欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2633-2642.doi: 10.3724/SP.J.1006.2023.32007

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用双向导入系和重组自交系定位和挖掘水稻苗期耐冷QTL和有利等位基因

曹慧敏1,2(), 杨贤莉3(), 王立志3, 李苹苹1, 翟来圆2, 姜树坤3, 郑天清2, 邱先进1(), 徐建龙2,4,5()   

  1. 1农业农村部长江中游作物绿色高效生产重点实验室(省部共建), 长江大学农学院, 湖北荆州 434025
    2中国农业科学院作物科学研究所, 北京 100081
    3黑龙江省农业科学院耕作栽培研究所, 黑龙江哈尔滨 150086
    4岭南现代农业科学与技术广东省实验室深圳分中心, 中国农业科学院农业基因组研究所, 广东深圳 518210
    5海南省崖州湾种子实验室, 海南三亚 572024
  • 收稿日期:2023-02-16 接受日期:2023-04-17 出版日期:2023-10-12 网络出版日期:2023-04-24
  • 通讯作者: 邱先进, E-mail: xjqiu216@yangtzeu.edu.cn; 徐建龙, E-mail: xujianlong@caas.cn
  • 作者简介:曹慧敏, E-mail: chm98316@163.com;杨贤莉, E-mail: aiwei.ni@163.com **同等贡献
  • 基金资助:
    深圳市基础研究专项(JCYJ20200109150713553);海南省崖州湾种子实验室揭榜挂帅项目(B21HJ0216)

QTL identification and favorable allele mining of cold tolerance at seedling stage by reciprocal introgression and recombinant inbred line populations in rice

CAO Hui-Min1,2(), YANG Xian-Li3(), WANG Li-Zhi3, LI Ping-Ping1, ZHAI Lai-Yuan2, JIANG Shu-Kun3, ZHENG Tian-Qing2, QIU Xian-Jin1(), XU Jian-Long2,4,5()   

  1. 1Key Laboratory of Sustainable Crop Production in the Middle Researches of the Yangtze River, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    4Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
    5Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan, China
  • Received:2023-02-16 Accepted:2023-04-17 Published:2023-10-12 Published online:2023-04-24
  • Contact: E-mail: xjqiu216@yangtzeu.edu.cn; E-mail: xujianlong@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    Shenzhen Basic Research Special Project(JCYJ20200109150713553);Hainan Yazhou Bay Seed Lab Project(B21HJ0216)

摘要:

苗期低温冷害常造成水稻生长发育受阻, 影响形态建成最终导致减产。鉴定和挖掘优良的耐冷基因, 选育耐冷水稻品种, 是减少冷害造成水稻产量损失的有效措施。本研究以籼稻明恢63和粳稻02428为亲本构建的双向导入系及重组自交系群体为研究材料, 通过人工气候室进行苗期耐冷性鉴定, 考查枯萎度和冷害恢复生长后的存活率, 结合重测序构建的Bin基因型数据, 进行苗期耐冷性QTL定位, 3个群体在1号、4号、5号、7号和12号染色体上共检测到13个与水稻苗期耐冷性相关的QTL, 解释0.36%~13.63%的表型变异。未定位到不同遗传背景下稳定表达的QTL, 但有5个同时影响枯萎度和存活率的QTL被检出, 分别位于1号、5号、7号和12号染色体, 其中位于1号染色体12,732,139~13,202,097 bp和14,445,778~14,585,009 bp及5号染色体14,658,891~15,684,510 bp的3个QTL的LOD值都高于25, 被认为是可靠的主效QTL。结合基因注释、表达谱数据和3K种质资源的苗期耐冷表型数据分析, 推测位于5号染色体区间内影响枯萎度和存活率的基因很可能是已克隆的耐冷基因OsWKRY45, 而1号染色体2个区间的2个基因是新基因位点, 其候选基因分别是LOC_Os01g25540LOC_Os01g25560。单倍型分析结果表明, LOC_Os01g25540的Hap2、Hap4和Hap9, LOC_Os01g25560的Hap1、Hap8和Hap10为有利单倍型。研究结果将为水稻品种耐冷分子改良提供宝贵的耐冷资源和有利基因。

关键词: 水稻, 苗期耐冷, 枯萎度, QTL定位, 单倍型

Abstract:

Cold damage often hinders rice growth, affects its morphogenesis and leads finally to serious yield loss. Identifying favorable genes tolerant to cold, and breeding elite rice varieties with cold tolerance is an effective way to solve this problem. In this study, two sets of reciprocal introgression lines and a set of recombinant inbred line derived from xian variety Minghui 63 and geng variety 02428 were evaluated for cold tolerance in climate chamber using cold tolerance-related traits such as wilting degree and survival rate after recovered growth. Combined with the available Bin genotype data generated by previous re-sequencing, 13 QTLs for cold tolerance at seedling stage were identified on chromosomes 1, 4, 5, 7, and 12, which explained 0.36% to 13.63% of phenotypic variation. No QTL was stably detected in different genetic backgrounds, whereas five QTLs were simultaneously detected for both wilting degree and survival rate on chromosomes 1, 5, 7, and 12. Among them, QTLs in the regions of 12,732,139-13,202,097 bp and 14,445,778-14,585,009 bp on chromosome 1, and 14,658,891-15,684,510 bp on chromosome 5 had high LOD values above 25 and were considered as reliable main-effect QTLs. Combined with gene annotation, gene expression profile and phenotyping data of cold tolerance of 3K germplasms, the previously cloned gene OsWKRY45 for cold tolerance was regarded as the responsible gene for the QTL in the region of 14,658,891-15,684,510 bp on chromosome 5, while the two candidate genes, LOC_Os01g25540 and LOC_Os01g25560 in the two regions on chromosome 1, were the new candidate genes for both wilting degree and survival rate. Haplotype analysis indicated that Hap2, Hap4, and Hap9 of LOC_Os01g25540 and Hap1, Hap8, and Hap10 of LOC_Os01g25560 were favorable haplotypes for cold tolerance. The results provide the novel germplasms and favorable genes for molecular improvement of cold tolerance in rice.

Key words: rice, cold tolerance at seedling stage, wilting degree, QTL mapping, haplotype

图1

双向导入系和重组自交系群体的明恢63基因组成成分的频数分布"

表1

亲本、双向导入系和重组自交系群体苗期耐冷表现"

性状
Trait
明恢63
MH63
02428 明恢63背景导入系 MH63-ILs 02428背景导入系 02428-ILs 重组自交系 RIL
平均值±标准差
Mean ± SD
峰度
Kurtosis
偏度
Skewness
变幅
Range
平均值±标准差
Mean ± SD
峰度
Kurtosis
偏度
Skewness
变幅
Range
平均值±标准差
Mean ± SD
峰度
Kurtosis
偏度
Skewness
变幅
Range
枯萎度
Wilting degree
8.00 1.00** 8.40±
1.60
10.07 -3.17 1.00-
9.00
6.15±
2.91
-1.30 -0.48 1.00-
9.00
8.20±
1.80
6.78 -2.65 1.00-
9.00
存活率
Survival rate (%)
15.69 81.90** 6.00±
17.00
12.63 3.53 0-
100.00
35.00±
36.00
-1.19 0.58 0-
100.00
8.00±
20.00
7.91 2.87 0-
100.00

图2

明恢63和02428衍生群体的苗期耐冷分布"

表2

明恢63和02428衍生群体定位到的苗期耐冷QTL"

群体
Population
性状
Trait
染色体
Chr.
QTL 区间
Interval (bp)
LOD 加性效应
A
贡献率
PVE (%)
明恢63背景导入系
MH63-ILs
枯萎度WD 5 qWD5 14,658,891-15,684,510 28.72 -1.65 8.17
存活率SR 5 qSR5 14,658,891-15,684,510 29.43 0.18 5.86
12 qSR12.1 24,001,167-24,472,105 3.95 0.20 3.28
02428背景导入系
02428-ILs
枯萎度WD 4 qWD4 1,048,077-1,157,529 7.20 1.15 12.92
12 qWD12 26,529,940-26,660,385 3.03 -0.67 5.20
存活率SR 4 qSR4 764,097-963,403 7.42 −0.15 13.63
12 qSR12.2 26,529,940-26,660,385 2.73 0.08 4.75
重组自交系
RIL
枯萎度WD 1 qWD1.1 12,732,139-13,202,097 44.95 1.57 9.58
1 qWD1.2 14,445,778-14,585,009 31.63 -1.25 5.91
7 qWD7 16,793,414-17,068,785 2.64 -0.28 0.36
存活率SR 1 qSR1.1 12,732,139-13,202,097 49.88 -0.19 10.67
1 qSR1.2 14,445,778-14,585,009 36.09 0.15 6.71
7 qSR7 16,793,414-17,068,785 3.08 0.03 0.40

图3

明恢63和02428衍生群体定位到的水稻苗期耐冷QTL在染色体上的分布 WD: 枯萎度; SR: 存活率。"

图4

2个候选基因的单倍型分析图 A、D: 2个耐冷性状不同单倍型间的表型差异, 不同字母代表不同单倍型之间表型在P < 0.01水平差异显著; B、E: 不同亚群在不同单倍型内的频率分布; C: 低温和常温条件下空育131苗期叶片LOC_os01g22540的表达量(数据来源于Yu等[18]的报道); F: 低温和常温条件下日本晴苗期根部LOC_os01g22560的表达量(数据来源于Yu等[18]的报道); **和***分别代表表达量在P < 0.01和P < 0.001水平差异显著。"

附表1

两个候选基因的单倍型信息"

候选基因
Candidate gene
单倍型编号
Hap ID
单倍型
Haplotype (5′-3′)
种质资源数目 No. of accessions
籼稻
xian
粳稻
geng
Aus Bas 中间型
Admix
LOC_Os01g25540 Hap1 GCTATTGGACCAGAACCCGTAGGAGGCCACCTGCAGCCACTGCAGCGAAGCGAG 110 4 37 9 4
Hap2 GAGACTGGATCGGATCCCGTGGGGGGCTGCCTATAGCCACTGTGGCAAAGCGGA 1 138 0 1 3
Hap3 TCGATTAGACCAGAACTAGTAGGAGGCCACCTGCAGCCACTGTGGCGAAGCGGA 123 0 0 0 2
Hap4 TCGATTAGGCCAGAACCAGTAGGAGGTCACCTGCAGCCACTGTGGAGAAGCGGA 96 0 0 0 1
Hap5 GAGGCCGGATTAAACCCCGTGGAGGGCCACCTATAGCCACTGTGTAGAAGCGGG 37 0 40 1 4
Hap6 TCGATTGAACCAGAACCCGTAGGGGGCCACTTGCAGCCACAGTGGAGAAACGGA 57 0 0 0 1
Hap7 GAGGCTGGATTAGACCCCATGGGGGGTCATCTATGGCTACTGTAGCGAAGCGGG 49 0 0 0 2
Hap8 GCTATTGGACCAGAACCCGTAGGAGGCCACCTGCAGCCACTGTAGCGAAGCGAG 42 0 0 0 0
Hap9 GAGACTGGATCGGATCCCGTGGGGGACTGCCTATAGCCACTGTGGCAAAGCGGA 0 28 0 0 2
LOC_Os01g25560 Hap1 ACCAGCGCGCGATCGGGAGCTTCAGTGGCCCTTCCAAG 5 344 0 8 14
Hap2 TCCGGTGCAGAGCTGGGAGCGTTAGCGTTCCTATCAGG 155 0 0 0 3
Hap3 TTCGGCGCAGAGCTGGGGGCGCTGGCGGCCCTATCAGG 136 3 12 0 3
Hap4 TCAGGCGCAGAGCTGGGAGCGTTAGCGGCCCTATCAGG 109 0 0 0 0
Hap5 TCCGGCGCAGAGCTGGAAGCGTTAGCGGCCCTATCAGG 89 0 0 0 0
Hap6 TCCGGCGCAGAGCTAAGAGCGTTAACGGCCCGATCAGA 29 0 52 0 5
Hap7 TCCGACGCAGAGCTGGGAGCGTTAGCCGCCCTATCAGG 41 0 33 7 2
Hap8 ACCAGCGCGCGATCGGGAGCTTCAGTGGCCCTTCCMAG 1 76 0 0 2
Hap9 TCCGGCGCAGAGCTGAGATCGTTAGCGGCTCTATTAGG 60 0 1 0 1
Hap10 ACCAGCGCGCGATCGGGAGCTTCAGTGGCCCTTCC-AG 1 37 0 3 6
Hap11 TTCGGCGCAGAGCTGGGGGCGCTGGCGGCCCTATC-GG 31 0 3 0 0
[1] Li T G, Visperas R M, Vergara B S. Correlation of cold tolerance at different growth stages in rice. Acta Bot Sin, 1981, 23: 203-207.
[2] 李霞, 戴传超, 程睿, 陈婷, 焦德茂. 不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制. 作物学报, 2006, 32: 76-83.
Li X, Dai C C, Cheng R, Chen T, Jiao D M. Identification for cold tolerance at different growth stages in rice (Oryza sativa L.) and physiological mechanism of differential cold tolerance. Acta Agron Sin, 2006, 32: 76-83. (in Chinese with English abstract)
[3] Lou Q J, Chen L, Sun Z X, Xing Y Z, Li J, Xu X Y, Mei H W, Luo L J. A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica, 2007, 158: 87-94.
doi: 10.1007/s10681-007-9431-5
[4] Zhao J L, Zhang S H, Dong J F, Yang T F, Mao X X, Liu Q, Wang X F, Liu B. A novel functional gene associated with cold tolerance at the seedling stage in rice. Plant Biotechnol J, 2017, 15: 1141-1148.
doi: 10.1111/pbi.12704 pmid: 28173633
[5] Kim S, Suh J, Lee C, Lee J, Kim Y, Jena K K. QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Genet Genomics, 2014, 289: 333-343.
doi: 10.1007/s00438-014-0813-9
[6] Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D L, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y D, Jin J B, Zhang H, Xu X, Li L G, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015, 160: 1209-1221.
doi: 10.1016/j.cell.2015.01.046 pmid: 25728666
[7] Tao Z, Kou Y J, Liu H B, Li X H, Xiao J H, Wang S P. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot, 2011, 62: 4863-4874.
doi: 10.1093/jxb/err144
[8] Chen L P, Zhao Y, Xu S J, Zhang Z Y, Xu Y Y, Zhang J Y, Chong K. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol, 2018, 218: 219-231.
doi: 10.1111/nph.14977
[9] Ryu H S, Han M, Lee S K, Cho J I, Ryoo N, Heu S, Lee Y H, Bhoo S H, Wang G L, Hahn T R, Jeon J S. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep, 2006, 25: 836-847.
doi: 10.1007/s00299-006-0138-1
[10] Li J, Brader G, Palva E T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 2004, 16: 319-331.
doi: 10.1105/tpc.016980 pmid: 14742872
[11] Yang C C, Li D Y, Mao D H, Liu X, Ji C J, Li X B, Zhao X F, Cheng Z K, Chen C Y, Zhu L H. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ, 2013, 36: 2207-2218.
doi: 10.1111/pce.12130
[12] Liu H, Soomro A, Zhu Y J, Qiu X J, Chen K, Zheng T Q, Yang L W, Xing D Y, Xu J L. QTL underlying iron and zinc toxicity tolerances at seedling stage revealed by two sets of reciprocal introgression populations of rice (Oryza sativa L.). Crop J, 2016, 4: 280-289.
doi: 10.1016/j.cj.2016.05.007
[13] Xie W B, Feng Q, Yu H H, Huang X H, Zhao Q, Xing Y Z, Yu S B, Han B, Zhang Q. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010, 107: 10578-10583.
doi: 10.1073/pnas.1005931107 pmid: 20498060
[14] 韩龙植, 张三元. 水稻耐冷性鉴定评价方法. 植物遗传资源学报, 2004, 5: 75-80.
Han L Z, Zhang S Y. Methods of characterization and evaluation of cold tolerance in rice. J Plant Genet Resour, 2004, 5: 75-80.
[15] Morsy M R, Jouve L, Hausman J, Hoffmann L, Stewart J M. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol, 2007, 164: 157-167.<br
doi: 10.1016/j.jplph.2005.12.004
[16] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[17] Zhang F, Wang C C, Li M, Cui Y R, Shi Y Y, Wu Z C, Hu Z Q, Wang W S, Xu J L, Li Z K. The landscape of gene- CDS-haplotype diversity in rice: Properties, population organization, footprints of domestication and breeding, and implications for genetic improvement. Mol Plant, 2021, 14: 787-804.
doi: 10.1016/j.molp.2021.02.003 pmid: 33578043
[18] Yu Y M, Zhang H, Long Y P, Shu Y, Zhai J X. Plant public RNA-seq database: a comprehensice online database for expression analysis of -45000 plant public RNA-seq libraries. Plant Biotechnol J, 2022, 20: 806-808.
[19] Li J L, Zeng Y W, Pan Y H, Zhou L, Zhang Z Y, Guo H F, Lou Q J, Shui G H, Huang H G, Tian H, Guo Y M, Yuan P R, Yang H, Pan G J, Wang R Y, Zhang H L, Yang S H, Guo Y, Ge S, Li J J, Li Z C. Stepwise selection of natural variations at CTB2and CTB4a improves cold adaptation during domestication of japonica rice. New Phytol, 2021, 231: 1056-1072.
doi: 10.1111/nph.v231.3
[20] 王韵, 程立锐, 孙勇, 周政, 朱苓华, 徐正进, 徐建龙, 黎志康. 利用双向导入系解析水稻抽穗期和株高QTL及其与环境互作表达的遗传背景效应. 作物学报, 2009, 35: 1386-1394.
Wang Y, Cheng L R, Sun Y, Zhou Z, Zhu L H, Xu Z J, Xu J L, Li Z K. Genetic background effect on QTL expression of heading date and plant height and their interaction with environment in reciprocal introgression lines of rice. Acta Agron Sin, 2009, 35: 1386-1394. (in Chinese with English abstract)
[21] Wang Y, Zhang Q, Zheng T Q, Cui Y R, Zhang W Z, Xu J L, Li Z K. Drought-tolerance QTLs commonly detected in two sets of reciprocal introgression lines in rice. Crop Past Sci, 2014, 65: 171.
doi: 10.1071/CP13344
[22] 张帆, 郝宪彬, 高用明, 华泽田, 马秀芳, 陈温福, 徐正进, 朱苓华, 黎志康. 利用籼稻资源中的“隐蔽有利基因”提高粳稻苗期耐冷性. 作物学报, 2007, 33: 1618-1624.
Zhang F, Hao X B, Gao Y M, Hua Z T, Ma X F, Chen W F, Xu Z J, Zhu L H, Li Z K. Improving seedling cold tolerance of japonica rice by using the “Hidden Diversity” in indica rice germplasm in backcross breeding program. Acta Agron Sin, 2007, 33: 1618-1624. (in Chinese with English abstract)
[1] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[4] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[5] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[6] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[7] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[8] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[9] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[10] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[11] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[12] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
[13] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[14] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[15] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .