欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2876-2885.doi: 10.3724/SP.J.1006.2023.23066

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Maize 6H-60K芯片在玉米实质性派生品种鉴定中的应用分析

田红丽(), 张如养(), 范亚明(), 杨扬, 张云龙, 易红梅, 邢锦丰, 王凤格(), 赵久然()   

  1. 北京市农林科学院玉米研究所 / 农业农村部农作物DNA指纹创新利用重点实验室(部省共建) / 玉米DNA指纹及分子育种北京市重点实验室, 北京100097
  • 收稿日期:2022-09-30 接受日期:2023-05-24 出版日期:2023-11-12 网络出版日期:2023-06-06
  • 通讯作者: 赵久然, E-mail: maizezhao@126.com; 王凤格, E-mail: gege0106@163.com
  • 作者简介:田红丽, E-mail: tianhongli9963@163.com;
    张如养, E-mail: ruyangzhang2009@126.com;
    范亚明, E-mail: 13718078547@163.com第一联系人:

    **同等贡献

  • 基金资助:
    国家科技创新重大项目(2022ZD04019);北京市农林科学院创新能力建设专项(KJCX202303)资助(KJCX202303)

Application of maize 6H-60K chip in identification of maize essentially derived varieties

TIAN Hong-Li(), ZHANG Ru-Yang(), FAN Ya-Ming(), YANG Yang, ZHANG Yun-Long, YI Hong-Mei, XING Jin-Feng, WANG Feng-Ge(), ZHAO Jiu-Ran()   

  1. Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences / Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province) / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
  • Received:2022-09-30 Accepted:2023-05-24 Published:2023-11-12 Published online:2023-06-06
  • About author:First author contact:

    **Contributed equally to this study

  • Supported by:
    National Scientific and Technological Innovation—Major Projects(2022ZD04019);Science and Technology Innovation Capacity Building Project of BAAFS (KJCX20230301)(KJCX202303)

摘要:

玉米实质性派生品种鉴定已成为当前种业知识产权保护的热点之一。为加快其精准高效分子鉴定技术的建立, 本文利用多种类型派生品种为研究材料: 京2416与京2416C (两者为遗传背景高度相近的两个自交系), 京724与京72464 (两者为遗传背景相近的两个自交系), 以及由京724与京72464两者构建的893个DH系遗传群体等。研究分析了Maize 6H-60K芯片(包含61,214个SNP位点集合)应用于玉米派生品种鉴定的潜力。结果显示: (1) 京2416与京2416C间存在829个SNP位点差异, GS值(遗传相似度)为98.7%, 56.7%的差异位点集中分布在5号染色体长度约39 Mb区域内。(2) 京724与京72464之间差异位点数目为4912个, GS值为90.1%, 44.8%的差异位点集中分布在3号染色体上。(3) 893个DH系与2个亲本京724及京72464之间的GS值分布均呈现连续性, 其中与京724之间的GS值范围88.0%~97.0%, 平均值为92.6%; 与京72464之间的GS值范围88.3%~98.6%, 平均值为94.5%。(4) 893个DH系进行两两成对比较, 共比较398,278对, 所有DH系之间均有明确的SNP位点差异; GS值最小为87.5%, 最大为99.9%, 平均值为94.3%。结果表明Maize 6H-60K包含的SNP位点集能够精准评估派生、近似或极近似自交系及DH系的遗传背景, 将所有材料一一鉴别明确区分开来, 并具有进一步锁定与派生性状连锁标记的潜力。建议亟需基于Maize 6H-60K SNP位点集合, 利用高效芯片、靶向测序等平台建立玉米实质性派生品种分子鉴定技术规程, 为玉米品种知识产权保护、品种创新等提供技术支撑。

关键词: 玉米, 实质性派生品种, 分子鉴定, Maize 6H-60K芯片, 高密度SNP位点集合

Abstract:

The identification of maize essentially derived variety has become the hot spot in the intellectual property protection of seed industry. In order to speed up the establishment of its accurate and efficient molecular identification technology, this article used multiple types of derived varieties as research materials: Jing 2416 and Jing 2416C (two inbred lines with highly similar genetic backgrounds), Jing 724 and Jing 72464 (two inbred lines with similar genetic backgrounds), as well as 893 DH lines of genetic population constructed by Jing 724 and Jing 72464. The study researched and analyzed the potential of maize 6H-60K chip including 61,214 SNPs in identification of maize essentially derived varieties. The results were as follows: (1) There were 829 SNPs differences between Jing 2416 and Jing 2416C, the GS value (genetic similarity) was 98.7%, and 56.7% of the difference loci were concentrated in the 39 Mb region of chromosome 5. (2) There were 4912 SNPs differences between Jing 724 and Jing 72464, the GS value was 90.1%, and 44.8% of the difference loci were concentrated on chromosome 3. (3) The distribution of genetic similarity values between 893 DH lines and two parents (Jing 724 and Jing 72464) was continuous. The GS value range between 893 DH lines and Jing 724 was 88.0%-97.0%, with an average of 92.6%. The GS value range between 893 DH lines and Jing 72464 was 88.3%-98.6%, with an average of 94.5%. (4) 893 DH lines were paired comparison, a total of 398,278 pairs were compared. There were specific SNP differences between all DH lines. The GS values of 893 DH lines in pairs ranged from 87.5% to 99.9%, with an average of 94.3%. Among them, the proportion of GS value ≥ 97.0% was 8.6%, and the proportion of GS value ≥ 99.0% was 1.3%. This study showed that maize 6H-60K SNP sets could accurately evaluate the genetic background of maize derived, similar or extremely similar inbred and DH lines, identify and distinguish all materials one by one, and had the potential to further lock the linkage markers of derived traits. It is suggested that the technical system for maize essentially derived variety molecular identification based on Maize6H-60K SNP sets using chip, genotyping by target sequencing (GBTS) and other platforms should be urgently established, so as to provide technical support for intellectual property protection and variety innovation of maize varieties.

Key words: maize, the essentially derived variety, molecular identification, maize 6H-60K chip, the high-density SNP loci set

图1

京2416和京2416C之间差异位点在全基因组中的分布"

图2

京724和京72464差异位点分布(A和B)及基于DH系群体分析的染色体重组交换次数(C)"

图3

893份DH系分别与京724、京72464之间遗传相似度分析 横坐标为893个DH系, 按照与京72464之间的LS值从小到大排序; 纵坐标为遗传相似度值。"

图4

893份DH系两两之间遗传相似度分布 横坐标为遗传相似度值, 纵坐标为成对分析的DH对数。"

图5

京724和京72464构建的DH系群体的遗传分离图 图A为多态标记的遗传分离图, 红色为偏母型分离位点, 橙色为无偏分离位点。图B、C、D分别为DH388、DH677、DH543遗传背景图示, 其中白色区域为与京724和京72464均相同的纯合基因型, 深绿色区域为与京724相同的纯合基因型, 红色区域为与京72464相同的纯合基因型。"

[1] 褚云霞, 陈海荣, 邓姗, 黄志城, 李寿国. 实质性派生品种鉴定方法研究进展. 上海农业学报, 2017, 33(5): 132-138.
Chu Y X, Chen H R, Deng S, Huang Z C, Li S G. Development of the identification of essentially derived varieties. Acta Agric Shanghai, 2017, 33(5): 132-138 (in Chinese with English abstract).
[2] Heckenberger M, Bohn M, Ziegle J S, Joe L K, Hauser J D, Hutton M, Melchinger A E. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties: I. Genetic and technical sources of variation in SSR data. Mol Breed, 2002, 10: 181-191.
doi: 10.1023/A:1020539330957
[3] Heckenberger M, Voort J R, Melchinger A E, Peleman J, Bohn M. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties: II. Genetic and technical sources of variation in AFLP data and comparison with SSR data. Mol Breed, 2003, 12: 97-106.
doi: 10.1023/A:1026040007166
[4] Heckenberger M, Bohn M, Klein D, Melchinger A E. Identification of essentially derived varieties obtained from biparental crosses of homozygous lines: II. Morphological distances and heterosis in comparison with simple sequence repeat and amplified fragment length polymorphism data in maize. Crop Sci, 2005, 45: 1132-1140.
doi: 10.2135/cropsci2004.0111
[5] Heckenberger M, Muminović J, Voort J R, Peleman J, Bohn M, Melchinger A E. Identification of essentially derived varieties obtained from biparental crosses of homozygous lines: III. AFLP data from maize inbreds and comparison with SSR data. Mol Breed, 2006, 17: 111-125.
doi: 10.1007/s11032-005-3851-5
[6] Kahler A L, Kahler J L, Thompson S A, Ferriss R S, Jones E S, Nelson B K, Mikel M A, Smith S. North American study on essential derivation in maize: II. Selection and evaluation of a panel of simple sequence repeat loci. Crop Sci, 2010, 50: 486-503.
doi: 10.2135/cropsci2009.03.0121
[7] ISF. Guidelines for Handling Disputes on Essential Derivation of Maize Lines, 2008. www.worldseed.orgwww.worldseed.org.
[8] ISF. Guidelines for Handling Disputes on Essential Derivation of Maize Lines, 2014. www.worldseed.org.
[9] Rousselle Y, Jones E, Charcosset A, Moreau P, Robbins K, Stich B, Knaak C, Flament P, Karaman Z, Martinant J R, Fourneau M, Taillardat A, Romestant M, Tabel C, Bertran J, Ranc N, Lespinasse D, Blanchard P, Kahler A, Chen J, Kahler J, Dobrin S, Warner T, Ferris R, Smith S. Study on essential derivation in maize: III. Selection and evaluation of a panel of single nucleotide polymorphism loci for use in European and North American Germplasm. Crop Sci, 2015, 55:1170-1180.
doi: 10.2135/cropsci2014.09.0627
[10] 彭海, 方治伟, 李论, 马爱进, 周俊飞, 温常龙, 李甜甜, 唐浩, 陈红, 崔野韩, 张嘉楠, 贾英民, 许娜, 宋书锋, 胡美霞, 符习勤, 赵治海, 梁勇, 徐振江, 高利芬, 陈利红, 韩瑞玺, 张蝶, 张静, 余进文. 植物品种鉴定MNP标记法. 中华人民共和国国家标准, GB/T 38551-2020, 2020.
Peng H, Fang Z W, Li L, Ma A J, Zhou J F, Wen C L, Li T T, Tang H, Chen H, Cui Y H, Zhang J N, Jia Y M, Xu N, Song S F, Hu M X, Fu X Q, Zhao Z H, Liang Y, Xu Z J, Gao L F, Chen L H, Han R X, Zhang D, Zhang J, Yu J W. Identification of plant varieties: MNP marker method. National Standards of the People’s Republic of China, GB/T 38551-2020 2020, (in Chinese).
[11] UPOV International Union for the Protection of New Varieties of Plants. Possible Used of Molecular Markers in the Examination of Distinctness, Uniformity and Stability (DUS). Geneva, Switzerland: UPOV, 2011.
[12] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管. 作物学报, 2022, 48: 1853-1870.
doi: 10.3724/SP.J.1006.2022.23001
Xu Y B, Wang B B, Zhang J, Zhang J N, Li J S. Enhancement of plant variety protection and regulation using molecular marker technology. Acta Agron Sin, 2022, 48: 1853-1870 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.23001
[13] Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Paslier M C L, McMullen M D, Montalent P, Rose M, Schön C C, Sun Q, Walter H, Martin O C, Falque M. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One, 2011, 6: e28334.
doi: 10.1371/journal.pone.0028334
[14] Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom T M, Fries R, Pausch H, Bertani C, Davassi A, Mayer K F, Schön C C. A powerful tool for genome analysis in maize: development and evaluation of the high density 600k SNP genotyping array. BMC Genomics, 2014, 15: 823.
doi: 10.1186/1471-2164-15-823
[15] Xu C, Ren Y H, Jian Y Q, Guo Z F, Zhang Y, Xie C X, Fu J J, Wang H W, Wang G Y, Xu Y B, Li P, Zou C. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Mol Breed, 2017, 37: 20.
doi: 10.1007/s11032-017-0622-z
[16] Tian H L, Yang Y, Yi H M, Xu L W, He H, Fan Y M, Wang L, Ge J R, Liu Y W, Wang F G, Zhao J R. New resources for genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application. Plant J, 2021, 105: 1113-1122.
doi: 10.1111/tpj.v105.4
[17] 王凤格, 晋芳, 田红丽, 易红梅, 赵久然, 金石桥, 杨扬, 王蕊, 葛建镕, 支巨振, 赵建宗. 玉米品种真实性鉴定SNP标记法. 中华人民共和国农业行业标准, NY/T 4022-2021, 2021.
Wang F G, Jin F, Tian H L, Yi H M, Zhao J R, Jin S Q, Yang Y, Wang R, Ge J R, Zhi J Z, Zhao J Z. Maize (Zea mays L.) variety genuineness identification: SNP based method. Agricultural Industry Standards of the People’s Republic of China, NY/T 4022-2021 2021 (in Chinese).
[18] 赵久然, 王元东, 宋伟, 张如养, 李春辉, 刘新香. 玉米骨干自交系京2416的选育与应用. 植物遗传资源学报, 2020, 21: 1051-1057.
doi: 10.13430/j.cnki.jpgr.20200221001
Zhao J R, Wang Y D, Song W, Zhang R Y, Li C H, Liu X X. Breeding and application of maize founder inbred line Jing 2416. J Plant Genet Resour, 2020, 21: 1051-1057 (in Chinese with English abstract).
[19] 赵久然, 李春辉, 宋伟, 刘新香, 王元东, 张如养, 王继东, 孙轩, 王夏青. 玉米骨干自交系京2416杂种优势及遗传重组解析. 中国农业科学, 2020, 53: 4527-4536.
doi: 10.3864/j.issn.0578-1752.2020.22.001
Zhao J R, Li C H, Song W, Liu X X, Wang Y D, Zhang R Y, Wang J D, Sun X, Wang X Q. Heterosis and genetic recombination dissection of maize key inbred line Jing 2416. Sci Agric Sin, 2020, 53: 4527-4536 (in Chinese with English abstract).
[20] 王凤格, 易红梅, 赵久然, 刘平, 张新明, 田红丽, 堵苑苑. 玉米品种鉴定技术规程SSR标记法. 中华人民共和国农业行业标准, NY/T 1432-2014, 2014.
Wang F G, Yi H M, Zhao J R, Liu P, Zhang X M, Tian H L, Du Y Y. Protocol for the Identification of Maize Varieties: SSR Marker Method. Agricultural Industry Standards of the People’s Republic of China, NY/T 1432-2014 2014 (in Chinese).
[21] 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊. 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018, 51: 626-634.
doi: 10.3864/j.issn.0578-1752.2018.04.003
Zhao J R, Li C H, Song W, Wang Y D, Zhang R Y, Wang J D, Wang F G, Tian H L, Wang R. Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-Chips. Sci Agric Sin, 2018, 51: 626-634 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.04.003
[22] Oróstica K Y, Verdugo R A. ChromPlot: visualization of genomic data in chromosomal context. Bioinformatics, 2016, 32: 2366-2369.
doi: 10.1093/bioinformatics/btw137 pmid: 27153580
[23] 赵久然, 王凤格, 田红丽, 易红梅, 王蕊, 葛建镕. 适于农作物品种分子身份鉴别和确权鉴定的检测方法. 中国发明专利, 2017, ZL 201710527354.5.
Zhao J R, Wang F G, Tian H L, Yi H M, Wang R, Ge J R. Detection Methods for Identity Distinguish and Intellectual Property Confirmation of Crop Varieties Using Molecular Markers. Chinese Invention Patent, 2017, ZL 201710527354.5. (in Chinese).
[24] Zhao Y K, Tian H L, Li C H, Yi H M, Zhang Y L, Li X H, Zhao H, Huo Y X, Wang R, Kang D M, Lu Y C, Liu Z H, Liang Z Y, Xu L W, Yang Y, Zhou L, Wang T Y, Zhao J R, Wang F G. HTPdb and HTPtools: exploiting maize haplotype-tag polymorphisms for germplasm resource analyses and genomics-informed breeding. Plant Commun, 2022, 3: 100331.
doi: 10.1016/j.xplc.2022.100331
[25] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001
Xu Y, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001
[26] 崔野韩, 温雯, 陈红, 杨扬, 堵苑苑, 卢新. 我国农业植物新品种保护工作回顾与展望. 中国种业, 2019, (2): 9-11.
Cui Y H, Wen W, Chen H, Yang Y, Du Y Y, Lu X. Review and respect of the plant new variety protection in China. China Seed Industry, 2019, (2): 9-11 (in Chinese).
[27] 邓伟, 崔野韩. 中国农业植物新品种保护制度及发展的研究. 中国种业, 2020, (11): 1-7.
Deng W, Cui Y H. Study on the protection system and development of the plant new variety protection in China. China Seed Industry, 2020, (11): 1-7 (in Chinese).
[28] 温雯, 闫东哲, 刘衎, 崔野韩. 健全我国农业植物新品种保护制度体系的思考. 农业科技管理, 2022, 41(1): 71-75.
Wen W, Yan D Z, Liu K, Cui Y H. Considerations on perfecting agricultural protection system of new plant varieties in China. Manag Agric Sci Technol, 2022, 41(1): 71-75 (in Chinese with English abstract).
[29] Smith J S C. The future of essentially derived variety (EDV) status: predominantly more explanations or essential change. Agronomy, 2021, 11: 1261.
doi: 10.3390/agronomy11061261
[30] 万志前, 张媛. 实质性派生品种制度的缘起、困境与困应. 浙江农业学报, 2020, 32: 2067-2076.
doi: 10.3969/j.issn.1004-1524.2020.11.18
Wan Z Q, Zhang Y. Origin, implementation difficulties and countermeasures of essential derived variety system. Acta Agric Zhejiangensis, 2020, 32: 2067-2076 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-1524.2020.11.18
[31] 张上都, 袁定阳, 路洪凤, 简燕, 李秀欣, 黄安平, 罗正良, 吕启明, 谭炎宁, 张勇飞, 袁隆平, 柏连阳. 基因组学方法用于水稻种质资源实质派生的检测结果和应用讨论. 中国科学: 生命科学, 2020, 50: 633-649.
Zhang S D, Yuan D Y, Lu H F, Jian Y, Li X X, Huang A P, Luo Z L, Lyu Q M, Tan Y N, Zhang Y F, Yuan L P, Bai L Y. The results of rice germplasm EDV test by genomic analysis and related discussions. Sci Sin: Life Sci, 2020, 50: 633-649 (in Chinese with English abstract).
[32] 简燕, 李小波, 王博, 赵静, 索海翠, 黄安平, 胡柏耿, 曹春梅, 张勇飞. 马铃薯实质派生品种鉴定的基因组学技术. 中国马铃薯, 2020, 34: 321-328.
Jian Y, Li X B, Wang B, Zhao J, Suo H C, Huang A P, Hu B G, Cao C M, Zhang Y F. Genomics technique for detection of potato essentially derived variety. Chin Potato J, 2020, 34: 321-328 (in Chinese with English abstract).
[33] 田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maizeSNP384标记筛选与玉米杂交种DNA指纹图谱构建. 作物学报, 2020, 46: 1006-1015.
doi: 10.3724/SP.J.1006.2020.93048
Tian H L, Yang Y, Wang L, Wang R, Yi H M, Xu L W, Zhang Y L, Ge J R, Wang F G, Zhao J R. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties. Acta Agron Sin, 2020, 46: 1006-1015 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.93048
[34] Noli E, Teriaca M S, Conti S. Criteria for the definition of similarity thresholds for identifying essentially derived varieties. Plant Breed, 2013, 132: 525-531.
doi: 10.1111/pbr.12109
[1] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[2] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[3] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[4] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[5] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[6] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[7] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[8] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[9] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[10] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[11] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[12] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[13] 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652.
[14] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
[15] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .