欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2863-2875.doi: 10.3724/SP.J.1006.2023.34025

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

大豆芽期耐高温评价方法构建及耐高温种质资源筛选

李佳佳1(), 龙群1(), 朱尚尚1(), 单雅敬1, 吴美燕1, 鲁云1, 支现管1, 廖威1, 陈浩然1, 赵振邦3, 苗龙1, 高慧慧1, 李英慧2, 王晓波1,*(), 邱丽娟2,*()   

  1. 1安徽农业大学农学院, 安徽合肥 230036
    2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业农村部北京大豆生物学重点实验室, 北京 100081
    3宿州市农业科学院, 安徽宿州 234000
  • 收稿日期:2023-02-16 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-05
  • 通讯作者: 王晓波, E-mail: wxbphd@163.com; 邱丽娟, E-mail: qiulijuan@caas.cn
  • 作者简介:李佳佳, E-mail: lijia6862@163.com;龙群, E-mail: 13856541099@163.com;朱尚尚, E-mail: 18755796707@qq.com **同等贡献
  • 基金资助:
    国家重点研发计划项目(2021YFD1201603-4);安徽省高校自然科学研究项目(KJ2021A0200);安徽省自然科学基金项目(2208085MC61);安徽省现代农业产业技术体系建设专项和安徽农业大学引进与稳定人才项目(yj2018-38)

Construction of evaluation method for tolerance to high-temperature and screening of heat-tolerant germplasm resources of bud stage in soybean

LI Jia-Jia1(), LONG Qun1(), ZHU Shang-Shang1(), SHAN Ya-Jing1, WU Mei-Yan1, LU Yun1, ZHI Xian-Guan1, LIAO Wei1, CHEN Hao-Ran1, ZHAO Zhen-Bang3, MIAO Long1, GAO Hui-Hui1, LI Ying-Hui2, WANG Xiao-Bo1,*(), QIU Li-Juan2,*()   

  1. 1School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / the National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MARA), Beijing 100081, China
    3Suzhou Academy of Agricultural Sciences, Suzhou 234000, Anhui, China
  • Received:2023-02-16 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-05
  • About author:First author contact:

    **Contributed equally to this study

  • Supported by:
    National Key Research and Development Program of China(2021YFD1201603-4);Natural Science Research Project of Colleges and Universities in Anhui Province(KJ2021A0200);Natural Science Foundation of Anhui Province(2208085MC61);Special Fund for Anhui Agriculture Research System, and the Talent Introduction and Stabilization Project of Anhui Agricultural University(yj2018-38)

摘要:

极端高温事件频增导致大豆生产接连遭受高温热害, 严重影响其产量构成和品质性状。种子在发芽阶段对外界环境变化较为敏感, 温度升高及伴随而来的干旱等现象会影响大豆种子出苗。建立一套科学的大豆芽期耐高温评价方法, 可以为早期耐高温鉴定、耐高温种质选育以及遗传机制研究提供理论基础。本研究以385份大豆种质资源为材料, 利用人工气候培养箱创造高温环境, 于芽期进行高温处理3 d (40℃, 8 h光照/16 h黑暗)。相较于对照(25℃, 8 h光照/16 h黑暗), 高温处理后大豆芽期下胚轴长显著下降10.9% (P<0.05); 根鲜重、根干重和根冠比等指标分别极显著增加了13.10%、22.20%和16.90% (P<0.01), 结果表明, 高温处理会显著影响大豆芽期地上部与地下部生物量的分布。对各性状耐高温系数进行主成分分析, 将11个指标转换成3个主成分因子, 进一步通过隶属函数标准化分析计算获得大豆响应高温胁迫综合评价值(H), 并基于H值对参试品种进行聚类分析。最终将385份种质资源芽期耐高温特性划分为5个等级, 即: I级(耐高温型)、II级(较耐高温型)、III级(中间型)、IV级(高温较敏感型)和V级(高温敏感型), 综合试验中具体表现, 筛选出4个芽期耐高温型大豆品种(H245、H070、H268和H216)。对各项指标逐步回归分析后, 建立大豆芽期耐高温综合评价(H值)预测模型: H = 0.191+0.017X1-0.007X2+0.013X7+0.027X8-0.009X10 (R2=0.9752), 筛选出下胚轴长(X1)、主根长(X2)、下胚轴干重(X7)、根鲜重(X8)和简化活力指数(X10) 5个指标可以作为大豆芽期耐高温评价指标。

关键词: 大豆, 芽期, 高温处理, 种质资源, 耐高温性评价

Abstract:

The frequent occurrence of extreme high temperature (HT) events causes continuous heat damage to soybean production, which seriously damages the yield components and quality traits. The seeds are sensitive to the changes of the external environment at germination stage. The rising temperature and the accompanying drought will affect the emergence of soybean seeds. The establishment of a set of scientific evaluation methods for HT tolerance at bud stage can provide a theoretical basis for the early identification of soybean, the breeding of HT tolerance germplasm, and the study of tolerance mechanism. In this study, 385 germplasm resources varieties were selected as the experimental materials, which creating a HT environment by artificial climate incubator and subjected to HT-stress for 3 d (40℃, 16 h light /8 h darkness) at bud stage of soybean. Compared with the control (25℃, 16 h light /8 h darkness), the hypocotyl length of soybean bud stage was significantly decreased 10.9% under HT stress (P < 0.05). The indices of fresh root weight, dry root weight, and root-shoot ratio increased by 13.10%, 22.20%, and 16.90%, respectively (P<0.01). The results showed that HT-stress significantly affected the surface and underground biomass distribution of bud stage in soybean. Meanwhile, the principal component analysis for the coefficient of HT-tolerance for each trait converted 11 indexes into two principal component factors. The comprehensive evaluation value (H-value) of soybean response to HT-stress was obtained by the standardized analysis of membership function, and cluster analysis was conducted for the tested varieties based on H-value. Ultimately, 385 germplasm resources were divided into 5 grades for the HT-tolerance at bud stage in soybean [namely: Grade I (tolerance), Grade II (strong tolerance), Grade III (medium), Grade IV (strong sensitive), and Grade V (sensitive type)] and four HT-resistant varieties based on the specific performance (H245, H070, H268, and H216) were initially selected combined with the actual heat resistance performance. After the stepwise regression analysis of each index, a predictive model for the comprehensive evaluation of HT tolerance (H-value) at bud stage of soybean was established: H = 0.191 + 0.017X1 - 0.007X2 + 0.013X7 + 0.027X8 - 0.009X10 (R2=0.9752). Five indexes main including hypocotyl length (X1), main root length (X2), hypocotyl dry weight (X7), root fresh weight (X8), and simplified vigor index (X10) were screened out as the evaluation indexes for HT tolerance at bud stage in soybean.

Key words: soybean, germination stage, high temperature treatment, genetic resources, evaluation of high temperature resistance

附表1

参试大豆品种信息"

编号
No.
统一编号
Unified No.
编号
No.
统一编号
Unified No.
编号
No.
统一编号
Unified No.
编号
No.
统一编号
Unified No.
编号
No.
统一编号
Unified No.
H001 ZDD00058 H078 ZDD20449 H155 ZDD06507 H232 ZDD24460 H309 WDD01021
H002 ZDD00106 H079 ZDD23526 H156 ZDD14504 H233 ZDD24463 H310 WDD00957
H003 ZDD00152 H080 ZDD15011 H157 ZDD14520 H234 ZDD24470 H311 WDD01275
H004 ZDD00170 H081 ZDD15407 H158 ZDD14681 H235 ZDD23841 H312 WDD02850
H005 ZDD00176 H082 ZDD06971 H159 ZDD24235 H236 ZDD24340 H313 WDD02713
H006 ZDD00244 H083 ZDD22659 H160 ZDD24166 H237 ZDD24339 H314 WDD01552
H007 ZDD00248 H084 ZDD22699 H161 ZDD24166 H238 ZDD23771 H315 WDD01887
H008 ZDD06987 H085 ZDD22909 H162 ZDD24259 H239 ZDD24511 H316 WDD00584
H009 ZDD17679 H086 ZDD02356 H163 ZDD24311 H240 ZDD24392 H317 WDD02004
H010 ZDD17687 H087 ZDD09254 H164 ZDD25231 H241 ZDD23698 H318 WDD00577
H011 ZDD00323 H088 ZDD22852 H165 ZDD12588 H242 ZDD24358 H319 WDD00579
H012 ZDD17848 H089 ZDD20617 H166 ZDD24993 H243 ZDD24341 H320 WDD01976
H013 ZDD17939 H090 ZDD11578 H167 ZDD24997 H244 ZDD24347 H321 WDD01987
H014 ZDD17889 H091 ZDD12949 H168 ZDD24998 H245 ZDD24355 H322 WDD02428
H015 ZDD00536 H092 ZDD13110 H169 ZDD15972 H246 ZDD24356 H323 WDD03015
H016 ZDD00351 H093 ZDD20830 H170 ZDD24910 H247 ZDD23662 H324 WDD00819
H017 ZDD06996 H094 ZDD20859 H171 ZDD24923 H248 ZDD23674 H325 WDD02247
H018 ZDD17843 H095 ZDD10590 H172 ZDD25150 H249 ZDD24349 H326 WDD02199
H019 ZDD00414 H096 ZDD08023 H173 ZDD25316 H250 ZDD24352 H327 WDD02025
H020 ZDD00777 H097 ZDD16651 H174 ZDD25317 H251 ZDD23671 H328 WDD02024
H021 ZDD07646 H098 ZDD14788 H175 ZDD25330 H252 ZDD23820 H329 WDD03079
H022 ZDD18116 H099 ZDD14853 H176 ZDD25331 H253 ZDD24562 H330 WDD02165
H023 ZDD00744 H100 ZDD20617 H177 ZDD25334 H254 ZDD24580 H331 WDD02306
H024 ZDD01151 H101 ZDD18916 H178 ZDD25339 H255 ZDD25275 H332 WDD03067
H025 ZDD07732 H102 ZDD03340 H179 ZDD25349 H256 ZDD24417 H333 WDD03102
H026 ZDD00749 H103 ZDD03375 H180 ZDD25010 H257 ZDD23640 H334 WDD02010
H027 ZDD06289 H104 ZDD04681 H181 ZDD25018 H258 ZDD23641 H335 WDD02180
H028 ZDD06439 H105 ZDD14969 H182 ZDD25037 H259 ZDD23642 H336 WDD00676
H029 ZDD06498 H106 ZDD15157 H183 ZDD25038 H260 ZDD24600 H337 WDD03104
H030 ZDD21379 H107 ZDD15248 H184 ZDD25039 H261 ZDD24605 H338 WDD03107
H031 ZDD21893 H108 ZDD13759 H185 ZDD25046 H262 ZDD24606 H339 WDD02584
H032 ZDD21922 H109 ZDD13774 H186 ZDD25070 H263 ZDD24609 H340 WDD02171
H033 ZDD14452 H110 ZDD13782 H187 ZDD25071 H264 ZDD23693 H341 WDD00701
H034 ZDD21867 H111 ZDD05932 H188 ZDD25074 H265 ZDD24370 H342 WDD02252
H035 ZDD08091 H112 ZDD05935 H189 ZDD25106 H266 ZDD24371 H343 WDD02253
H036 ZDD13172 H113 ZDD05936 H190 ZDD24905 H267 ZDD24372 H344 WDD03082
H037 ZDD00120 H114 ZDD12438 H191 ZDD25204 H268 ZDD24520 H345 WDD00663
H038 ZDD00359 H115 ZDD12894 H192 ZDD25295 H269 ZDD24568 H346 WDD00712
H039 ZDD00372 H116 ZDD16055 H193 ZDD25313 H270 ZDD24574 H347 WDD00667
H040 ZDD00412 H117 ZDD16095 H194 ZDD25328 H271 ZDD23682 H348 WDD01649
H041 ZDD16736 H118 ZDD16166 H195 ZDD24975 H272 ZDD24398 H349 WDD00679
H042 ZDD22283 H119 ZDD16221 H196 ZDD24981 H273 ZDD24542 H350 WDD01652
H043 ZDD09349 H120 ZDD16321 H197 ZDD25030 H274 ZDD24548 H351 WDD03093
H044 ZDD18877 H121 ZDD16354 H198 ZDD25113 H275 ZDD23795 H352 WDD03125
H045 ZDD18959 H122 ZDD16358 H199 ZDD25016 H276 ZDD24438 H353 WDD00672
H046 ZDD18965 H123 ZDD20874 H200 ZDD25068 H277 ZDD24439 H354 WDD03001
H047 ZDD23122 H124 ZDD20896 H201 ZDD24382 H278 ZDD24440 H355 WDD02363
H048 ZDD23124 H125 ZDD20903 H202 ZDD23643 H279 ZDD24481 H356 WDD02314
H049 ZDD22033 H126 ZDD20910 H203 ZDD23612 H280 ZDD24447 H357 WDD02317
H050 ZDD23053 H127 ZDD14673 H204 ZDD24113 H281 ZDD24450 H358 WDD03055
H051 ZDD23064 H128 ZDD14725 H205 ZDD23618 H282 ZDD24678 H359 WDD00756
H052 ZDD23075 H129 ZDD14740 H206 ZDD24410 H283 ZDD24161 H360 WDD00707
H053 ZDD11434 H130 ZDD22587 H207 ZDD24413 H284 ZDD24037 H361 WDD00722
H054 ZDD00765 H131 ZDD12535 H208 ZDD24414 H285 ZDD24748 H362 WDD00669
H055 ZDD18199 H132 ZDD13033 H209 ZDD24415 H286 ZDD23955 H363 WDD00668
H056 ZDD18200 H133 ZDD03731 H210 ZDD25264 H287 ZDD24076 H364 WDD03021
H057 ZDD00400 H134 ZDD22057 H211 ZDD25266 H288 ZDD23978 H365 WDD00820
H058 ZDD18044 H135 ZDD22076 H212 ZDD23754 H289 ZDD24595 H366 WDD00833
H059 ZDD22747 H136 ZDD19741 H213 ZDD23757 H290 ZDD24576 H367 WDD00834
H060 ZDD22767 H137 ZDD19742 H214 ZDD23749 H291 ZDD24550 H368 WDD00835
H061 ZDD22770 H138 ZDD19750 H215 ZDD24486 H292 ZDD24639 H369 WDD00805
H062 ZDD22773 H139 ZDD16473 H216 ZDD23785 H293 WDD01336 H370 WDD00810
H063 ZDD22785 H140 ZDD21998 H217 ZDD23786 H294 WDD01169 H371 WDD00830
H064 ZDD22797 H141 ZDD15492 H218 ZDD24495 H295 WDD01340 H372 WDD00896
H065 ZDD22836 H142 ZDD16889 H219 ZDD24499 H296 WDD01056 H373 WDD00900
H066 ZDD02767 H143 ZDD21515 H220 ZDD23783 H297 WDD01152 H374 WDD00838
H067 DD19366 H144 ZDD14566 H221 ZDD24488 H298 WDD01321 H375 WDD00806
H068 ZDD19403 H145 ZDD24117 H222 ZDD24476 H299 WDD01099 H376 WDD00924
H069 ZDD17013 H146 ZDD15672 H223 ZDD24479 H300 WDD01055 H377 WDD00925
H070 ZDD17146 H147 ZDD15757 H224 ZDD23705 H301 WDD01038 H378 WDD00870
H071 ZDD04110 H148 ZDD15812 H225 ZDD23709 H302 WDD01067 H379 WDD00845
H072 ZDD11531 H149 ZDD15828 H226 ZDD23712 H303 WDD01406 H380 WDD02939
H073 ZDD12837 H150 ZDD15829 H227 ZDD23718 H304 WDD01073 H381 WDD00677
H074 ZDD14596 H151 ZDD15837 H228 ZDD23723 H305 WDD00987 H382 WDD00811
H075 ZDD11583 H152 ZDD15848 H229 ZDD23724 H306 WDD01240 H383 WDD00854
H076 ZDD11690 H153 ZDD15980 H230 ZDD23727 H307 WDD01278 H384 WDD00923
H077 ZDD11943 H154 ZDD16473 H231 ZDD24457 H308 WDD01005 H385 WDD00929

图1

不同处理时间平均温/湿度"

表1

高温(HT)处理对385份大豆芽期生理指标的影响"

性状
Tait
对照
Control (mean ± SD)
高温处理后
After HT stress (mean ± SD)
变幅
Range (%)
F
F-value
下胚轴长Hypocotyl length (cm) 4.626±1.980 4.118±1.661 -10.90 14.816*
主根长Main root length (cm) 5.868±2.397 6.140±2.265 4.60 2.618
总鲜重Total fresh weight (g) 0.754±0.255 0.746±0.270 -1.06 0.199
总干重Total dry weight (g) 0.163±0.046 0.160±0.050 -1.80 0.611
相对水分含量Relative moisture content (%) 0.768±0.083 0.766±0.093 -0.26 0.065
下胚轴鲜重Hypocotyl fresh weight (g) 0.135±0.060 0.129±0.050 -4.40 0.212
下胚轴干重Hypocotyl dry weight (g) 0.011±0.013 0.012±0.010 9.10 0.284
根鲜重Root fresh weight (g) 0.107±0.076 0.121±0.084 13.10 5.700**
根干重Root dry weight (g) 0.009±0.008 0.011±0.009 22.20 6.867**
简化活力指数Simplified vitality index (g) 0.248±0.228 0.283±0.276 14.10 3.625
根冠比R/S (%) 0.159±0.087 0.186±0.104 16.90 14.865**

表2

385份大豆芽期高温处理各单项系数变异分析"

性状
Trait
极小值
Min.
极大值
Max.
单项系数
Single coefficient (mean ± SD)
变异系数
CV (%)
下胚轴长Hypocotyl length (cm) 0.090 7.125 1.057±0.373 35
主根长Main root length (cm) 0.058 2.250 1.441±0.561 39
总鲜重Total fresh weight (g) 0.263 3.246 1.060±0.434 41
总干重Total dry weight (g) 0.176 2.170 1.049±0.860 82
相对水分含量Relative moisture content (%) 0.167 2.554 1.009±0.161 16
下胚轴鲜重Hypocotyl fresh weight (g) 0.058 6.333 1.132±0.260 23
下胚轴干重Hypocotyl dry weight (g) 0.036 9.310 1.324±0.317 24
根鲜重Root fresh weight (g) 0.026 6.535 1.676±1.491 89
根干重Root dry weight (g) 0.041 9.000 1.738±0.712 41
简化活力指数Simplified vitality index (g) 0.013 9.667 2.132±1.236 58
根冠比R/S (%) 0.043 8.009 1.494±1.135 76

图2

385份大豆芽期高温处理各单项指标耐高温系数相关性分析 X1: 下胚轴长; X2: 主根长; X3: 总鲜重; X4: 总干重; X5: 相对水分含量; X6: 下胚轴鲜重; X7: 下胚轴干重; X8: 根鲜重; X9: 根干重; X10: 简化活力指数; X11: 根冠比。*表示在0.05概率水平相关性显著。"

表3

主成分分析及贡献率"

指标
Item
成分矩阵 Component matrix
1 2 3
下胚轴长Hypocotyl length (cm) 0.682 -0.053 0.385
主根长Main root length (cm) 0.530 -0.058 0.108
鲜重Raw weight (g) 0.804 0.027 -0.061
干重Dry weight (g) -0.026 0.884 -0.130
相对水分含量 Relative moisture content (%) 0.642 -0.354 -0.010
下胚轴鲜重Fresh weight of hypocotyl (g) 0.505 -0.052 0.506
下胚轴干重Hypocotyl dry weight (g) 0.377 0.318 0.501
根鲜重Root fresh weight (g) 0.929 0.021 -0.283
根干重Root dry weight (g) 0.611 0.261 0.122
简化活力指数Simplified vitality index (g) 0.720 0.048 -0.459
根冠比 R/S (%) 0.835 -0.014 -0.231
特征值 Eigenvectors 4.654 1.089 1.047
贡献率 Contribution ratio (%) 42.31 9.90 9.51
累计贡献率 Cumulative contribution ratio (%) 42.31 52.21 61.72

表4

参试品种高温响应综合评价(H)值"

编号
No.
H
H-value
编号
No.
H
H-value
编号
No.
H
H-value
编号
No.
H
H-value
编号
No.
H
H-value
H001 0.21 H078 0.37 H155 0.23 H232 0.19 H309 0.63
H002 0.24 H079 0.23 H156 0.16 H233 0.26 H310 0.15
H003 0.25 H080 0.38 H157 0.24 H234 0.37 H311 0.19
H004 0.20 H081 0.13 H158 0.21 H235 0.26 H312 0.21
H005 0.22 H082 0.21 H159 0.23 H236 0.37 H313 0.27
H006 0.17 H083 0.24 H160 0.10 H237 0.20 H314 0.23
H007 0.22 H084 0.21 H161 0.24 H238 0.39 H315 0.17
H008 0.36 H085 0.15 H162 0.23 H239 0.22 H316 0.21
H009 0.28 H086 0.24 H163 0.45 H240 0.19 H317 0.27
H010 0.12 H087 0.20 H164 0.15 H241 0.30 H318 0.30
H011 0.21 H088 0.20 H165 0.19 H242 0.18 H319 0.30
H012 0.21 H089 0.13 H166 0.15 H243 0.40 H320 0.24
H013 0.20 H090 0.17 H167 0.16 H244 0.20 H321 0.33
H014 0.29 H091 0.17 H168 0.22 H245 0.72 H322 0.31
H015 0.17 H092 0.39 H169 0.14 H246 0.21 H323 0.18
H016 0.24 H093 0.15 H170 0.28 H247 0.19 H324 0.26
H017 0.18 H094 0.19 H171 0.21 H248 0.23 H325 0.17
H018 0.23 H095 0.20 H172 0.30 H249 0.21 H326 0.25
H019 0.24 H096 0.21 H173 0.21 H250 0.42 H327 0.27
H020 0.20 H097 0.24 H174 0.21 H251 0.21 H328 0.26
H021 0.44 H098 0.20 H175 0.37 H252 0.18 H329 0.18
H022 0.26 H099 0.18 H176 0.34 H253 0.32 H330 0.34
H023 0.24 H100 0.26 H177 0.20 H254 0.16 H331 0.35
H024 0.25 H101 0.23 H178 0.24 H255 0.18 H332 0.19
H025 0.31 H102 0.14 H179 0.27 H256 0.24 H333 0.29
H026 0.24 H103 0.17 H180 0.18 H257 0.24 H334 0.25
H027 0.36 H104 0.33 H181 0.28 H258 0.31 H335 0.15
H028 0.26 H105 0.22 H182 0.19 H259 0.24 H336 0.25
H029 0.20 H106 0.20 H183 0.17 H260 0.22 H337 0.31
H030 0.28 H107 0.26 H184 0.22 H261 0.27 H338 0.11
H031 0.23 H108 0.26 H185 0.23 H262 0.46 H339 0.17
H032 0.18 H109 0.22 H186 0.21 H263 0.37 H340 0.14
H033 0.26 H110 0.31 H187 0.21 H264 0.20 H341 0.28
H034 0.27 H111 0.29 H188 0.18 H265 0.24 H342 0.14
H035 0.27 H112 0.21 H189 0.17 H266 0.34 H343 0.19
H036 0.58 H113 0.37 H190 0.19 H267 0.22 H344 0.31
H037 0.32 H114 0.18 H191 0.19 H268 0.71 H345 0.26
H038 0.31 H115 0.60 H192 0.20 H269 0.44 H346 0.35
H039 0.48 H116 0.38 H193 0.22 H270 0.14 H347 0.18
H040 0.27 H117 0.19 H194 0.18 H271 0.20 H348 0.18
H041 0.25 H118 0.13 H195 0.26 H272 0.66 H349 0.23
H042 0.20 H119 0.27 H196 0.39 H273 0.29 H350 0.24
H043 0.44 H120 0.28 H197 0.31 H274 0.19 H351 0.19
H044 0.14 H121 0.16 H198 0.27 H275 0.31 H352 0.29
H045 0.27 H122 0.25 H199 0.13 H276 0.19 H353 0.23
H046 0.21 H123 0.31 H200 0.29 H277 0.28 H354 0.25
H047 0.25 H124 0.28 H201 0.47 H278 0.23 H355 0.21
H048 0.27 H125 0.31 H202 0.36 H279 0.37 H356 0.22
H049 0.31 H126 0.17 H203 0.15 H280 0.18 H357 0.22
H050 0.21 H127 0.36 H204 0.17 H281 0.28 H358 0.20
H051 0.23 H128 0.29 H205 0.22 H282 0.23 H359 0.21
H052 0.26 H129 0.19 H206 0.19 H283 0.18 H360 0.18
H053 0.25 H130 0.22 H207 0.19 H284 0.26 H361 0.18
H054 0.32 H131 0.18 H208 0.20 H285 0.25 H362 0.25
H055 0.38 H132 0.26 H209 0.32 H286 0.19 H363 0.48
H056 0.35 H133 0.33 H210 0.18 H287 0.20 H364 0.26
H057 0.26 H134 0.22 H211 0.25 H288 0.29 H365 0.23
H058 0.21 H135 0.16 H212 0.24 H289 0.15 H366 0.16
H059 0.26 H136 0.24 H213 0.34 H290 0.31 H367 0.25
H060 0.23 H137 0.23 H214 0.26 H291 0.23 H368 0.19
H061 0.44 H138 0.13 H215 0.28 H292 0.25 H369 0.16
H062 0.28 H139 0.23 H216 0.69 H293 0.26 H370 0.19
H063 0.27 H140 0.20 H217 0.26 H294 0.28 H371 0.15
H064 0.52 H141 0.27 H218 0.32 H295 0.15 H372 0.20
H065 0.26 H142 0.30 H219 0.27 H296 0.22 H373 0.16
H066 0.32 H143 0.23 H220 0.26 H297 0.19 H374 0.23
H067 0.28 H144 0.25 H221 0.44 H298 0.26 H375 0.26
H068 0.21 H145 0.24 H222 0.18 H299 0.18 H376 0.23
H069 0.26 H146 0.32 H223 0.29 H300 0.25 H377 0.32
H070 0.72 H147 0.20 H224 0.17 H301 0.23 H378 0.20
H071 0.25 H148 0.33 H225 0.20 H302 0.19 H379 0.31
H072 0.23 H149 0.18 H226 0.21 H303 0.14 H380 0.19
H073 0.32 H150 0.16 H227 0.24 H304 0.23 H381 0.20
H074 0.21 H151 0.22 H228 0.18 H305 0.13 H382 0.20
H075 0.28 H152 0.13 H229 0.23 H306 0.24 H383 0.23
H076 0.28 H153 0.38 H230 0.23 H307 0.23 H384 0.17
H077 0.16 H154 0.21 H231 0.26 H308 0.28 H385 0.19

图3

385份大豆H值的聚类分析图"

[1] Li B, Tian L, Zhang J Y, Huang L, Han F X, Yan S R, Wang L Z, Zheng H K, Sun J M. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics, 2014, 15: 1086.
doi: 10.1186/1471-2164-15-1086
[2] Kurek I, Chang T K, Bertain S M. Enhanced thermostability of Arabidopsis rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell, 2007, 19: 3230-3241.
doi: 10.1105/tpc.107.054171
[3] 骆倩雯. 35.1℃!北京今年首个高温日来临,比常年提前13天. 京报网, 2022 [2023-02-13], https://baijiahao.baidu.com/s?id=1734054271630784824&wfr=spider&for=pc.
Luo Q W. 35.1℃!The first hot day in Beijing this year is coming,13 days ahead of normal. Tex: Beijing News Network, 2022 [2023-02-13], https://baijiahao.baidu.com/s?id=1734054271630784824&wfr=spider&for=pc.
[4] 仵妮平. 高温胁迫对小麦产量及品质性状的影响. 石河子大学硕士学位论文, 新疆石河子, 2020.
Wu N P. Effects of High Temperature Stress on Yield and Quality Characters of Wheat. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2020 (in Chinese with English abstract).
[5] 王明, 吴辉, 孙小成, 蒋小军, 雷干农, 陶卫, 柏长青, 徐敏. 孕穗期高温对水稻生理特性和产量性状影响研究. 中国农学通报, 2022, 38(30): 1-5.
doi: 10.11924/j.issn.1000-6850.casb2021-1054
Wang M, Wu H, Sun X C, Jiang X J, Lei G N, Tao W, Bai C Q, Xu M. Effects of high temperature at booting stage on physiological characteristics and yield traits of rice. Chin Agric Sci Bull, 2022, 38 (30): 1-5 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2021-1054
[6] 陈岩, 岳丽杰, 杨勤, 张会玲, 柯国华, 刘永红. 高温热害对玉米生长发育的影响及研究进展. 耕作与栽培, 2019, (1): 26-31.
Chen Y, Yue L J, Yang Q, Zhang H L, Ke G H, Liu Y H. Effects of high temperature and heat damage on maize growth and development and research progress. Tillage Cult, 2019, (1): 26-31 (in Chinese with English abstract).
[7] 李才媛, 彭春华, 赵勤炳, 谢萍, 谌伟. 武汉市2003年盛夏异常高温特征分析. 华中师范大学学报(自然科学版), 2004, 38: 379-382.
Li C Y, Peng C Y, Zhao Q B, Xie P, Chen W. Characteristics of abnormal high temperature in mid-summer of 2003 in Wuhan. J Chin Central Norm Univ (Nat Sci Edn), 2004, 38: 379-382 (in Chinese with English abstract).
[8] Apraku B, Hunter R B, Tollenaar M. Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.). Can J Plant Sci, 1983, 63: 357-363.
doi: 10.4141/cjps83-040
[9] Jumrani K, Bhatia V S. Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiol Mol Biol Plant, 2018, 24: 37-50.
doi: 10.1007/s12298-017-0480-5
[10] Demir I, Mavi K, Matthew S. Mean germination time of pepper seed lots (Capsicum annuum L.) predicts size and uniformity of seedling singer mination tests and transplant modules. Seed Sci Technol, 2008, 36: 2130.
[11] 卢琼琼, 宋新山, 严登华. 高温胁迫对大豆幼苗生理特性的影响. 河南师范大学学报(自然科学版), 2012, 40(1): 112-115.
Lu Q Q, Song X S, Yan D H. Effects of high temperature stress on physiological characteristics of soybean seedlings. J Henan Norm Univ (Nat Sci Edn), 2012, 40(1): 112-115 (in Chinese with English abstract).
[12] Nadeem M, Li J J, Wang M H, Shah L, Lu S Q, Wang X B, Ma C X. Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy, 2018, 8: 128.
doi: 10.3390/agronomy8070128
[13] Vu L D, Xu X Y, Gevaert K, De S I. Developmental plasticity at high temperature. Plant Physiol, 2019, 81: 399-411.
doi: 10.1111/ppl.1991.81.issue-3
[14] 靳路真. 大豆品种(系)耐热性鉴定及其生理机制研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2016.
Jin L Z. Identification of Heat Tolerance and Physiological Mechanism of Soybean. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2016 (in Chinese with English abstract).
[15] 莫先树. 花荚期热浪胁迫对大豆生长的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Mo X S. Effects of Heat Wave Stress on Soybean Growth in Flowering and Pod Stage. MS thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).
[16] Kanchan J, Virender S B, Govind P P. Screening soybean genotypes for high temperature tolerance by in vitro pollen germination, pollen tube length, reproductive efficiency and seed yield. Indian J Plant Physiol, 2018, 23: 77-90.
doi: 10.1007/s40502-018-0360-1
[17] Liu Y H, Li J J, Zhu Y L. Heat stress in legume seed setting: effects, causes, and future prospects. Front Plant Sci, 2019, 10: 938.
doi: 10.3389/fpls.2019.00938 pmid: 31417579
[18] 汪明华, 李佳佳, 陆少奇, 邵文韬, 程安东, 张文明, 王晓波, 邱丽娟. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定. 植物遗传资源学报, 2019, 20: 891-902.
doi: 10.13430/j.cnki.jpgr.20181027004
Wang M H, Li J J, Lu S Q, Shao W T, Cheng A D, Zhang W M, Wang X B, Qiu L J. Evaluation methods of high temperature tolerance of soybean varieties and screening and identification of high temperature tolerance germplasm. J Plant Genet Resour, 2019, 20: 891-902 (in Chinese with English abstract).
[19] Li J J, Nadeem M, Chen L Y, Wang M H, Wan M Y, Qiu L J, Wang X B. Differential proteomic analysis of soybean anthers by iTRAQ under high temperature stress. J Proteomics, 2020, 229: 103968.
doi: 10.1016/j.jprot.2020.103968
[20] 牛远, 杨修艳, 戴存凤, 王博文, 任高磊, 吴静磊, 王飞兵, 陈新红. 大豆芽期和苗期耐盐性评价指标筛选. 大豆科学, 2018, 37: 215-223.
Niu Y, Yang X Y, Dai C F, Wang B W, Ren G L, Wu J L, Wang F B, Chen X H. Screening of evaluation indexes of salt tolerance in soybean bud and seedling stage. Soybean Sci, 2018, 37: 215-223 (in Chinese with English abstract).
[21] 彭智, 李龙, 柳玉平, 刘惠民, 景蕊莲. 小麦芽期和苗期耐盐性综合评价. 植物遗传资源学报, 2017, 18: 638-645.
doi: 10.13430/j.cnki.jpgr.2017.04.005
Peng Z, Li L, Liu Y P, Liu H M, Jing R L. Comprehensive evaluation of salt tolerance at bud and seedling stages of wheat. J Plant Genet Resour, 2017, 18: 638-645 (in Chinese with English abstract).
[22] 王伟, 姜伟, 张金龙, 苗龙, 赵团结, 盖钧镒, 李艳. 大豆种质的耐旱性鉴定及耐旱指标筛选. 大豆科学, 2015, 34: 808-818.
Wang W, Jiang W, Zhang J L, Miao L, Zhao T J, Gai J Y, Li Y. Identification of drought tolerance and screening of drought tolerance indexes of soybean germplasm. Soybean Sci, 2015, 34: 808-818 (in Chinese with English abstract).
[23] 邵桂花, 李舒凡. 大豆芽期抗旱生理指标之探讨. 种子世界, 1990, (5): 22-23.
Shao G H, Li S F. Study on physiological indexes of drought resistance in soybean sprout stage. Seed World, 1990, (5): 22-23 (in Chinese).
[24] 靳路真, 王洋, 张伟, 邱红梅, 陈健, 候云龙, 马晓萍, 王跃强, 谢甫绨. 大豆品种(系)耐热性鉴定及分级评价. 中国油料作物学报, 2016, 38(1): 77-87.
Jin L Z, Wang Y, Zhang W, Qiu H M, Chen J, Hou Y L, Ma X P, Wang Y Q, Xie F T. Identification and grading evaluation of heat resistance of soybean varieties (lines). Chin J Oil Crops, 2016, 38(1): 77-87 (in Chinese with English abstract).
[25] Cao Y Y, Zhao H. Protective roles of brassinolide on rice seedlings under high temperature stress. Rice Sci, 2008, 15: 63-68.
doi: 10.1016/S1672-6308(08)60021-9
[26] Djanaguiraman M, Prasad P V V, Boyle D L. Soybean pollen anatomy, viability and pod set under high temperature stress. J Agron Crop Sci, 2012, 199: 171-177.
doi: 10.1111/jac.12005
[27] Halvorsen H. The gas exchange of flax seeds in relation to temperature: I.Experiment with immature seeds and capsules. Physiol Plant, 2010, 8: 501-511.
doi: 10.1111/ppl.1955.8.issue-3
[28] 郭小红, 韦清源, 汤复跃, 陈文杰, 梁江, 谢甫绨, 陈渊. 萌发期耐高温大豆种质资源筛选及耐热指标评价. 大豆科学, 2022, 41: 513-519.
Guo X H, Wei Q Y, Tang F Y, Chen W J, Liang J, Xie F T, Chen Y. Screening of high temperature tolerance soybean germplasm resources and evaluation of heat tolerance indexes at germination stage. Soybean Sci, 2022, 41: 513-519 (in Chinese with English abstract).
[29] 徐小万, 雷建军, 李颖, 王恒明, 徐晓美, 罗少波. 基于数学模型的辣椒芽期耐高温多湿性综合评价方法. 中国农业科技导报, 2013, 15(6): 174-180.
Xu X W, Lei J J, Li Y, Wang H M, Xu X M, Luo S B. Comprehensive evaluation method of high temperature and humidity tolerance of pepper in bud stage based on mathematical model. Agric Sci Technol Rev, 2013, 15(6): 174-180 (in Chinese with English abstract).
[30] 陈增举. 芥蓝耐热性鉴定及耐热材料筛选. 华南农业大学硕士学位论文, 广东广州, 2017.
Chen Z J. Identification of Heat Resistance of Chinese Kale and Screening of Heat-resistant Materials. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2017 (in Chinese with English abstract).
[31] Ren C, Bilyeu K D, Beuselinck P R. Composition, vigor, and proteome of mature soybean seeds developed under high temperature. Crop Sci, 2009, 49: 1010-1022.
doi: 10.2135/cropsci2008.05.0247
[32] Li S, Fu Q, Chen L, Huang W D, Yu D Q. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Plant, 2011, 233: 1237-1252.
[33] Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143-1151.
doi: 10.1104/pp.006858 pmid: 12427981
[34] Larkindale J, Hall J D, Knight M R. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol, 2005, 138: 882-897.
doi: 10.1104/pp.105.062257 pmid: 15923322
[35] Mao L, Deng M, Jiang S. Characterization of the SIDREBA4-type transcription factor (SlDREBA4), which contributes to heat tolerance in tomatoes. Front Plant Sci, 2020, 11: 554520.
doi: 10.3389/fpls.2020.554520
[36] Zhang H, Zhao Y, Zhu J K. Thriving under stress: how plants balance growth and the stress response. Dev Cell, 2020, 55: 529-543.
doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694
[37] 戴鸣凯. 高温胁迫对马铃薯幼苗生长和生理的影响及相关耐热基因分析. 福建农林大学硕士毕业论文,福建福州, 2018.
Dai M K. Effects of High Temperature Stress on Growth and Physiology of Potato Seedlings and Analysis of Related Heat Tolerance Genes. MS Thesis of Fujian Agricultural and Forestey University, Fuzhou, Fujian, China, 2018 (in Chinese with English abstract).
[38] 吴斌, 蒋秋玮, 顾婷婷, 赵梅, 柳李旺. 高温胁迫下不同耐热性萝卜幼苗生理响应分析. 中国蔬菜, 2010, (10): 25-28.
Wu B, Jiang Q W, Gu T T, Zhao M, Liu L W. Physiological response of radish seedlings under high temperature stress. China Veget, 2010, (10): 25-28 (in Chinese with English abstract).
[39] 李朝苏, 刘鹏, 蔡妙珍. 养麦对酸铝胁迫生理响应的研究. 水土保持学报, 2005, 19(3): 105-109.
Li C S, Liu P, Cai M Z. Study on physiological response of wheat to aluminum acid stress. J Soil Water Conserv, 2005, 19(3): 105-109 (in Chinese with English abstract).
[40] 胡承伟, 张学昆, 邹锡玲, 程勇, 曾柳, 陆光远. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35: 48-53.
Hu C W, Zhang X K, Zou X L, Cheng Y, Zeng L, Lu G Y. Root characteristics and drought resistance of Brassica napus under PEG simulated drought stress. Chin J Oil Crops, 2013, 35(1): 48-53 (in Chinese with English abstract).
[41] Hu D D, Li R F, Dong S T. Maize (Zea mays L.)responses to salt stress in terms of root anatomy, respiration and antioxidative enzyme activity. Plant Biol, 2022, 22: 602.
[42] Zhang Y, Zhou Y Y, Liu C. Tuning drought resistance by using a root-specific expression transcription factor PdNF-YB21 in Arabidopsis thaliana. Plant Cell Tissue Organ Cult, 2021, 145: 379-391.
doi: 10.1007/s11240-021-02014-5
[43] Burko Y, Willige B C, Seluzicki A. PIF 7 is a master regulator of thermomorphogenesis in shade. Nat Commun, 2022, 13: 4942-4942.
doi: 10.1038/s41467-022-32585-6
[44] 郭望模, 傅亚萍, 孙宗修. 水稻芽期和苗期耐盐指标的选择研究. 浙江农业科学, 2004, (1): 32-35.
Guo W M, Fu Y P, Sun Z X. Selection of salt tolerance indexes in rice bud and seedling stage. Zhejiang Agric Sci, 2004, (1): 32-35 (in Chinese).
[45] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47: 2927-2939.
doi: 10.3864/j.issn.0578-1752.2014.15.003
Li C H, Yao X D, Ju B T, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F T, Song S H. Analysis of shade tolerance of different genotypes of soybean and screening of identification indexes. Sci Agric Sin, 2014, 47: 2927-2939 (in Chinese with English abstract).
[46] 李合生. 现代植物生理学(第2版). 北京: 高等教育出版社, 2007. pp 348-352.
Li H S. Modern Plant Physiology, 2nd edn. Beijing: Higher Education Press, 2007. pp 348-352 (in Chinese).
[47] Ashraf M. Salt tolerance of cotton: some new advances. Crit Rev Plant Sci, 2002, 21: 1-30.
doi: 10.1080/0735-260291044160
[48] 庞强强, 周曼, 孙晓东, 陈贻诵, 蔡兴来. 不同菜心品种萌发期和苗期耐热性分析及其鉴定指标筛选. 西北农业学报, 2020, 29(2): 295-305.
Pang Q Q, Zhou M, Sun X D, Chen Y C, Cai X L. Heat resistance analysis and identification index screening of different cabbage heart varieties at germination and seedling stage. J Northwest Agric Sci, 2020, 29(2): 295-305 (in Chinese with English abstract).
[1] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[2] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[3] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[4] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[5] 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183.
[6] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[7] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[8] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[9] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[10] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[11] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[12] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[13] 李继军, 陈雅慧, 王艺瑾, 周志华, 郭子越, 张建, 涂金星, 姚璇, 郭亮. 甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选[J]. 作物学报, 2023, 49(12): 3162-3175.
[14] 牛志远, 秦超, 刘军, 王海泽, 李宏宇. 不同Cas9启动子对大豆CRISPR/Cas9系统效率的作用分析[J]. 作物学报, 2023, 49(12): 3227-3238.
[15] 张红梅, 熊雅文, 许文静, 张威, 王琼, 刘晓庆, 刘慧, 崔晓艳, 陈新, 陈华涛. 大豆R6期籽粒氨基酸含量的全基因组关联分析[J]. 作物学报, 2023, 49(12): 3277-3288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .