欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3225-3233.doi: 10.3724/SP.J.1006.2022.12088

• 研究简报 • 上一篇    

蒸煮米水比对不同直链淀粉含量杂交籼稻米粒微观结构和食味特性的影响

袁玉洁(), 张丝琪, 王明玥, 罗霄, 曾钰涵, 宋璐炘, 卢慧, 陈虹, 陶有凤, 邓飞, 任万军()   

  1. 四川农业大学 / 四川省作物生理生态及栽培重点实验室, 四川温江 611130
  • 收稿日期:2021-12-21 接受日期:2022-05-05 出版日期:2022-12-12 网络出版日期:2022-05-24
  • 通讯作者: 任万军
  • 作者简介:E-mail: yyjylsxty@163.com
  • 基金资助:
    国家自然科学基金联合基金项目(U20A2022);四川省大学生创新训练计划项目(202010626089)

Effects of cooking rice-to-water ratio on grain microstructure and eating characteristics of indica hybrid rice with different amylose contents

YUAN Yu-Jie(), ZHANG Si-Qi, WANG Ming-Yue, LUO Xiao, ZENG Yu-Han, SONG Lu-Xin, LU Hui, CHEN Hong, TAO You-Feng, DENG Fei, REN Wan-Jun()   

  1. Sichuan Agricultural University / Sichuan Provincial Key Laboratory of Crop Physiology, Ecology and Cultivation, Wenjiang 611130, Sichuan, China
  • Received:2021-12-21 Accepted:2022-05-05 Published:2022-12-12 Published online:2022-05-24
  • Contact: REN Wan-Jun
  • Supported by:
    Natural Science Foundation of China(U20A2022);Sichuan Students Innovation and Entrepreneurship Training Program(202010626089)

摘要:

明确蒸煮米水比对稻米食味品质的影响, 为不同直链淀粉含量杂交籼稻最适蒸煮米水比的选择提供理论依据。在前期品种筛选试验的基础上, 以2个高直链淀粉、2个低直链淀粉杂交籼稻品种为试验材料, 研究了米饭外观形态、微观结构、质构特性及感官食味品质对不同蒸煮米水比的响应。结果表明: (1) 低直链杂交籼稻具有较高的溶胀因子, 在浸泡阶段米粒即出现较大裂缝且贯穿整颗籽粒, 水分充分进入籽粒, 仅需较少加水量就能糊化完全, 在加水量过高时籽粒内部形成孔洞, 结构不稳定; 而高直链杂交籼稻则呈相反趋势。(2) 蒸煮米水比显著影响米饭的硬度、黏性、咀嚼性、胶着性、内聚性和回复性, 以及米饭的适口性、冷饭质地和感官综合评分。(3) 加水量可显著提高米饭的粘性, 降低米饭的硬度、咀嚼性、胶着性、内聚性和回复性; 米饭适口性、滋味、冷饭质地和感官综合评分随加水量增加呈先上升后下降的趋势, 而米饭气味和外观差异较小。(4)米饭气味和外观在各米水比处理间均以低直链品种优于高直链品种, 低直链品种在米水比1∶1.3达到最佳适口性, 高直链品种在2.3倍加水量时适口性最优, 两类品种滋味和冷饭质地指标变化规律与适口性指标相似。综上所述, 增加蒸煮加水量可以显著改善高直链杂交籼稻的食味品质; 低直链杂交籼稻在米水比1∶1.3时食味品质最佳, 而高直链杂交籼稻在1∶2.3时达到最佳食味。

关键词: 杂交籼稻, 食味品质, 米水比, 直链淀粉含量, 微观结构

Abstract:

To investigate the effects of different cooking rice-to-water ratio (R/W) on rice eating quality can provide a theoretical basis for the selection of the optimal R/W during cooking for indica hybrid rice with different amylose contents. On the basis of the previous variety screening test, two indica hybrid rice varieties with high amylose and two with low amylose were used to investigate the response of rice appearance morphology, microstructure, texture characteristics, and the eating quality to cooking R/W. The results were as follows: (1) The indica hybrid rice with low amylose content (LAC) had high swelling factor. The large cracks appeared during soaking and penetrated through the whole grain, and water fully entered the grain, which could be gelatinized completely with less water addition. When the amount of water was too high, holes formed inside the grain and the structure was unstable. However, the indica hybrid rice with high amylose content (HAC) had the opposite trend. (2) Cooking R/W significantly affected the hardness, adhesiveness, chewiness, gumminess, cohesiveness, and resilience of rice, as well as palatability, cold rice texture, and overall eating quality of rice. (3) Increasing the amount of water could significantly improve the adhesiveness of rice, reduce the hardness, chewiness, gumminess, cohesiveness and resilience of rice, increase the adhesiveness of rice. The palatability, taste, cold rice texture, and overall eating quality increased first and then decreased with the increase of water addition, while the water addition had no significant influence on rice aroma and appearance. (4) The aroma and appearance of LAC was superior to HAC in each R/W treatment. The palatability of LAC was the best at 1:1.3 (R/W), while the HAC was the best at 1:2.3 (R/W). The taste and cold rice texture properties of the two kinds of rice were similar to the palatability properties. In conclusion, increasing the cooking water amount could significantly improve the eating quality of HAC. The LAC had the best eating quality at the 1:1.3 (R/W), while the HAC had the best taste at 1:2.3 (R/W).

Key words: indica hybrid rice, eating quality, rice-to-water ratio, amylose content, microstructure

表1

不同直链淀粉含量大米理化性质"

品种类型
Variety type
品种
Variety
食味值
Taste value
水分
Moisture content (%)
直链淀粉
Amylose (%)
蛋白质
Protein (%)
脂肪
Fat (%)
溶胀因子
Swelling factor (%)
低直链品种
LAC
内5优39 Nei 5 you 39 83.83 a 15.16 a 16.49 c 5.31 b 1.57 a 6.66 a
宜香优2115 Yixiangyou 2115 81.18 a 14.52 b 18.65 b 5.95 a 1.40 a 6.12 ab
高直链品种
HAC
中优295 Zhongyou 295 71.58 c 13.09 c 25.05 a 5.60 ab 1.47 a 4.87 c
F优498 F you 498 75.52 b 13.22 c 24.37 a 5.58 ab 1.52 a 5.25 bc
F-value 品种类型 Variety type 24.08** 62.47** 101.72** 0.03 0 20.47**

图1

浸泡后低直链品种(A~C, E)和高直链品种(D, F)的米粒横截面(A~D)以及淀粉颗粒(E~F)的扫描电镜图像 裂纹用红色箭头标出。"

图2

不同米水比蒸煮下低直链品种(A, C)和高直链品种(B, D)籽粒横截面(A, B)以及淀粉颗粒(C, D)的扫描电镜图像 LAC-1.1、LAC-1.5、LAC-2.1、LAC-2.5和HAC-1.1、HAC-1.5、HAC-2.1、HAC-2.5分别表示低直链品种和高直链品种在米水比1∶1.1, 1∶1.5, 1∶2.1, 1∶2.5下蒸煮。"

图3

不同米水比(1:1.1, 1:1.5, 1:2.1, 1:2.5)蒸煮下低直链品种(A)和高直链品种(B)米饭的外观形态 处理缩写同图2。"

表2

不同米水比对不同直链淀粉含量米饭质构特性的影响"

米水比
R/W
品种类型
Variety type
硬度
Hardness
(g)
黏性
Adhesiveness
(g s)
弹性
Springiness
咀嚼性
Chewiness
(g)
胶着性
Gumminess (g)
内聚性
Cohesiveness
回复性
Resilience
1:1.1 LAC 2263.97 b -134.35 a 0.58 b 688.51 b 1187.82 b 0.52 b 0.23 b
HAC 2779.68 a -74.98 a 0.71 a 1092.25 a 1522.75 a 0.55 a 0.25 a
均值 Mean 2521.82 A -104.66 C 0.65 AB 890.38 A 1355.28 A 0.54 A 0.24 A
1:1.5 LAC 1581.54 b -235.25 a 0.59 a 441.97 b 747.71 b 0.47 b 0.19 b
HAC 2316.08 a -96.43 b 0.63 a 724.76 a 1157.84 a 0.50 a 0.21 a
均值 Mean 1948.81 B -165.84 C 0.61 B 583.36 B 952.78 B 0.49 B 0.20 B
1:2.1 LAC 1401.02 b -373.86 a 0.64 a 380.41 b 593.35 b 0.42 a 0.15 b
HAC 2280.68 a -156.36 b 0.65 a 725.11 a 1114.65 a 0.48 a 0.19 a
均值 Mean 1840.85 B -265.11 B 0.64 AB 552.76 B 854.00 B 0.45 C 0.17 C
1:2.5 LAC 1271.52 b -651.69 a 0.61 b 334.98 b 543.82 b 0.43 a 0.14 a
HAC 2302.24 a -293.09 b 0.70 a 646.28 a 921.87 a 0.40 a 0.14 a
均值 Mean 1786.88 B -472.39 A 0.66 A 490.63 B 732.84 C 0.42 D 0.14 D
F value R/W 30.46** 22.59** 2.03 25.92** 44.07** 31.57** 65.41**
Variety type (VT) 166.23** 32.60** 20.42** 91.84** 102.31** 5.03* 20.19**
R/W×VT 3.20* 3.54* 3.54* 0.55 0.96 3.97* 3.45*

表3

不同米水比对不同直链淀粉含量米饭感官品质的影响"

米水比
R/W
气味
Aroma
外观
Appearance
适口性
Palatability
滋味
Taste
冷饭质地
Cold rice texture
综合评分
Comprehensive score
LAC HAC LAC HAC LAC HAC LAC HAC LAC HAC LAC HAC
1:1.1 0.43 ab 0.01 a 0.86 a 0.38 a 0.83 bc 0.08 c 0.66 ab -0.04 c 1.01 b 0.11 a 1.07 c 0.06 cd
1:1.3 0.67 ab 0.19 a 0.85 a 0.39 a 1.28 a 0.27 bc 0.95 a 0.10 bc 1.35 a 0.23 a 1.47 a 0.11 cd
1:1.5 0.67 ab 0.19 a 0.94 a 0.16 a 0.99 ab 0.04 c 0.70 ab 0.07 bc 0.93 b 0.10 a 1.26 b 0.05 d
1:1.7 0.72 ab -0.06 a 0.97 a 0.17 a 0.52 cd 0.30 bc 0.70 ab 0.25 abc 0.93 b 0.34 a 1.03 c 0.13 cd
1:1.9 0.34 b 0.07 a 0.82 a 0.46 a 0.34 d 0.30 bc 0.73 ab 0.33 ab 0.77 bc 0.26 a 0.68 d 0.37 bc
1:2.1 0.63 ab 0.04 a 0.92 a 0.56 a -0.21 ef 0.73 ab 0.59 b 0.30 ab 0.52 cd 0.48 a 0.40 e 0.47 b
LAC HAC LAC HAC LAC HAC LAC HAC LAC HAC LAC HAC
1:2.3 0.76 a 0.26 a 0.68 ab 0.61 a 0.18 de 0.87 a 0.58 b 0.52 a 0.73 bc 0.54 a 0.69 d 0.78 a
1:2.5 0.42 ab 0.33 a 0.62 ab 0.26 a -0.26 f 0.81 a 0.50 b 0.35 ab 0.50 cd 0.34 a 0.21 ef 0.68 ab
1:2.7 0.44 ab 0.03 a 0.42 b 0.13 a -0.15 ef 0.56 ab 0.57 b 0.36 ab 0.24 d 0.18 a 0.18 f 0.45 b
均值Mean 0.56 A 0.12 B 0.79 A 0.35 B 0.39 A 0.44 A 0.66 A 0.25 B 0.77 A 0.29 B 0.78 A 0.34 B
CV (%) 0.56 2.49 0.43 1.18 1.55 1.02 0.38 1.19 0.52 1.23 0.60 1.01
双因素方差分析(F值) F-values of two-ways ANOVA
R/W 1.60 1.67 3.22** 1.14 3.16** 6.04**
Variety type (VT) 61.99** 39.73** 0.52 75.34** 65.18** 109.75**
R/W×VT 1.26 1.21 17.72** 3.48** 4.78** 31.80**
[1] Mohapatra D, Bal S. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. J Food Eng, 2006, 73: 253-259.
doi: 10.1016/j.jfoodeng.2005.01.028
[2] Champagne E T, Bett Garber K L, McClung A M, Bergman C. Sensory characteristics of diverse rice cultivars as influenced by genetic and environmental factors. Cereal Chem, 2004, 81: 237-243.
doi: 10.1094/CCHEM.2004.81.2.237
[3] Yu L, Turner M S, Fitzgerald M, Stokes J R, Witt T. Review of the effects of different processing technologies on cooked and convenience rice quality. Trends Food Sci Technol, 2017, 59: 124-138.
doi: 10.1016/j.tifs.2016.11.009
[4] Han J A, Lim S T. Effect of presoaking on textural, thermal, and digestive properties of cooked brown rice. Cereal Chem, 2009, 86: 100-105.
doi: 10.1094/CCHEM-86-1-0100
[5] Zhu L, Wu G, Cheng L, Zhang H, Wang L, Qian H F, Qi X G. Effect of soaking and cooking on structure formation of cooked rice through thermal properties, dynamic viscoelasticity, and enzyme activity. Food Chem, 2019, 289: 616-624.
doi: S0308-8146(19)30559-X pmid: 30955656
[6] Ghasemi E, Mosavian M T H, Khodaparast M H H. Effect of stewing in cooking step on textural and morphological properties of cooked rice. Rice Sci, 2009, 16: 243-246.
doi: 10.1016/S1672-6308(08)60086-4
[7] He M, Qiu C, Liao Z, Sui Z Q, Corke H. Impact of cooking conditions on the properties of rice: combined temperature and cooking time. Int J Biol Macromol, 2018, 117: 87-94.
doi: S0141-8130(18)31216-9 pmid: 29792958
[8] Li H, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydr Polym, 2016, 146: 253-263.
doi: 10.1016/j.carbpol.2016.03.045
[9] Li H, Gilbert R G. Starch molecular structure: the basis for an improved understanding of cooked rice texture. Carbohydr Polym, 2018, 195: 9-17.
doi: 10.1016/j.carbpol.2018.04.065
[10] Chen X, Zhang X X, Wang B Y, Chen P R, Xu Y, Du X F. Investigation of water migration and its impacts on eating qualities of black rice during cooking process. J Cereal Sci, 2019, 89: 102810.
[11] 徐润琪. 大米品质评价技术的开发研究——米饭含水率及糊化度对米饭品质的影响. 四川工业学院学报, 2003, (1): 45-49.
Xu R Q. Development and research of rice quality evaluation technology—effect of rice moisture and gelatinization degree on rice quality. J Sichuan Inst Technol, 2003, (1): 45-49. (in Chinese)
[12] Bett Garber K L, Champagne E T, Ingram D A, McClung A M. Influence of water-to-rice ratio on cooked rice flavor and texture. Cereal Chem, 2007, 84: 614-619.
doi: 10.1094/CCHEM-84-6-0614
[13] Vidal V, Pons B, Brunnschweiler J, Handschin S, Rouau X, Mestres C. Cooking behavior of rice in relation to kernel physicochemical and structural properties. J Agric Food Chem, 2007, 55: 336-346.
doi: 10.1021/jf061945o
[14] 朱庆森, 杜永, 王志琴, 郎有忠, 汤述翥. 杂交稻米的直链淀粉含量与米饭口感黏度硬度关系的研究. 作物学报, 2001, 27: 377-382.
Zhu Q S, Du Y, Wang Z Q, Lang Y Z, Tang S C. Study on the relationship between amylose content and taste viscosity and hardness of hybrid rice. Acta Agron Sin, 2001, 27: 377-382. (in Chinese with English abstract)
[15] 张玉荣, 周显青, 张秀华, 杨兰兰. 大米蒸煮条件及蒸煮过程中米粒形态结构变化的研究. 粮食与饲料工业, 2008, (10): 1-4.
Zhang Y R, Zhou X Q, Zhang X H, Yang L L. Study on cooking condition of rice and morphological and structural changes of rice grain during cooking. Cereal Feed Ind, 2008, (10): 1-4. (in Chinese with English abstract)
[16] Khan M S, Ali C A. Cooking quality of some rice varieties: Research note. J Agric Res (Pakistan), 1985, 23: 231-233.
[17] 卢慧, 袁玉洁, 张丝琪, 陈虹, 陈多, 钟晓媛, 李博, 邓飞, 陈勇, 李贵勇, 任万军. 基于3种方法的西南杂交籼稻稻米食味评价及品种优选. 中国农业科学, 2021, 54: 1243-1257.
Lu H, Yuan Y J, Zhang S Q, Chen H, Chen D, Zhong X Y, Li B, Deng F, Chen Y, Li G Y, Ren W J. Evaluation of rice eating taste and variety optimization of indica hybrid rice in southwest China based on three methods. Sci Agric Sin, 2021, 54: 124-1257. (in Chinese with English abstract)
[18] 袁玉洁, 张丝琪, 卢慧, 李贵勇, 朱海平, 陶有凤, 陈虹, 任万军. 基于食味计评价杂交籼稻食味品质. 食品科学, 2021, 42(11): 63-70.
Yuan Y J, Zhang S Q, Lu H, Li G Y, Zhu H P, Tao Y F, Chen H, Ren W J. Taste quality of indica hybrid rice varieties evaluated by using rice taste analyzer. Food Sci, 2021, 42(11): 63-70. (in Chinese with English abstract)
[19] Perez C M, Juliano B O. Indicators of eating quality for non-waxy rices. Food Chem, 1979, 4: 185-195.
[20] Tester R F, Morrison W R. Swelling and gelatinization of cereal starches: I. Effects of amylopectin, amylose, and lipids. Cereal Chem, 1990, 67: 551-557.
[21] Xu D P, Hong Y, Gu Z B, Cheng L, Li Z F, Li C M. Effect of high-pressure steam on the eating quality of cooked rice. Food Sci Technol, 2019, 104: 100-108.
[22] Zhu L, Bi S L, Wu G C, Zhang H, Wang L, Qian H F, Qi X G, Jiang H P. Comparative analysis of the texture and physicochemical properties of cooked rice based on adjustable rice cooker. Food Sci Technol, 2020, 130: 109650.
[23] Li C, Gong B. Insights into chain-length distributions of amylopectin and amylose molecules on the gelatinization property of rice starches. Int J Biol Macromol, 2020, 155: 721-729.
doi: S0141-8130(20)32860-9 pmid: 32259539
[24] Tao K, Yu W W, Prakash S, Gilbert R G. High-amylose rice: starch molecular structural features controlling cooked rice texture and preference. Carbohydr Polym, 2019, 219: 251-260.
doi: 10.1016/j.carbpol.2019.05.031
[25] 侯彩云, 大下诚一, 濑尾康久, 川越义则. 蒸煮过程中稻米水分状态的质子核磁共振谱测定. 农业工程学报, 2001, 17(2): 126-131.
Hou C Y, Oshita S, Seo Y, Kawagoe Y. Determination of water status of rice by proton nuclear magnetic resonance spectroscopy during cooking. Trans CSAE, 2001, 17(2): 126-131. (in Chinese with English abstract)
[26] Srichuwong S, Sunarti T C, Mishima T, Tsono N, Hisamatsu M. Starches from different botanical sources: II. Contribution of starch structure to swelling and pasting properties. Carbohydr Polym, 2005, 62: 25-34.
doi: 10.1016/j.carbpol.2005.07.003
[27] Oyeyinka S A, Oyedeji A B, Ogundele O M, Adebo O A, Njobeh P B, Kayitesi E. Infrared heating under optimized conditions enhanced the pasting and swelling behaviour of cowpea starch. Int J Biol Macromol, 2021, 184: 678-688.
doi: 10.1016/j.ijbiomac.2021.06.129
[28] Sasaki T, Matsuki J. Effect of wheat starch structure on swelling power. Cereal Chem, 1998, 75: 525-529.
doi: 10.1094/CCHEM.1998.75.4.525
[29] Vamadevan V, Bertoft E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids, 2020, 103: 105663.
[30] 赵春芳, 岳红亮, 黄双杰, 周丽慧, 赵凌, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 梁文化, 路凯, 王才林. 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019, 52: 909-920.
Zhao C F, Yue H L, Huang S J, Zhou L H, Zhao L, Zhang Y D, Chen T, Zhu Z, Zhao Q Y, Yao S, Liang W H, Lu K, Wang C L. Eating quality and physicochemical properties in Nanjing rice varieties. Sci Agric Sin, 2019, 52: 909-920. (in Chinese with English abstract)
[31] Fan D M, Ma S Y, Wang L Y, Zhao H F, Zhao J X, Zhang H, Chen W. 1H NMR studies of starch-water interactions during microwave heating. Carbohydr Polym, 2013, 97: 406-412.
doi: 10.1016/j.carbpol.2013.05.021
[32] Hu Z Q, Yang H, Chaima M, Fang C Y, Lu L, Hu X Q, Du B, Zhu Z W, Huang J Y. A visualization and quantification method to evaluate the water-absorbing characteristics of rice. Food Chem, 2020, 331: 127050.
[33] Kasai M, Lewis A, Marica F, Ayabe S, Hatae K, Fyfe C A. NMR imaging investigation of rice cooking. Food Res Int, 2005, 38: 403-410.
doi: 10.1016/j.foodres.2004.10.012
[34] Pan T, Zhao L X, Lin L S, Wang J, Liu Q Q, Wei C X. Changes in kernel morphology and starch properties of high-amylose brown rice during the cooking process. Food Hydrocolloids, 2017, 66: 227-236.
doi: 10.1016/j.foodhyd.2016.11.035
[35] Tamura M, Ogawa Y. Visualization of the coated layer at the surface of rice grain cooked with varying amounts of cooking water. J Cereal Sci, 2012, 56: 404-409.
doi: 10.1016/j.jcs.2012.06.002
[36] Horigane A K, Toyoshima H, Hemmi H, Engelaar W M H G, Okubo A, Nagata T. Internal hollows in cooked rice grains (Oryza sativa cv. Koshihikari) observed by NMR micro imaging. J Food Sci, 1999, 64: 1-5.
[37] Zhu L, Bi S L, Wu G C, Gong B, Zhang H, Wang L, Qian H F, Qi X G. Study of the migration and molecular structure of starch and protein in rice kernel during heating. Int J Biol Macromol, 2020, 147: 1116-1124.
doi: S0141-8130(19)35243-2 pmid: 31726120
[38] Patindol J, Gu X F, Wang Y J. Chemometric analysis of cooked rice texture in relation to starch fine structure and leaching characteristics. Starch (Stärke), 2010, 62: 188-197.
[39] Li H, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016, 196: 702-711.
doi: 10.1016/j.foodchem.2015.09.112 pmid: 26593544
[40] Xu Y J, Ying Y N, Ouyang S H, Duan X L, Sun H, Jiang S K, Sun S C, Bao J S. Factors affecting sensory quality of cooked japonica rice. Rice Sci, 2018, 25: 330-339.
doi: 10.1016/j.rsci.2018.10.003
[41] Champagne E T, Bett-Garber K L, Fitzgerald M A, Grimm C C, Lea J, Ohtsubo K, Jongdee S, Xie L H, Bassinello P Z, Resurreccion A, Ahmad R, Habibi F, Habibi R. Important sensory properties differentiating premium rice varieties. Rice, 2010, 3: 270-281.
doi: 10.1007/s12284-010-9057-4
[42] 周小理, 王惠, 周一鸣, 张欢, 胡业芹. 不同烹煮方式对米饭食味品质的影响. 食品科学, 2017, 38(11): 75-80.
Zhou X L, Wang H, Zhou Y M, Zhang H, Hu Y Q. Influence of different cooking methods on eating quality of rice. Food Sci, 2017, 38(11): 75-80. (in Chinese with English abstract)
doi: 10.1111/j.1365-2621.1973.tb02779.x
[1] 蒋岩, 赵灿, 陈越, 刘光明, 赵凌天, 廖平强, 王维领, 许轲, 李国辉, 吴文革, 霍中洋. 氮素穗肥对粳米淀粉特性和结构的影响及其与食用特征的关系[J]. 作物学报, 2023, 49(1): 200-210.
[2] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[3] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[4] 李博, 张驰, 曾玉玲, 李秋萍, 任洪超, 卢慧, 杨帆, 陈虹, 王丽, 陈勇, 任万军, 邓飞. 播期对四川盆地杂交籼稻米饭食味品质的影响[J]. 作物学报, 2021, 47(7): 1360-1371.
[5] 吕腾飞, 谌洁, 代邹, 马鹏, 杨志远, 郑传刚, 马均. 缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响[J]. 作物学报, 2021, 47(10): 1966-1977.
[6] 李敏, 罗德强, 江学海, 蒋明金, 姬广梅, 李立江, 周维佳. 控水增密模式对杂交籼稻减氮后产量形成的调控效应[J]. 作物学报, 2020, 46(9): 1430-1447.
[7] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[8] 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna Pillay, 王才林. 水稻Wxmp背景下SSIIaSSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702.
[9] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[10] 姚姝,陈涛,张亚东,朱镇,赵庆勇,周丽慧,赵凌,赵春芳,王才林. 利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因[J]. 作物学报, 2017, 43(11): 1622-1631.
[11] 毛艇,李旭,李振宇,徐正进. 水稻Wx复等位基因基于PCR的功能标记开发与利用[J]. 作物学报, 2017, 43(11): 1715-1723.
[12] 罗德强,王绍华,江学海,李刚华,周维佳,李敏,姬光梅,丁艳锋,凌启鸿,刘正辉. 贵州省高原山区杂交籼稻不同产量水平群体的特征[J]. 作物学报, 2016, 42(12): 1817-1826.
[13] 龚红兵,曾生元,李闯,左示敏,景德道,林添资,陈宗祥,张亚芳,钱华飞,余波, 盛生兰,潘学彪. 江苏主栽粳稻品种的遗传与食味结构分析[J]. 作物学报, 2016, 42(07): 1083-1093.
[14] 许俊伟,孟天瑶,荆培培,张洪程*,李超,戴其根,魏海燕,郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响[J]. 作物学报, 2015, 41(11): 1767-1776.
[15] 田青兰,李培程,刘利,张强,任万军. 四川不同生态区高产栽培条件下的杂交籼稻的稻米品质[J]. 作物学报, 2015, 41(08): 1257-1268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[7] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[8] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[9] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[10] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .