作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2621-2632.doi: 10.3724/SP.J.1006.2023.34022
孙建强1,2(), 洪慧龙1,2, 张勇3, 谷勇哲2, 高华伟2, 周雅2, 曹杰2, 祁航2, 赵权2, 包立高4, 陈庆山1, 邱丽娟1,2()
SUN Jian-Qiang1,2(), HONG Hui-Long1,2, ZHANG Yong3, GU Yong-Zhe2, GAO Hua-Wei2, ZHOU Ya2, CAO Jie2, QI Hang2, ZHAO Quan2, BAO Li-Gao4, CHEN Qing-Shan1, QIU Li-Juan1,2()
摘要:
籽粒重量是大豆产量构成的关键因素之一, 克隆主要数量性状基因座(QTL)中控制种子重量的关键基因对提高大豆产量具有重要意义。本研究以齐黄34×东生16构建的325个重组自交系(RIL)为材料, 利用SLAF-seq构建了高密度遗传连锁图谱, 总图距为2945.26 cM, 平均图距为0.47 cM, 结合3个环境百粒重表型, 检测到11个与百粒重相关的QTL。其中, 环境稳定的QTL为qSW20-1, 可解释9.73%~18.10%的表型变异。该QTL的大粒等位基因可显著增加单株粒数和单株粒重, 但对蛋白含量和脂肪含量2个品质性状无不利影响, 区间大小为435.42 kb, 包含36个基因, 通过基因注释和表达模式分析, 预测5个候选基因。本研究结果为大豆增产基因挖掘和分子设计育种奠定了坚实的基础。
[1] |
Van Wart J, Kersebaum K C, Peng S, Milner M, Cassman K G. Estimating crop yield potential at regional to national scales. Field Crops Res, 2013, 143: 34-43.
doi: 10.1016/j.fcr.2012.11.018 |
[2] |
Kim M Y, Van K, Kang Y J, Kim K H, Lee S H. Tracing soybean domestication history: from nucleotide to genome. Breed Sci, 2012, 61: 445-452.
doi: 10.1270/jsbbs.61.445 |
[3] |
Edwards C J Jr, Hartwig E E. Effect of seed size upon rate of germination in soybeans. Agron J, 1971, 63: 429-450.
doi: 10.2134/agronj1971.00021962006300030024x |
[4] |
Zhang J, Song Q, Cregan P B, Jiang G L. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet, 2016, 129: 117-130.
doi: 10.1007/s00122-015-2614-x pmid: 26518570 |
[5] |
Kulkarni K P, Asekova S, Lee D H, Bilyeu K, Song J T, Lee J D. Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) and PI 366121 (Glycine soja). Crop Pasture Sci, 2017, 68: 148-155.
doi: 10.1071/CP16246 |
[6] |
Liu D, Yan Y, Fujita Y, Xu D. Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci, 2018, 68: 442-448.
doi: 10.1270/jsbbs.17127 |
[7] |
葛天丽, 田宇, 张皓, 刘章雄, 李英慧, 邱丽娟. 基于高密度Bin图谱的大豆百粒重QTL定位和候选基因分析. 作物学报, 2022, 48: 2978-2986.
doi: 10.3724/SP.J.1006.2022.14226 |
Ge T L, Tian Y, Zhang H, Liu Z X, Li Y H, Qu L J. QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map. Acta Agron Sin, 2022, 48: 2978-2986. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14226 |
|
[8] |
Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006 |
[9] |
Gu Y, Li W, Jiang H, Wang Y, Gao H, Liu M, Chen Q, Lai Y, He C. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J Exp Bot, 2017, 68: 2717-2729.
doi: 10.1093/jxb/erx147 |
[10] |
Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu Y C, Liu Z, Frommer W B, Ma J F, Chen L Q, Guan Y, Shou H, Tian Z. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110 |
[11] |
Nguyen C X, Paddock K J, Zhang Z, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2021, 229: 920-934.
doi: 10.1111/nph.v229.2 |
[12] |
Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.2016.86.issue-6 |
[13] |
Li J, Zhang Y, Ma R, Huang W, Hou J, Fang C, Wang L, Yuan Z, Sun Q, Dong X, Hou Y, Wang Y, Kong F, Sun L. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnol J, 2022, 20: 1110-1121.
doi: 10.1111/pbi.v20.6 |
[14] |
Hu D, Li X, Yang Z, Liu S, Hao D, Chao M, Zhang J, Yang H, Su X, Jiang M, Lu S, Zhang D, Wang L, Kan G, Wang H, Cheng H, Wang J, Huang F, Tian Z, Yu D. Downregulation of a gibberellin 3b-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol, 2022, 235: 502-517.
doi: 10.1111/nph.v235.2 |
[15] |
Zhu W, Yang C, Yong B, Wang Y, Li B, Gu Y, Wei S, An Z, Sun W, Qiu L, He C. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. New Phytol, 2022, 236: 1375-1392.
doi: 10.1111/nph.v236.4 |
[16] |
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H. SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700 |
[17] |
Li B, Tian L, Zhang J, Huang L, Han F, Yan S, Wang L, Zheng H, Sun J. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics, 2014, 15: 1086.
doi: 10.1186/1471-2164-15-1086 |
[18] |
Qi Z M, Zhang X Y, Qi H D, Xin D W, Han X, Jiang H W, Yin Z G, Zhang Z G, Zhang J Z, Zhu R S, Hu Z B, Liu C Y, Wu X X, Chen Q S, Che D D. Identification and validation of major QTLs and epistatic interactions for seed oil content in soybeans under multiple environments based on a high-density map. Euphytica, 2017, 213: 162.
doi: 10.1007/s10681-017-1952-y |
[19] |
Cao Y, Li S, Wang Z, Chang F, Kong J, Gai J, Zhao T. Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front Plant Sci, 2017, 8: 1222.
doi: 10.3389/fpls.2017.01222 pmid: 28747922 |
[20] |
Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lyu H, Yu D. High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci, 2016, 7: 372.
doi: 10.3389/fpls.2016.00372 pmid: 27065041 |
[21] | 程鹏. 大豆高密度遗传图谱的构建及种子大小和形状性状的QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2016. |
Cheng P. Construction of High-density Linkage Map and QTL Mapping of Seed Size and Shape Traits in Soybean. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract) | |
[22] | 邱丽娟, 常汝镇, 刘章雄. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 22. |
Qiu L J, Chang R Z, Liu Z X. Description and Data Standards for Soybean [Glycine max (L.) Merrill]. Beijing: China Agriculture Press, 2006. p 22. (in Chinese) | |
[23] |
Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants. Plant Mol Biol Rep, 1997, 15: 8.
doi: 10.1007/BF02772108 |
[24] |
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics, 2008, 24: 713-714.
doi: 10.1093/bioinformatics/btn025 pmid: 18227114 |
[25] |
Ren H, Han J, Wang X, Zhang B, Yu L, Gao H, Hong H, Sun R, Tian Y, Qi X, Liu Z, Wu X, Qiu L J. QTL mapping of drought tolerance traits in soybean with SLAF sequencing. Crop J, 2020, 8: 977-989.
doi: 10.1016/j.cj.2020.04.004 |
[26] |
Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243-260.
doi: 10.1007/s00122-007-0663-5 pmid: 17985112 |
[27] | McCouch S R. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13. |
[28] |
Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44: 32-39.
doi: 10.1038/ng.1018 |
[29] |
Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561.
doi: 10.1007/s00122-004-1661-5 pmid: 15221142 |
[30] |
Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509.
doi: 10.2135/cropsci2001.412493x |
[31] |
刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因. 作物学报, 2022, 48: 1884-1893.
doi: 10.3724/SP.J.1006.2022.14140 |
Liu C, Zhang Y X, Chen X L, Han W, Xing G N, He J B, Zhang J P, Zhang F K, Sun L, Li N, Wang W B, Gai J Y. Wild segment associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population. Acta Agron Sin, 2022, 48: 1884-1893. (in Chinese with English abstract) | |
[32] |
王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因. 作物学报, 2022, 48: 635-643.
doi: 10.3724/SP.J.1006.2022.14008 |
Wang J, Zhang Y W, Jiao Z J, Liu P P, Chang W. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean. Acta Agron Sin, 2022, 48: 635-643. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14008 |
|
[33] |
Yan L, Li Y H, Yang C Y, Ren S X, Chang R Z, Zhang M C, Qiu L J. Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max × Glycine soja. Plant Breed, 2014, 133: 632-637.
doi: 10.1111/pbr.2014.133.issue-5 |
[34] |
Mian M A, Bailey M A, Tamulonis J P, Shipe E R, Carter T E Jr, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474 |
[35] |
Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang TY, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet, 2014, 127: 1365-1374.
doi: 10.1007/s00122-014-2304-0 pmid: 24718925 |
[36] |
Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x pmid: 22481120 |
[37] |
Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.
doi: 10.1371/journal.pone.0017595 |
[38] |
Han J, Han D, Guo Y, Yan H, Wei Z, Tian Y, Qiu L. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theor Appl Genet, 2019, 132: 2253-2272.
doi: 10.1007/s00122-019-03352-x |
[39] |
Xue Y, Gao H, Liu X, Tang X, Cao D, Luan X, Zhao L, Qiu L. QTL mapping of palmitic acid content using specific-locus amplified fragment sequencing (SLAF-Seq) genotyping in soybeans (Glycine max L.). Int J Mol Sci, 2022, 23: 11273.
doi: 10.3390/ijms231911273 |
[40] |
Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x |
[41] | Li W, Zheng D H, Van K J, Lee S H. QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). J Crop Sci Biotechnol, 2008, 11: 171-176. |
[42] |
Venable D L. Size-number trade-offs and the variation of seed size with plant resource status. Am Nat, 1992, 140: 287-304.
doi: 10.1086/285413 |
[43] |
Leishman M R. Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos, 2001, 93: 294-302.
doi: 10.1034/j.1600-0706.2001.930212.x |
[44] |
Moles A T. Being John Harper: using evolutionary ideas to improve understanding of global patterns in plant traits. J Ecol, 2018, 106: 1-18.
doi: 10.1111/jec.2018.106.issue-1 |
[45] |
Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lyu H, Yu D. High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci, 2016, 7: 372.
doi: 10.3389/fpls.2016.00372 pmid: 27065041 |
[46] |
Lin M, Behal R, Oliver D J. Disruption of plE2, the gene for the E2 subunit of the plastid pyruvate dehydrogenase complex, in Arabidopsis causes an early embryo lethal phenotype. Plant Mol Biol, 2003, 52: 865-872
doi: 10.1023/A:1025076805902 |
[47] |
Xing G, Li J, Li W, Lam S M, Yuan H, Shui G, Yang J. AP2/ERF and R2R3-MYB family transcription factors: potential associations between temperature stress and lipid metabolism in Auxenochlorella protothecoides. Biotechnol Biofuels, 2021, 14: 22.
doi: 10.1186/s13068-021-01881-6 |
[48] |
Berg M, Rogers R, Muralla R, Meinke D. Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. Plant J, 2005, 44: 866-878.
doi: 10.1111/tpj.2005.44.issue-5 |
[1] | 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104. |
[2] | 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170. |
[3] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[4] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[5] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[6] | 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064. |
[7] | 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150. |
[8] | 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754. |
[9] | 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844. |
[10] | 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730. |
[11] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[12] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[13] | 李佳佳, 龙群, 朱尚尚, 单雅敬, 吴美燕, 鲁云, 支现管, 廖威, 陈浩然, 赵振邦, 苗龙, 高慧慧, 李英慧, 王晓波, 邱丽娟. 大豆芽期耐高温评价方法构建及耐高温种质资源筛选[J]. 作物学报, 2023, 49(11): 2863-2875. |
[14] | 赵宇晶, 张滨烁, 苏安玉, 于振海, 李佳欢, 林洋, 张艳婷, 武小霞, 赵莹. 基于BSA-seq方法挖掘大豆再生相关候选基因[J]. 作物学报, 2023, 49(11): 2935-2948. |
[15] | 高超, 陈平, 杜青, 付智丹, 罗凯, 林萍, 李易玲, 刘姗姗, 雍太文, 杨文钰. 播期、密度对带状间作大豆茎叶生长及产量形成的影响[J]. 作物学报, 2023, 49(11): 3090-3099. |
|