediated carbon nitrogen cycles to global climate change. Acta Ecol Sin, 2011, 31: 2957-2967. (in Chinese with English abstract)
[19] 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响. 植物生态学报, 2021, 45: 891-902.
doi: 10.17521/cjpe.2021.0085
Mao J, Duo Y, Deng J, Cheng J, Cheng J M, Peng C H, Guo L. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau. Chin J Plant Ecol, 2021, 45: 891-902. (in Chinese with English abstract)
doi: 10.17521/cjpe.2021.0085
[20] Ramirez-Villanueva D A, Bello-López J M, Navarro-Noya Y E, Luna-Guido M, Verhulst N, Govaerts B, Dendooven L. Bacterial community structure in maize residue amended soil with contrasting management practices. Appl Soil Ecol, 2015, 90: 49-59.
doi: 10.1016/j.apsoil.2015.01.010
[21] Oldroyd G E D, Dixon R. Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol, 2014, 26: 19-24.
doi: 10.1016/j.copbio.2013.08.006
[22] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47: 1603-1615.
doi: 10.3724/SP.J.1006.2021.03050
Zhang X L, Li X L, He T Q, Zhang C X, Tian M H, Wu M, Zhou Y N, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agron Sin, 2021, 47: 1603-1615. (in Chinese with English abstract)
[23] 王强, 王茜, 董梅, 王晓娟, 张亮, 金樑. 分室培养装置在丛枝菌根真菌研究中的应用及其发展. 植物生态学报, 2014, 38: 1250-1260.
doi: 10.3724/SP.J.1258.2014.00120
Wang Q, Wang Q, Dong M, Wang X J, Zhang L, Jin L. Application and progress of split-compartment facility in studies of arbuscular mycorrhizal fungi. Chin J Plant Ecol, 2014, 38: 1250-1260. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00120
[24] Zhang D S, Zhang C C, Tang X Y, Li H G, Zhang F S, Rengel Z, Whalley W R, Davies W J, Shen J B. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighboring maize. New Phytol, 2016, 209: 823-831.
doi: 10.1111/nph.13613
[25] 何萍, 金继运, 林葆, 王秀芳, 张宽. 不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究. 植物营养与肥料学报, 1998, 4: 123-130.
He P, Jin J Y, Lin B, Wang X F, Zhang K. Dynamics of biomass and its components and models of Nutrients absorption by spring maize under different nitrogen, phosphorous and potassium application rates. Plant Nutr Fert Sci, 1998, 4: 123-130. (in Chinese with English abstract)
[26] 金继运, 何萍. 氮钾营养对春玉米后期碳氮代谢与粒重形成的影响. 中国农业科学, 1999, 32: 55-62.
Jin J Y, He P. Effect of N and K nutrition on post metabolism of carbon and nitrogen and grain weight formation in maize. Sci Agric Sin, 1999, 32: 55-62. (in Chinese with English abstract)
[27] Kohl L, Marcel G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol Biochem, 2016, 94: 191-199.
doi: 10.1016/j.soilbio.2015.11.019
[28] Wu Q S, Li G H, Zou Y N. Improvement of root system architecture in peach (Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root. Not Bot Hort Agrobot Cluj-Napoca, 2011, 39: 232-236.
[29] 黄京华, 刘青, 李晓辉, 曾任森, 骆世明. 丛枝菌根真菌诱导玉米根系形态变化及其机理. 玉米科学, 2013, 21(3): 131-135.
Huang J H, Liu Q, Li X H, Zeng R S, Luo S M. Mechanism of maize root morphology change induced by arbuscular mycorrhizal fungi. Maize Sci, 2013, 21(3): 131-135. (in Chinese with English abstract)
[30] Wu Q S, Zou Y N, Huang Y M. The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol, 2013, 6: 37-43.
doi: 10.1016/j.funeco.2012.09.002
[31] 刘荣林, 葛菁萍. 丛枝菌根真菌和硫氧化细菌对土壤理化性质和植物生长影响的研究进展. 生态学杂志, 2021, 40: 3355-3363.
Liu R L, Ge J P. Effects of arbuscular mycorrhizal fungi and sulfur oxidizing bacteria on soil physicochemical properties and plant growth: a review. Chin J Ecol, 2021, 40: 3355-3363. (in Chinese with English abstract)
[32] Frey B, Schüepp H. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol, 1993, 124: 221-230.
doi: 10.1111/j.1469-8137.1993.tb03811.x
[33] Pellegrino E, Opik M, Bonari E, Ercoli L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem, 2015, 84: 210-217.
doi: 10.1016/j.soilbio.2015.02.020
[34] Andrea E, Erica E, Raffaella E, Valeria E. AM fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol, 2016, 6: 1559.
[35] de Boer W, Folman L B, Summerbell R C, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. Fems Microbiol Rev, 2005, 29: 795-811.
pmid: 16102603
[36] Abd-Alla M H, El-Enany A E, Nafady N A, Khalaf D M, Morsy F M. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res, 2014, 169: 49-58.
doi: 10.1016/j.micres.2013.07.007 pmid: 23920230
[37] Chen Q L, An X L, Li H, Su J Q, Ma Y B, Zhu Y G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int, 2016, 92/93: 1-10.
doi: 10.1016/j.envint.2016.03.026
[38] Kovaleva O L, Merkel A Y, Novikov A A, Baslerov R V, Toshchakov S V, Bonch-Osmolovskaya E A. Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int J Syst Evol Microb, 2015, 65: 549-555.
doi: 10.1099/ijs.0.070151-0
[39] Marks B B, Megias M, Nogueira M A, Hungria M. Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. Amb Express, 2013, 3: 21.
doi: 10.1186/2191-0855-3-21
[40] 何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响. 草业学报, 2020, 29(5): 109-120.
He G X, Song J C, Wen Y J, Liu C T, Qi J. Effects of different rhizobium fertilizers on alfalfa productivity and soil fertility. Acta Pratac Sin, 2020, 29(5): 109-120. (in Chinese with English abstract)
[41] 崔纪菡, 刘猛, 赵宇, 宋世佳, 刘旭, 夏雪岩, 李顺国, 刘建军. 不同形态氮对谷子生长和氮利用的影响. 山东农业科学, 2021, 53(7): 58-64.
Cui J H, Liu M, Zhao Y, Song S J, Liu X, Xia X Y, Li S G, Liu J J. Effects of different nitrogen forms on growth and nitrogen utilization of foxtail millet. Shandong Agric Sci, 2021, 53(7): 58-64. (in Chinese with English abstract)
[42] 邓胤, 申鸿, 罗文倩, 郭涛. 不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响. 植物营养与肥料学报, 2009, 15: 1380-1385.
Deng Y, Shen H, Luo W Q, Guo T. Effects of AMF on key enzymes of nitrogen assimilation in maize under different ammonium to nitrate ratios. Plant Nutr Fert Sci, 2009, 15: 1380-1385. (in Chinese with English abstract)
[43] Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ, 2005, 28: 1247-1254.
doi: 10.1111/j.1365-3040.2005.01360.x
[44] Guo S W, Chen G, Zhou Y, Shen Q R. Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (Oryza sativa L.). Plant Soil, 2007, 296: 115-124.
doi: 10.1007/s11104-007-9302-9
[45] Liu Z, Giehl R F H, Hartmann A, Hajirezaei M R, Carpentier S, von Wiren N. Seminal and nodal roots of barley differ in anatomy, proteome and nitrate uptake capacity. Plant Cell Physiol, 2020, 61: 1297-1308.
doi: 10.1093/pcp/pcaa059 pmid: 32379871
[46] 肖凯, 张树华, 邹定辉, 张荣铣. 不同形态氮素营养对小麦光合特性的影响. 作物学报, 2000, 26: 53-58.
Xiao K, Zhang S H, Zou D H, Zhang R X. The effects of different nitrogen nutrition forms on photosynthetic characteristics in wheat leaves. Acta Agron Sin, 2000, 26: 53-58. (in Chinese with English abstract)
[47] Whiteside M D, Treseder K K, Atsatt P R. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology, 2009, 90: 100-108.
pmid: 19294917
[48] Toljander J F, Santos-Gonzalez J C, Tehler A, Finlay R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. Fems Microb Ecol, 2008, 65: 323-338.
[49] Bakhshandeh S, Corneo P E, Mariotte P, Kertesz M A, Dijkstra F A. Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agric Ecosys Environ, 2017, 247: 130-136.
doi: 10.1016/j.agee.2017.06.027
[1] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[2] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[3] 田明慧, 杨硕, 杜嘉琪, 张晨曦, 何堂庆, 张学林. 不同氮肥水平下丛枝菌根真菌对玉米籽粒灌浆期磷和钾吸收的影响[J]. 作物学报, 2022, 48(12): 3166-3178.
[4] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615.
[5] 王艳丽,吴鹏年,李培富,王西娜,朱旭. 有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响[J]. 作物学报, 2019, 45(8): 1230-1237.
[6] 李军;王立祥;邵明安;樊廷录. 黄土高原地区玉米生产潜力模拟研究[J]. 作物学报, 2002, 28(04): 555-560.
[7] 冯固;灯莎;茂秋;晓林;福锁;生秀. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响[J]. 作物学报, 2000, 26(06): 743-750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[7] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[8] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[9] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[10] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .