作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2643-2653.doi: 10.3724/SP.J.1006.2023.34009
杜鹃1(), 彭晓君1,2, 侯娟1,3, 刘腾飞1,4, 刘增1, 宋波涛1()
DU Juan1(), PENG Xiao-Jun1,2, HOU Juan1,3, LIU Teng-Fei1,4, LIU Zeng1, SONG Bo-Tao1()
摘要:
本实验室前期研究表明β-淀粉酶9 (StBAM9)在马铃薯抗低温糖化中具有重要作用, 但其并无β-淀粉酶活性。为了研究StBAM9在马铃薯抗低温糖化中的功能机制, 我们构建了低温贮藏后块茎cDNA酵母双杂交文库, 并以StBAM9蛋白为诱饵, 对其进行了互作蛋白的筛选和分析, 结果显示分别以全长StBAM9和截去转运肽的StBAM9为诱饵筛选到的候选互作蛋白中有12个是共有的。酵母双杂交结果显示有4个蛋白(StDUF842、StTPR01660、StTPR22129和StTPR45174)与StBAM9互作。进一步通过谷胱甘肽-S-转移酶融合蛋白沉降技术验证表明, 其中的2个蛋白StTPR01660和StTPR4517与StBAM9互作。双分子荧光互补结果显示只有StTPR01660与StBAM9互作于淀粉粒上, 而StTPR01660自身定位于细胞质。因此, 我们推测StBAM9可能通过从细胞质中招募StTPR01660到淀粉粒上发挥淀粉降解的功能。
[1] |
Shepherd L V T, Bradshaw J E, Dale M F B, McNicol J W, Pont S D A, Mottram D S, Davies H V. Variation in acrylamide producing potential in potato: segregation of the trait in a breeding population. Food Chem, 2010, 123: 568-573.
doi: 10.1016/j.foodchem.2010.04.070 |
[2] |
Hogervorst J G, Schouten L J, Konings E J, Goldbohm R A, van den Brandt P A. A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidem Biomar, 2007, 16: 2304-2313.
doi: 10.1158/1055-9965.EPI-07-0581 pmid: 18006919 |
[3] |
Scheidig A, Frohlich A, Schulze S, Lloyd J R, Kossmann J. Downregulation of a chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves. Plant J, 2002, 30: 581-591.
doi: 10.1046/j.1365-313x.2002.01317.x pmid: 12047632 |
[4] |
Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith A M, Smith S M, Zeeman S C. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008, 20: 1040-1058.
doi: 10.1105/tpc.107.056507 |
[5] |
Reinhold H, Soyk S, Simková K, Hostettler C, Marafino J, Mainiero S, Vaughan C K, Monroe J D, Zeeman S C. Beta-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23: 1391-1403.
doi: 10.1105/tpc.110.081950 |
[6] |
Hou J, Zhang H L, Liu J, Reid S, Liu T F, Xu S J, Tian Z D, Sonnewald U, Song B T, Xie C H. Amylases StAmy23, StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. J Exp Bot, 2017, 68: 2317-2331.
doi: 10.1093/jxb/erx076 pmid: 28369567 |
[7] |
Smith S M, Fulton D C, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman S C, Smith A M. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol, 2004, 136: 2687-2699.
doi: 10.1104/pp.104.044347 |
[8] |
Zhang H L, Hou J, Liu J, Xie C H, Song B T. Amylase analysis in potato starch degradation during cold storage and sprouting. Potato Res, 2014, 57: 47-58.
doi: 10.1007/s11540-014-9252-6 |
[9] |
Zhang H L, Liu J, Hou J, Yao Y, Lin Y, Ou Y B, Song B T, Xie C H. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity. Plant Biotechnol J, 2014, 12: 984-993.
doi: 10.1111/pbi.2014.12.issue-7 |
[10] | Du J, Rietman H, Vleeshouwers V G. Agroinfiltration and PVX agroinfection in potato and Nicotiana benthamiana. J Vis Exp, 2014, 83: e50971. |
[11] | 侯娟. 马铃薯低温糖化相关淀粉酶基因的功能鉴定及机制解析. 华中农业大学博士学位论文, 湖北武汉, 2017. |
Hou J. Function Characterization and Mechanism Dissection of the Amylase Genes Related to Cold-induced Sweetening in Potato. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract) | |
[12] |
Amit K D, Patricia T W C, David B. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J, 1998, 17: 1192-1199.
doi: 10.1093/emboj/17.5.1192 pmid: 9482716 |
[13] |
Blatch G L, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays, 1999, 21: 932-939.
pmid: 10517866 |
[14] |
She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22: 3280-3294.
doi: 10.1105/tpc.109.070821 |
[15] |
Wu Y P, Pu C H, Lin H Y, Huang H Y, Huang Y C, Hong C Y, Chang M C, Lin Y R. Three novel alleles of FLOURY ENDOSPERM2 (FLO2) confer dull grains with low amylose content in rice. Plant Sci, 2015, 233: 44-52.
doi: 10.1016/j.plantsci.2014.12.011 |
[16] |
Gámez-Arjona F M, Raynaud S, Ragel P, Mérida Á. Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule-associated proteins in Arabidopsis. Plant J, 2014, 80: 305-316.
doi: 10.1111/tpj.12633 |
[17] |
Hussain H, Mant A, Seale R, Zeeman S, Hinchliffe E, Edwards A, Hylton C, Bornemann S, Smith A M, Martin C, Bustos R. Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell, 2002, 15: 133-149.
doi: 10.1105/tpc.006635 |
[1] | 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471. |
[2] | 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484. |
[3] | 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001. |
[4] | 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870. |
[5] | 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110. |
[6] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[7] | 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995. |
[8] | 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005. |
[9] | 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价[J]. 作物学报, 2023, 49(11): 2923-2934. |
[10] | 朱金勇, 刘震, 曾钰婷, 李志涛, 陈丽敏, 李泓阳, 史田斌, 张俊莲, 白江平, 刘玉汇. 马铃薯PAL基因家族的全基因组鉴定及其在非生物胁迫下和块茎花色素苷合成中的表达分析[J]. 作物学报, 2023, 49(11): 2978-2990. |
[11] | 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性[J]. 作物学报, 2023, 49(11): 3007-3016. |
[12] | 赵富贵, 张龙, 李丹, 韩固, 王楠, 侯贤清. 不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响[J]. 作物学报, 2023, 49(10): 2806-2819. |
[13] | 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676. |
[14] | 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45. |
[15] | 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284. |
|