欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2621-2632.doi: 10.3724/SP.J.1006.2023.34022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆百粒重稳定QTL qSW20-1定位及对产量和品质的影响

孙建强1,2(), 洪慧龙1,2, 张勇3, 谷勇哲2, 高华伟2, 周雅2, 曹杰2, 祁航2, 赵权2, 包立高4, 陈庆山1, 邱丽娟1,2()   

  1. 1东北农业大学农学院, 黑龙江哈尔滨 150030
    2农作物基因资源与遗传改良国家重大科学工程 / 农业农村部种质资源利用重点实验室 / 中国农业科学院作物科学研究所, 北京 100081
    3黑龙江省农业科学院克山分院, 黑龙江齐齐哈尔 161606
    4内蒙古自治区农牧业技术推广中心, 内蒙古呼和浩特 010018
  • 收稿日期:2023-02-04 接受日期:2023-04-17 出版日期:2023-10-12 网络出版日期:2023-04-26
  • 通讯作者: 邱丽娟, E-mail: qiulijuan@caas.cn
  • 作者简介:孙建强, E-mail: 1209506464@qq.com **同等贡献
  • 基金资助:
    本研究由国家重点研发计划项目(2021YFD1201600)

Mapping of stable QTL qSW20-1 for 100-seed weight and its effect on yield and quality in soybean

SUN Jian-Qiang1,2(), HONG Hui-Long1,2, ZHANG Yong3, GU Yong-Zhe2, GAO Hua-Wei2, ZHOU Ya2, CAO Jie2, QI Hang2, ZHAO Quan2, BAO Li-Gao4, CHEN Qing-Shan1, QIU Li-Juan1,2()   

  1. 1College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161606, Heilongjiang, China
    4Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia Autonomous Region, Hohhot 010018, Inner Mongolia, China
  • Received:2023-02-04 Accepted:2023-04-17 Published:2023-10-12 Published online:2023-04-26
  • Contact: E-mail: qiulijuan@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2021YFD1201600)

摘要:

籽粒重量是大豆产量构成的关键因素之一, 克隆主要数量性状基因座(QTL)中控制种子重量的关键基因对提高大豆产量具有重要意义。本研究以齐黄34×东生16构建的325个重组自交系(RIL)为材料, 利用SLAF-seq构建了高密度遗传连锁图谱, 总图距为2945.26 cM, 平均图距为0.47 cM, 结合3个环境百粒重表型, 检测到11个与百粒重相关的QTL。其中, 环境稳定的QTL为qSW20-1, 可解释9.73%~18.10%的表型变异。该QTL的大粒等位基因可显著增加单株粒数和单株粒重, 但对蛋白含量和脂肪含量2个品质性状无不利影响, 区间大小为435.42 kb, 包含36个基因, 通过基因注释和表达模式分析, 预测5个候选基因。本研究结果为大豆增产基因挖掘和分子设计育种奠定了坚实的基础。

关键词: 大豆, 百粒重, SLAF图谱, QTL定位

Abstract:

Seed weight is one of the key factors of soybean yield. Cloning the key genes controlling seed weight in major quantitative trait loci (QTL) is of great significance to improve soybean yield. In this study, a high-density genetic linkage map was constructed by SLAF-seq using 325 recombinant inbred lines (RILs) constructed by Qihuang 34 × Dongsheng 16 as the experimental materials. The total map distance was 2945.26 cM, and the average map distance was 0.47 cM. Combined with three environmental 100-seed weight phenotypes, 11 QTL related to 100-seed weight were detected. Among them, the QTL with stable environment was qSW20-1, which explaining 9.73%-18.10% of phenotypic variation. The large grain allele of the QTL could significantly increase the number of seed per plant and seed weight per plant, but there was no adverse effect on the two quality traits of protein content and fat content. The interval size was 435.42 kb, containing 36 genes. Five candidate genes were predicted by gene annotation and expression pattern analysis. The results of this study laid a solid foundation for soybean yield-increasing gene mining and molecular design breeding.

Key words: soybean, 100-seed weight, SLAF map, QTL mapping

表1

齐黄34×东生16重组自交系及亲本的百粒重性状表型"

环境
Environment
亲本Parents 重组自交系RIL
齐黄34
Qihuang 34
东生16
Dongsheng 16
均值
Mean
标准差
SD
最大值
Max.
最小值
Min.
峰度
Skewness
偏度
Kurtosis
变异系数
CV (%)
2021_CP 27.97±0.20 16.59±0.16 23.97 3.69 35.79 10.65 0.00 0.41 15.40
2022_SY 32.67±0.69 27.38±1.68 29.71 3.68 40.40 19.73 0.12 -0.15 12.40
2022_CP 29.48±2.22 22.63±1.29 25.64 2.78 35.30 16.58 0.77 0.09 10.83
BLUP 29.69±1.01 22.55±0.43 26.44 2.22 33.57 20.10 0.16 0.12 8.38

图1

齐黄34×东生16重组自交系及亲本的百粒重表型分布特征 垂直箭头表示两亲本表型。曲线代表密度图。"

图2

大豆高密度遗传图谱及与参考基因组共线性分析 A: SLAF标记分布在20条染色体上。每个连锁组中的黑条代表映射的SLAF-seq标记。连锁群编号显示在X轴上, 遗传距离显示在Y轴上(cM为单位)。B: 横坐标是各连锁群的遗传距离; 纵坐标是每个连锁群的物理长度, 它分散了基因组和遗传图谱共线性中标记的形式。不同的颜色代表不同的染色体或连锁群。"

表2

高密度遗传图谱基本信息统计"

连锁群
Linkage group
标记数
No. of markers
总图距
Map distance
(cM)
平均图距
Average map distance (cM)
间距<5 cM
Gaps<5 cM
(%)
最大间距
Max. gap
(cM)
Gm01 348 145.08 0.42 100.00 4.54
Gm02 372 156.70 0.42 99.46 5.56
Gm03 365 167.92 0.46 99.18 7.46
Gm04 309 140.07 0.45 99.03 7.28
Gm05 183 160.41 0.88 98.35 5.38
Gm06 211 145.65 0.69 99.05 8.32
Gm07 371 161.22 0.44 99.46 9.49
Gm08 255 125.88 0.50 100.00 4.00
Gm09 357 133.83 0.38 99.72 5.50
Gm10 455 123.76 0.27 99.56 7.94
Gm11 131 122.39 0.94 96.92 10.95
Gm12 133 128.10 0.97 97.73 14.34
Gm13 243 125.73 0.52 99.17 10.69
Gm14 224 148.46 0.67 99.55 11.70
Gm15 625 167.77 0.27 99.36 7.90
Gm16 390 192.55 0.49 99.23 7.58
Gm17 345 148.67 0.43 98.84 6.76
Gm18 283 142.60 0.51 100.00 4.43
Gm19 484 152.16 0.32 99.79 6.31
Gm20 213 156.31 0.74 99.06 5.82
总计Total 6297 2945.26 0.47 99.17 14.34

图3

齐黄34×东生16群体中定位到的11个百粒重相关QTL"

表3

3个环境中及BLUP数据鉴定百粒重的数量性状位点(QTL)"

位点
QTL
环境
Environment
染色体
Chr.
标记区间
Flanking marker
遗传区间
Genetic interval (cM)
标记物理位置(a4)
Physical position of markers (a4)
阈值
LOD
表型贡献率
PVE (%)
加性效应
Add
已报道的区间
Reported QTLs
qSW6-1 2021_CP 6 Marker857319-Marker851862 43.5-44.5 28822155-35028781 4.18 4.01 -0.66 a [29], [30]
qSW6-2 2022_SY 6 Marker870421-Marker829649 90.5-95.5 10214058-12141974 6.05 5.39 -0.80 a [31]
BLUP 6 Marker870421-Marker829649 90.5-95.5 10214058-12141974 3.61 3.23 -0.37 a [31]
qSW7-1 2022_SY 7 Marker2815425-Marker2794476 91.5-94.5 6672130-7004632 5.61 5.03 0.76 b [32]
qSW7-2 2022_CP 7 Marker2748563-Marker2730119 87.5-88.5 7479038-7542682 10.81 9.33 0.90 b [32]
qSW12-1 2022_CP 12 Marker5062944-Marker4965351 49.5-50.5 18776850-21043651 3.71 3.06 0.51 b 新位点New
qSW13-1 2022_SY 13 Marker3590403-Marker3588064 85.5-87.5 36310106-36606816 5.74 5.05 -0.77 a [33]
qSW15-1 2021_CP 15 Marker4129867-Marker3915380 28.5-29.5 24348758-26925946 5.50 5.62 0.77 b [34]
BLUP 15 Marker4129867-Marker3915380 28.5-29.5 24348758-26925946 7.30 6.89 0.53 b [34]
qSW15-2 2022_SY 15 Marker4103818-Marker3854574 25.5-26.5 43842763-44130443 6.70 5.99 0.83 b 新位点New
qSW17-1 2021_CP 17 Marker5995186-Marker5989688 80.5-86.5 7982531-8957550 3.15 3.14 -0.57 a [35]
qSW18-1 2022_CP 18 Marker4315158-Marker4223583 65.5-68.5 12642699-14065422 5.09 4.28 -0.61 a 新位点New
qSW20-1 2021_CP 20 Marker2521089-Marker2536819 38.5-39.5 35867412-36014827 13.78 14.26 -1.23 a [36]
2022_SY 20 Marker2377057-Marker2521089 36.5-38.5 35579408-36014827 18.06 18.10 -1.45 a [36]
2022_CP 20 Marker2377057-Marker2521089 35.5-38.5 35579408-36014827 10.85 9.73 -0.92 a [36]
BLUP 20 Marker2416012-Marker2448322 39.5-40.5 35916231-35920512 19.87 19.04 -0.89 a [36]

表4

3个环境中及BLUP数据鉴定百粒重的上位性QTL"

环境
Environment
上位性QTL
Epi-QTL
染色体
Chromosome
位置1
Position1
标记区间
Flanking markers
上位性QTL
Epi-QTL
染色体
Chr.
位置2
Position2
标记区间2
Flanking markers2
阈值
LOD
表型贡献率
PVE (%)
2022_SY Epi-qSW3-1 3 60 Marker2065303-Marker2142542 Epi-qSW12-1 12 5 Marker4944242-Marker5028286 5.75 6.0603

图4

主要数量性状位点(QTL) qSW20-1的遗传图谱及其对齐黄34×东生16群体百粒重性状的影响 A: qSW20-1的遗传图谱; 遗传图谱的区间用黑色部分表示。B: 区间基因型与百粒重表型相关性分析, DS16和QH34分别代表齐黄34和东生16的等位基因。****为P < 0.0001。"

图5

qSW20-1对齐黄34×东生16群体其他性状的影响 各环境下, qSW20-1对齐黄34×东生16群体单株粒重(A)、单株粒数(B)、蛋白含量(C)和脂肪含量(D)的影响。DS16和QH34分别代表齐黄34和东生16的等位基因; *、**、****分别为P < 0.05, P < 0.01, P < 0.0001; ns表示无显著差别。"

附表1

定位区间内候选基因"

基因名称
Gene name
推测功能
Putative function
Glyma.20G114400 无注释 No annatation
Glyma.20G114500 二氢硫辛酰胺转乙酰酶 Dihydrolipoamide acetyltransferase
Glyma.20G114600 糖脂转移蛋白相关 Glycolipid transfer protein related
Glyma.20G114700 紫外线切除修复蛋白RAD23 UV excision repair protein RAD23
Glyma.20G114800 无注释 No annatation
Glyma.20G114900 无注释 No annatation
Glyma.20G114933 酸性N端SPT6 Acidic N-terminal SPT6
Glyma.20G114966 无注释 No annatation
Glyma.20G115000 PPR重复序列(PPR) PPR repeat (PPR)
Glyma.20G115100 Kow结构域转录因子1 Kow domain transcription factor 1
Glyma.20G115200 无注释 No annatation
Glyma.20G115300 DNA结合/转录因子 DNA binding/transcription factor
Glyma.20G115500 3-酮酰基辅酶a合酶5相关 3-ketoacyl-co a synthase 5
Glyma.20G115600 B-box锌指 B-box zinc finger
Glyma.20G115700 LOB结构域-包含蛋白42 LOB domain-containing protein 42
Glyma.20G115800 无注释 No annatation
Glyma.20G115900 无注释 No annatation
Glyma.20G116000 无注释 No annatation
Glyma.20G116100 50S核糖体蛋白L15, 叶绿体 50S ribosomal protein L15, chloroplast
Glyma.20G116200 锌指蛋白JAGGED相关 Zinc finger protein JAGGED related
Glyma.20G116300 蛋白质ISTR-1, 同功型A Protein ISTR-1, Isoform A
Glyma.20G116400 磷脂酶相关的//α/β-水解酶样蛋白 Phospholipase-related//α/β-hydrolase-like protein
Glyma.20G116500 腺苷酸异戊烯转移酶1, 叶绿体相关 Isopentene adenylate transferase 1, chloroplast correlation
Glyma.20G116600 VQ基序(VQ) VQ motif (VQ)
Glyma.20G116700 无注释 No annatation
Glyma.20G116800 单链核酸内切酶Single-stranded-nucleate endonuclease
Glyma.20G116900 酰转移酶 Acyltransferase
Glyma.20G117000 MYB样DNA结合蛋白MYB//MYB转录因子 MYB-like DNA binding protein MYB//MYB transcription factor
Glyma.20G117100 tRNA合成酶I类(E和Q), 催化结构域(tRNA-synt_1c) tRNA synthetases class I (E and Q), catalytic domain (tRNA-synt_1c)
Glyma.20G117150 谷氨酰胺-tRNA合成酶, 非特异性RNA结合区第1部分( tRNA_synt_1c_R1)
Glutaminyl-tRNA synthetase, non-specific RNA binding region part 1 (tRNA_synt_1c_R1)
Glyma.20G117200 无注释 No annatation
Glyma.20G117300 BAX抑制剂相关//未命名的亚家族 BAX inhibitor related//unnamed subfamily
Glyma.20G117400 无注释 No annatation
Glyma.20G117500 棉纤维表达蛋白(DUF761) Cotton fibre expressed protein (DUF761)
Glyma.20G117600 半胱氨酸-TRNA合成酶//半胱氨酸-TRNA连接酶 Cysteine-TRNA synthetase//cysteine-TRNA ligase
Glyma.20G117700 无注释 No annatation

图6

种子发育时期大豆百粒重相关候选基因特异性表达分析 数据信息来源于SoyBase中大豆参考基因组Wm82.a2.v1提供的RNA-Seq。"

[1] Van Wart J, Kersebaum K C, Peng S, Milner M, Cassman K G. Estimating crop yield potential at regional to national scales. Field Crops Res, 2013, 143: 34-43.
doi: 10.1016/j.fcr.2012.11.018
[2] Kim M Y, Van K, Kang Y J, Kim K H, Lee S H. Tracing soybean domestication history: from nucleotide to genome. Breed Sci, 2012, 61: 445-452.
doi: 10.1270/jsbbs.61.445
[3] Edwards C J Jr, Hartwig E E. Effect of seed size upon rate of germination in soybeans. Agron J, 1971, 63: 429-450.
doi: 10.2134/agronj1971.00021962006300030024x
[4] Zhang J, Song Q, Cregan P B, Jiang G L. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet, 2016, 129: 117-130.
doi: 10.1007/s00122-015-2614-x pmid: 26518570
[5] Kulkarni K P, Asekova S, Lee D H, Bilyeu K, Song J T, Lee J D. Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) and PI 366121 (Glycine soja). Crop Pasture Sci, 2017, 68: 148-155.
doi: 10.1071/CP16246
[6] Liu D, Yan Y, Fujita Y, Xu D. Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci, 2018, 68: 442-448.
doi: 10.1270/jsbbs.17127
[7] 葛天丽, 田宇, 张皓, 刘章雄, 李英慧, 邱丽娟. 基于高密度Bin图谱的大豆百粒重QTL定位和候选基因分析. 作物学报, 2022, 48: 2978-2986.
doi: 10.3724/SP.J.1006.2022.14226
Ge T L, Tian Y, Zhang H, Liu Z X, Li Y H, Qu L J. QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map. Acta Agron Sin, 2022, 48: 2978-2986. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14226
[8] Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006
[9] Gu Y, Li W, Jiang H, Wang Y, Gao H, Liu M, Chen Q, Lai Y, He C. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J Exp Bot, 2017, 68: 2717-2729.
doi: 10.1093/jxb/erx147
[10] Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu Y C, Liu Z, Frommer W B, Ma J F, Chen L Q, Guan Y, Shou H, Tian Z. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110
[11] Nguyen C X, Paddock K J, Zhang Z, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2021, 229: 920-934.
doi: 10.1111/nph.v229.2
[12] Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.2016.86.issue-6
[13] Li J, Zhang Y, Ma R, Huang W, Hou J, Fang C, Wang L, Yuan Z, Sun Q, Dong X, Hou Y, Wang Y, Kong F, Sun L. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnol J, 2022, 20: 1110-1121.
doi: 10.1111/pbi.v20.6
[14] Hu D, Li X, Yang Z, Liu S, Hao D, Chao M, Zhang J, Yang H, Su X, Jiang M, Lu S, Zhang D, Wang L, Kan G, Wang H, Cheng H, Wang J, Huang F, Tian Z, Yu D. Downregulation of a gibberellin 3b-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol, 2022, 235: 502-517.
doi: 10.1111/nph.v235.2
[15] Zhu W, Yang C, Yong B, Wang Y, Li B, Gu Y, Wei S, An Z, Sun W, Qiu L, He C. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. New Phytol, 2022, 236: 1375-1392.
doi: 10.1111/nph.v236.4
[16] Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H. SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700
[17] Li B, Tian L, Zhang J, Huang L, Han F, Yan S, Wang L, Zheng H, Sun J. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics, 2014, 15: 1086.
doi: 10.1186/1471-2164-15-1086
[18] Qi Z M, Zhang X Y, Qi H D, Xin D W, Han X, Jiang H W, Yin Z G, Zhang Z G, Zhang J Z, Zhu R S, Hu Z B, Liu C Y, Wu X X, Chen Q S, Che D D. Identification and validation of major QTLs and epistatic interactions for seed oil content in soybeans under multiple environments based on a high-density map. Euphytica, 2017, 213: 162.
doi: 10.1007/s10681-017-1952-y
[19] Cao Y, Li S, Wang Z, Chang F, Kong J, Gai J, Zhao T. Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front Plant Sci, 2017, 8: 1222.
doi: 10.3389/fpls.2017.01222 pmid: 28747922
[20] Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lyu H, Yu D. High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci, 2016, 7: 372.
doi: 10.3389/fpls.2016.00372 pmid: 27065041
[21] 程鹏. 大豆高密度遗传图谱的构建及种子大小和形状性状的QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2016.
Cheng P. Construction of High-density Linkage Map and QTL Mapping of Seed Size and Shape Traits in Soybean. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract)
[22] 邱丽娟, 常汝镇, 刘章雄. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 22.
Qiu L J, Chang R Z, Liu Z X. Description and Data Standards for Soybean [Glycine max (L.) Merrill]. Beijing: China Agriculture Press, 2006. p 22. (in Chinese)
[23] Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants. Plant Mol Biol Rep, 1997, 15: 8.
doi: 10.1007/BF02772108
[24] Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics, 2008, 24: 713-714.
doi: 10.1093/bioinformatics/btn025 pmid: 18227114
[25] Ren H, Han J, Wang X, Zhang B, Yu L, Gao H, Hong H, Sun R, Tian Y, Qi X, Liu Z, Wu X, Qiu L J. QTL mapping of drought tolerance traits in soybean with SLAF sequencing. Crop J, 2020, 8: 977-989.
doi: 10.1016/j.cj.2020.04.004
[26] Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243-260.
doi: 10.1007/s00122-007-0663-5 pmid: 17985112
[27] McCouch S R. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13.
[28] Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44: 32-39.
doi: 10.1038/ng.1018
[29] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561.
doi: 10.1007/s00122-004-1661-5 pmid: 15221142
[30] Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509.
doi: 10.2135/cropsci2001.412493x
[31] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因. 作物学报, 2022, 48: 1884-1893.
doi: 10.3724/SP.J.1006.2022.14140
Liu C, Zhang Y X, Chen X L, Han W, Xing G N, He J B, Zhang J P, Zhang F K, Sun L, Li N, Wang W B, Gai J Y. Wild segment associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population. Acta Agron Sin, 2022, 48: 1884-1893. (in Chinese with English abstract)
[32] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因. 作物学报, 2022, 48: 635-643.
doi: 10.3724/SP.J.1006.2022.14008
Wang J, Zhang Y W, Jiao Z J, Liu P P, Chang W. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean. Acta Agron Sin, 2022, 48: 635-643. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14008
[33] Yan L, Li Y H, Yang C Y, Ren S X, Chang R Z, Zhang M C, Qiu L J. Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max × Glycine soja. Plant Breed, 2014, 133: 632-637.
doi: 10.1111/pbr.2014.133.issue-5
[34] Mian M A, Bailey M A, Tamulonis J P, Shipe E R, Carter T E Jr, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474
[35] Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang TY, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet, 2014, 127: 1365-1374.
doi: 10.1007/s00122-014-2304-0 pmid: 24718925
[36] Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x pmid: 22481120
[37] Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.
doi: 10.1371/journal.pone.0017595
[38] Han J, Han D, Guo Y, Yan H, Wei Z, Tian Y, Qiu L. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theor Appl Genet, 2019, 132: 2253-2272.
doi: 10.1007/s00122-019-03352-x
[39] Xue Y, Gao H, Liu X, Tang X, Cao D, Luan X, Zhao L, Qiu L. QTL mapping of palmitic acid content using specific-locus amplified fragment sequencing (SLAF-Seq) genotyping in soybeans (Glycine max L.). Int J Mol Sci, 2022, 23: 11273.
doi: 10.3390/ijms231911273
[40] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x
[41] Li W, Zheng D H, Van K J, Lee S H. QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). J Crop Sci Biotechnol, 2008, 11: 171-176.
[42] Venable D L. Size-number trade-offs and the variation of seed size with plant resource status. Am Nat, 1992, 140: 287-304.
doi: 10.1086/285413
[43] Leishman M R. Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos, 2001, 93: 294-302.
doi: 10.1034/j.1600-0706.2001.930212.x
[44] Moles A T. Being John Harper: using evolutionary ideas to improve understanding of global patterns in plant traits. J Ecol, 2018, 106: 1-18.
doi: 10.1111/jec.2018.106.issue-1
[45] Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lyu H, Yu D. High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci, 2016, 7: 372.
doi: 10.3389/fpls.2016.00372 pmid: 27065041
[46] Lin M, Behal R, Oliver D J. Disruption of plE2, the gene for the E2 subunit of the plastid pyruvate dehydrogenase complex, in Arabidopsis causes an early embryo lethal phenotype. Plant Mol Biol, 2003, 52: 865-872
doi: 10.1023/A:1025076805902
[47] Xing G, Li J, Li W, Lam S M, Yuan H, Shui G, Yang J. AP2/ERF and R2R3-MYB family transcription factors: potential associations between temperature stress and lipid metabolism in Auxenochlorella protothecoides. Biotechnol Biofuels, 2021, 14: 22.
doi: 10.1186/s13068-021-01881-6
[48] Berg M, Rogers R, Muralla R, Meinke D. Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. Plant J, 2005, 44: 866-878.
doi: 10.1111/tpj.2005.44.issue-5
[1] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[2] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[3] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[4] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[5] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[6] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[7] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[8] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[9] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[10] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[11] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[12] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[13] 李佳佳, 龙群, 朱尚尚, 单雅敬, 吴美燕, 鲁云, 支现管, 廖威, 陈浩然, 赵振邦, 苗龙, 高慧慧, 李英慧, 王晓波, 邱丽娟. 大豆芽期耐高温评价方法构建及耐高温种质资源筛选[J]. 作物学报, 2023, 49(11): 2863-2875.
[14] 赵宇晶, 张滨烁, 苏安玉, 于振海, 李佳欢, 林洋, 张艳婷, 武小霞, 赵莹. 基于BSA-seq方法挖掘大豆再生相关候选基因[J]. 作物学报, 2023, 49(11): 2935-2948.
[15] 高超, 陈平, 杜青, 付智丹, 罗凯, 林萍, 李易玲, 刘姗姗, 雍太文, 杨文钰. 播期、密度对带状间作大豆茎叶生长及产量形成的影响[J]. 作物学报, 2023, 49(11): 3090-3099.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .