作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3225-3233.doi: 10.3724/SP.J.1006.2022.12088
• 研究简报 • 上一篇
袁玉洁(), 张丝琪, 王明玥, 罗霄, 曾钰涵, 宋璐炘, 卢慧, 陈虹, 陶有凤, 邓飞, 任万军()
YUAN Yu-Jie(), ZHANG Si-Qi, WANG Ming-Yue, LUO Xiao, ZENG Yu-Han, SONG Lu-Xin, LU Hui, CHEN Hong, TAO You-Feng, DENG Fei, REN Wan-Jun()
摘要:
明确蒸煮米水比对稻米食味品质的影响, 为不同直链淀粉含量杂交籼稻最适蒸煮米水比的选择提供理论依据。在前期品种筛选试验的基础上, 以2个高直链淀粉、2个低直链淀粉杂交籼稻品种为试验材料, 研究了米饭外观形态、微观结构、质构特性及感官食味品质对不同蒸煮米水比的响应。结果表明: (1) 低直链杂交籼稻具有较高的溶胀因子, 在浸泡阶段米粒即出现较大裂缝且贯穿整颗籽粒, 水分充分进入籽粒, 仅需较少加水量就能糊化完全, 在加水量过高时籽粒内部形成孔洞, 结构不稳定; 而高直链杂交籼稻则呈相反趋势。(2) 蒸煮米水比显著影响米饭的硬度、黏性、咀嚼性、胶着性、内聚性和回复性, 以及米饭的适口性、冷饭质地和感官综合评分。(3) 加水量可显著提高米饭的粘性, 降低米饭的硬度、咀嚼性、胶着性、内聚性和回复性; 米饭适口性、滋味、冷饭质地和感官综合评分随加水量增加呈先上升后下降的趋势, 而米饭气味和外观差异较小。(4)米饭气味和外观在各米水比处理间均以低直链品种优于高直链品种, 低直链品种在米水比1∶1.3达到最佳适口性, 高直链品种在2.3倍加水量时适口性最优, 两类品种滋味和冷饭质地指标变化规律与适口性指标相似。综上所述, 增加蒸煮加水量可以显著改善高直链杂交籼稻的食味品质; 低直链杂交籼稻在米水比1∶1.3时食味品质最佳, 而高直链杂交籼稻在1∶2.3时达到最佳食味。
[1] |
Mohapatra D, Bal S. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. J Food Eng, 2006, 73: 253-259.
doi: 10.1016/j.jfoodeng.2005.01.028 |
[2] |
Champagne E T, Bett Garber K L, McClung A M, Bergman C. Sensory characteristics of diverse rice cultivars as influenced by genetic and environmental factors. Cereal Chem, 2004, 81: 237-243.
doi: 10.1094/CCHEM.2004.81.2.237 |
[3] |
Yu L, Turner M S, Fitzgerald M, Stokes J R, Witt T. Review of the effects of different processing technologies on cooked and convenience rice quality. Trends Food Sci Technol, 2017, 59: 124-138.
doi: 10.1016/j.tifs.2016.11.009 |
[4] |
Han J A, Lim S T. Effect of presoaking on textural, thermal, and digestive properties of cooked brown rice. Cereal Chem, 2009, 86: 100-105.
doi: 10.1094/CCHEM-86-1-0100 |
[5] |
Zhu L, Wu G, Cheng L, Zhang H, Wang L, Qian H F, Qi X G. Effect of soaking and cooking on structure formation of cooked rice through thermal properties, dynamic viscoelasticity, and enzyme activity. Food Chem, 2019, 289: 616-624.
doi: S0308-8146(19)30559-X pmid: 30955656 |
[6] |
Ghasemi E, Mosavian M T H, Khodaparast M H H. Effect of stewing in cooking step on textural and morphological properties of cooked rice. Rice Sci, 2009, 16: 243-246.
doi: 10.1016/S1672-6308(08)60086-4 |
[7] |
He M, Qiu C, Liao Z, Sui Z Q, Corke H. Impact of cooking conditions on the properties of rice: combined temperature and cooking time. Int J Biol Macromol, 2018, 117: 87-94.
doi: S0141-8130(18)31216-9 pmid: 29792958 |
[8] |
Li H, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydr Polym, 2016, 146: 253-263.
doi: 10.1016/j.carbpol.2016.03.045 |
[9] |
Li H, Gilbert R G. Starch molecular structure: the basis for an improved understanding of cooked rice texture. Carbohydr Polym, 2018, 195: 9-17.
doi: 10.1016/j.carbpol.2018.04.065 |
[10] | Chen X, Zhang X X, Wang B Y, Chen P R, Xu Y, Du X F. Investigation of water migration and its impacts on eating qualities of black rice during cooking process. J Cereal Sci, 2019, 89: 102810. |
[11] | 徐润琪. 大米品质评价技术的开发研究——米饭含水率及糊化度对米饭品质的影响. 四川工业学院学报, 2003, (1): 45-49. |
Xu R Q. Development and research of rice quality evaluation technology—effect of rice moisture and gelatinization degree on rice quality. J Sichuan Inst Technol, 2003, (1): 45-49. (in Chinese) | |
[12] |
Bett Garber K L, Champagne E T, Ingram D A, McClung A M. Influence of water-to-rice ratio on cooked rice flavor and texture. Cereal Chem, 2007, 84: 614-619.
doi: 10.1094/CCHEM-84-6-0614 |
[13] |
Vidal V, Pons B, Brunnschweiler J, Handschin S, Rouau X, Mestres C. Cooking behavior of rice in relation to kernel physicochemical and structural properties. J Agric Food Chem, 2007, 55: 336-346.
doi: 10.1021/jf061945o |
[14] | 朱庆森, 杜永, 王志琴, 郎有忠, 汤述翥. 杂交稻米的直链淀粉含量与米饭口感黏度硬度关系的研究. 作物学报, 2001, 27: 377-382. |
Zhu Q S, Du Y, Wang Z Q, Lang Y Z, Tang S C. Study on the relationship between amylose content and taste viscosity and hardness of hybrid rice. Acta Agron Sin, 2001, 27: 377-382. (in Chinese with English abstract) | |
[15] | 张玉荣, 周显青, 张秀华, 杨兰兰. 大米蒸煮条件及蒸煮过程中米粒形态结构变化的研究. 粮食与饲料工业, 2008, (10): 1-4. |
Zhang Y R, Zhou X Q, Zhang X H, Yang L L. Study on cooking condition of rice and morphological and structural changes of rice grain during cooking. Cereal Feed Ind, 2008, (10): 1-4. (in Chinese with English abstract) | |
[16] | Khan M S, Ali C A. Cooking quality of some rice varieties: Research note. J Agric Res (Pakistan), 1985, 23: 231-233. |
[17] | 卢慧, 袁玉洁, 张丝琪, 陈虹, 陈多, 钟晓媛, 李博, 邓飞, 陈勇, 李贵勇, 任万军. 基于3种方法的西南杂交籼稻稻米食味评价及品种优选. 中国农业科学, 2021, 54: 1243-1257. |
Lu H, Yuan Y J, Zhang S Q, Chen H, Chen D, Zhong X Y, Li B, Deng F, Chen Y, Li G Y, Ren W J. Evaluation of rice eating taste and variety optimization of indica hybrid rice in southwest China based on three methods. Sci Agric Sin, 2021, 54: 124-1257. (in Chinese with English abstract) | |
[18] | 袁玉洁, 张丝琪, 卢慧, 李贵勇, 朱海平, 陶有凤, 陈虹, 任万军. 基于食味计评价杂交籼稻食味品质. 食品科学, 2021, 42(11): 63-70. |
Yuan Y J, Zhang S Q, Lu H, Li G Y, Zhu H P, Tao Y F, Chen H, Ren W J. Taste quality of indica hybrid rice varieties evaluated by using rice taste analyzer. Food Sci, 2021, 42(11): 63-70. (in Chinese with English abstract) | |
[19] | Perez C M, Juliano B O. Indicators of eating quality for non-waxy rices. Food Chem, 1979, 4: 185-195. |
[20] | Tester R F, Morrison W R. Swelling and gelatinization of cereal starches: I. Effects of amylopectin, amylose, and lipids. Cereal Chem, 1990, 67: 551-557. |
[21] | Xu D P, Hong Y, Gu Z B, Cheng L, Li Z F, Li C M. Effect of high-pressure steam on the eating quality of cooked rice. Food Sci Technol, 2019, 104: 100-108. |
[22] | Zhu L, Bi S L, Wu G C, Zhang H, Wang L, Qian H F, Qi X G, Jiang H P. Comparative analysis of the texture and physicochemical properties of cooked rice based on adjustable rice cooker. Food Sci Technol, 2020, 130: 109650. |
[23] |
Li C, Gong B. Insights into chain-length distributions of amylopectin and amylose molecules on the gelatinization property of rice starches. Int J Biol Macromol, 2020, 155: 721-729.
doi: S0141-8130(20)32860-9 pmid: 32259539 |
[24] |
Tao K, Yu W W, Prakash S, Gilbert R G. High-amylose rice: starch molecular structural features controlling cooked rice texture and preference. Carbohydr Polym, 2019, 219: 251-260.
doi: 10.1016/j.carbpol.2019.05.031 |
[25] | 侯彩云, 大下诚一, 濑尾康久, 川越义则. 蒸煮过程中稻米水分状态的质子核磁共振谱测定. 农业工程学报, 2001, 17(2): 126-131. |
Hou C Y, Oshita S, Seo Y, Kawagoe Y. Determination of water status of rice by proton nuclear magnetic resonance spectroscopy during cooking. Trans CSAE, 2001, 17(2): 126-131. (in Chinese with English abstract) | |
[26] |
Srichuwong S, Sunarti T C, Mishima T, Tsono N, Hisamatsu M. Starches from different botanical sources: II. Contribution of starch structure to swelling and pasting properties. Carbohydr Polym, 2005, 62: 25-34.
doi: 10.1016/j.carbpol.2005.07.003 |
[27] |
Oyeyinka S A, Oyedeji A B, Ogundele O M, Adebo O A, Njobeh P B, Kayitesi E. Infrared heating under optimized conditions enhanced the pasting and swelling behaviour of cowpea starch. Int J Biol Macromol, 2021, 184: 678-688.
doi: 10.1016/j.ijbiomac.2021.06.129 |
[28] |
Sasaki T, Matsuki J. Effect of wheat starch structure on swelling power. Cereal Chem, 1998, 75: 525-529.
doi: 10.1094/CCHEM.1998.75.4.525 |
[29] | Vamadevan V, Bertoft E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids, 2020, 103: 105663. |
[30] | 赵春芳, 岳红亮, 黄双杰, 周丽慧, 赵凌, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 梁文化, 路凯, 王才林. 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019, 52: 909-920. |
Zhao C F, Yue H L, Huang S J, Zhou L H, Zhao L, Zhang Y D, Chen T, Zhu Z, Zhao Q Y, Yao S, Liang W H, Lu K, Wang C L. Eating quality and physicochemical properties in Nanjing rice varieties. Sci Agric Sin, 2019, 52: 909-920. (in Chinese with English abstract) | |
[31] |
Fan D M, Ma S Y, Wang L Y, Zhao H F, Zhao J X, Zhang H, Chen W. 1H NMR studies of starch-water interactions during microwave heating. Carbohydr Polym, 2013, 97: 406-412.
doi: 10.1016/j.carbpol.2013.05.021 |
[32] | Hu Z Q, Yang H, Chaima M, Fang C Y, Lu L, Hu X Q, Du B, Zhu Z W, Huang J Y. A visualization and quantification method to evaluate the water-absorbing characteristics of rice. Food Chem, 2020, 331: 127050. |
[33] |
Kasai M, Lewis A, Marica F, Ayabe S, Hatae K, Fyfe C A. NMR imaging investigation of rice cooking. Food Res Int, 2005, 38: 403-410.
doi: 10.1016/j.foodres.2004.10.012 |
[34] |
Pan T, Zhao L X, Lin L S, Wang J, Liu Q Q, Wei C X. Changes in kernel morphology and starch properties of high-amylose brown rice during the cooking process. Food Hydrocolloids, 2017, 66: 227-236.
doi: 10.1016/j.foodhyd.2016.11.035 |
[35] |
Tamura M, Ogawa Y. Visualization of the coated layer at the surface of rice grain cooked with varying amounts of cooking water. J Cereal Sci, 2012, 56: 404-409.
doi: 10.1016/j.jcs.2012.06.002 |
[36] | Horigane A K, Toyoshima H, Hemmi H, Engelaar W M H G, Okubo A, Nagata T. Internal hollows in cooked rice grains (Oryza sativa cv. Koshihikari) observed by NMR micro imaging. J Food Sci, 1999, 64: 1-5. |
[37] |
Zhu L, Bi S L, Wu G C, Gong B, Zhang H, Wang L, Qian H F, Qi X G. Study of the migration and molecular structure of starch and protein in rice kernel during heating. Int J Biol Macromol, 2020, 147: 1116-1124.
doi: S0141-8130(19)35243-2 pmid: 31726120 |
[38] | Patindol J, Gu X F, Wang Y J. Chemometric analysis of cooked rice texture in relation to starch fine structure and leaching characteristics. Starch (Stärke), 2010, 62: 188-197. |
[39] |
Li H, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016, 196: 702-711.
doi: 10.1016/j.foodchem.2015.09.112 pmid: 26593544 |
[40] |
Xu Y J, Ying Y N, Ouyang S H, Duan X L, Sun H, Jiang S K, Sun S C, Bao J S. Factors affecting sensory quality of cooked japonica rice. Rice Sci, 2018, 25: 330-339.
doi: 10.1016/j.rsci.2018.10.003 |
[41] |
Champagne E T, Bett-Garber K L, Fitzgerald M A, Grimm C C, Lea J, Ohtsubo K, Jongdee S, Xie L H, Bassinello P Z, Resurreccion A, Ahmad R, Habibi F, Habibi R. Important sensory properties differentiating premium rice varieties. Rice, 2010, 3: 270-281.
doi: 10.1007/s12284-010-9057-4 |
[42] | 周小理, 王惠, 周一鸣, 张欢, 胡业芹. 不同烹煮方式对米饭食味品质的影响. 食品科学, 2017, 38(11): 75-80. |
Zhou X L, Wang H, Zhou Y M, Zhang H, Hu Y Q. Influence of different cooking methods on eating quality of rice. Food Sci, 2017, 38(11): 75-80. (in Chinese with English abstract)
doi: 10.1111/j.1365-2621.1973.tb02779.x |
[1] | 蒋岩, 赵灿, 陈越, 刘光明, 赵凌天, 廖平强, 王维领, 许轲, 李国辉, 吴文革, 霍中洋. 氮素穗肥对粳米淀粉特性和结构的影响及其与食用特征的关系[J]. 作物学报, 2023, 49(1): 200-210. |
[2] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[3] | 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580. |
[4] | 李博, 张驰, 曾玉玲, 李秋萍, 任洪超, 卢慧, 杨帆, 陈虹, 王丽, 陈勇, 任万军, 邓飞. 播期对四川盆地杂交籼稻米饭食味品质的影响[J]. 作物学报, 2021, 47(7): 1360-1371. |
[5] | 吕腾飞, 谌洁, 代邹, 马鹏, 杨志远, 郑传刚, 马均. 缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响[J]. 作物学报, 2021, 47(10): 1966-1977. |
[6] | 李敏, 罗德强, 江学海, 蒋明金, 姬广梅, 李立江, 周维佳. 控水增密模式对杂交籼稻减氮后产量形成的调控效应[J]. 作物学报, 2020, 46(9): 1430-1447. |
[7] | 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及Wx和OsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888. |
[8] | 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna Pillay, 王才林. 水稻Wxmp背景下SSIIa和SSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702. |
[9] | 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637. |
[10] | 姚姝,陈涛,张亚东,朱镇,赵庆勇,周丽慧,赵凌,赵春芳,王才林. 利用分子标记辅助选择聚合水稻Pi-ta、Pi-b和Wx-mq基因[J]. 作物学报, 2017, 43(11): 1622-1631. |
[11] | 毛艇,李旭,李振宇,徐正进. 水稻Wx复等位基因基于PCR的功能标记开发与利用[J]. 作物学报, 2017, 43(11): 1715-1723. |
[12] | 罗德强,王绍华,江学海,李刚华,周维佳,李敏,姬光梅,丁艳锋,凌启鸿,刘正辉. 贵州省高原山区杂交籼稻不同产量水平群体的特征[J]. 作物学报, 2016, 42(12): 1817-1826. |
[13] | 龚红兵,曾生元,李闯,左示敏,景德道,林添资,陈宗祥,张亚芳,钱华飞,余波, 盛生兰,潘学彪. 江苏主栽粳稻品种的遗传与食味结构分析[J]. 作物学报, 2016, 42(07): 1083-1093. |
[14] | 许俊伟,孟天瑶,荆培培,张洪程*,李超,戴其根,魏海燕,郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响[J]. 作物学报, 2015, 41(11): 1767-1776. |
[15] | 田青兰,李培程,刘利,张强,任万军. 四川不同生态区高产栽培条件下的杂交籼稻的稻米品质[J]. 作物学报, 2015, 41(08): 1257-1268. |
|