作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2876-2885.doi: 10.3724/SP.J.1006.2023.23066
田红丽(), 张如养(), 范亚明(), 杨扬, 张云龙, 易红梅, 邢锦丰, 王凤格(), 赵久然()
TIAN Hong-Li(), ZHANG Ru-Yang(), FAN Ya-Ming(), YANG Yang, ZHANG Yun-Long, YI Hong-Mei, XING Jin-Feng, WANG Feng-Ge(), ZHAO Jiu-Ran()
摘要:
玉米实质性派生品种鉴定已成为当前种业知识产权保护的热点之一。为加快其精准高效分子鉴定技术的建立, 本文利用多种类型派生品种为研究材料: 京2416与京2416C (两者为遗传背景高度相近的两个自交系), 京724与京72464 (两者为遗传背景相近的两个自交系), 以及由京724与京72464两者构建的893个DH系遗传群体等。研究分析了Maize 6H-60K芯片(包含61,214个SNP位点集合)应用于玉米派生品种鉴定的潜力。结果显示: (1) 京2416与京2416C间存在829个SNP位点差异, GS值(遗传相似度)为98.7%, 56.7%的差异位点集中分布在5号染色体长度约39 Mb区域内。(2) 京724与京72464之间差异位点数目为4912个, GS值为90.1%, 44.8%的差异位点集中分布在3号染色体上。(3) 893个DH系与2个亲本京724及京72464之间的GS值分布均呈现连续性, 其中与京724之间的GS值范围88.0%~97.0%, 平均值为92.6%; 与京72464之间的GS值范围88.3%~98.6%, 平均值为94.5%。(4) 893个DH系进行两两成对比较, 共比较398,278对, 所有DH系之间均有明确的SNP位点差异; GS值最小为87.5%, 最大为99.9%, 平均值为94.3%。结果表明Maize 6H-60K包含的SNP位点集能够精准评估派生、近似或极近似自交系及DH系的遗传背景, 将所有材料一一鉴别明确区分开来, 并具有进一步锁定与派生性状连锁标记的潜力。建议亟需基于Maize 6H-60K SNP位点集合, 利用高效芯片、靶向测序等平台建立玉米实质性派生品种分子鉴定技术规程, 为玉米品种知识产权保护、品种创新等提供技术支撑。
[1] | 褚云霞, 陈海荣, 邓姗, 黄志城, 李寿国. 实质性派生品种鉴定方法研究进展. 上海农业学报, 2017, 33(5): 132-138. |
Chu Y X, Chen H R, Deng S, Huang Z C, Li S G. Development of the identification of essentially derived varieties. Acta Agric Shanghai, 2017, 33(5): 132-138 (in Chinese with English abstract). | |
[2] |
Heckenberger M, Bohn M, Ziegle J S, Joe L K, Hauser J D, Hutton M, Melchinger A E. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties: I. Genetic and technical sources of variation in SSR data. Mol Breed, 2002, 10: 181-191.
doi: 10.1023/A:1020539330957 |
[3] |
Heckenberger M, Voort J R, Melchinger A E, Peleman J, Bohn M. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties: II. Genetic and technical sources of variation in AFLP data and comparison with SSR data. Mol Breed, 2003, 12: 97-106.
doi: 10.1023/A:1026040007166 |
[4] |
Heckenberger M, Bohn M, Klein D, Melchinger A E. Identification of essentially derived varieties obtained from biparental crosses of homozygous lines: II. Morphological distances and heterosis in comparison with simple sequence repeat and amplified fragment length polymorphism data in maize. Crop Sci, 2005, 45: 1132-1140.
doi: 10.2135/cropsci2004.0111 |
[5] |
Heckenberger M, Muminović J, Voort J R, Peleman J, Bohn M, Melchinger A E. Identification of essentially derived varieties obtained from biparental crosses of homozygous lines: III. AFLP data from maize inbreds and comparison with SSR data. Mol Breed, 2006, 17: 111-125.
doi: 10.1007/s11032-005-3851-5 |
[6] |
Kahler A L, Kahler J L, Thompson S A, Ferriss R S, Jones E S, Nelson B K, Mikel M A, Smith S. North American study on essential derivation in maize: II. Selection and evaluation of a panel of simple sequence repeat loci. Crop Sci, 2010, 50: 486-503.
doi: 10.2135/cropsci2009.03.0121 |
[7] | ISF. Guidelines for Handling Disputes on Essential Derivation of Maize Lines, 2008. www.worldseed.orgwww.worldseed.org. |
[8] | ISF. Guidelines for Handling Disputes on Essential Derivation of Maize Lines, 2014. www.worldseed.org. |
[9] |
Rousselle Y, Jones E, Charcosset A, Moreau P, Robbins K, Stich B, Knaak C, Flament P, Karaman Z, Martinant J R, Fourneau M, Taillardat A, Romestant M, Tabel C, Bertran J, Ranc N, Lespinasse D, Blanchard P, Kahler A, Chen J, Kahler J, Dobrin S, Warner T, Ferris R, Smith S. Study on essential derivation in maize: III. Selection and evaluation of a panel of single nucleotide polymorphism loci for use in European and North American Germplasm. Crop Sci, 2015, 55:1170-1180.
doi: 10.2135/cropsci2014.09.0627 |
[10] | 彭海, 方治伟, 李论, 马爱进, 周俊飞, 温常龙, 李甜甜, 唐浩, 陈红, 崔野韩, 张嘉楠, 贾英民, 许娜, 宋书锋, 胡美霞, 符习勤, 赵治海, 梁勇, 徐振江, 高利芬, 陈利红, 韩瑞玺, 张蝶, 张静, 余进文. 植物品种鉴定MNP标记法. 中华人民共和国国家标准, GB/T 38551-2020, 2020. |
Peng H, Fang Z W, Li L, Ma A J, Zhou J F, Wen C L, Li T T, Tang H, Chen H, Cui Y H, Zhang J N, Jia Y M, Xu N, Song S F, Hu M X, Fu X Q, Zhao Z H, Liang Y, Xu Z J, Gao L F, Chen L H, Han R X, Zhang D, Zhang J, Yu J W. Identification of plant varieties: MNP marker method. National Standards of the People’s Republic of China, GB/T 38551-2020 2020, (in Chinese). | |
[11] | UPOV International Union for the Protection of New Varieties of Plants. Possible Used of Molecular Markers in the Examination of Distinctness, Uniformity and Stability (DUS). Geneva, Switzerland: UPOV, 2011. |
[12] |
徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管. 作物学报, 2022, 48: 1853-1870.
doi: 10.3724/SP.J.1006.2022.23001 |
Xu Y B, Wang B B, Zhang J, Zhang J N, Li J S. Enhancement of plant variety protection and regulation using molecular marker technology. Acta Agron Sin, 2022, 48: 1853-1870 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.23001 |
|
[13] |
Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Paslier M C L, McMullen M D, Montalent P, Rose M, Schön C C, Sun Q, Walter H, Martin O C, Falque M. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One, 2011, 6: e28334.
doi: 10.1371/journal.pone.0028334 |
[14] |
Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom T M, Fries R, Pausch H, Bertani C, Davassi A, Mayer K F, Schön C C. A powerful tool for genome analysis in maize: development and evaluation of the high density 600k SNP genotyping array. BMC Genomics, 2014, 15: 823.
doi: 10.1186/1471-2164-15-823 |
[15] |
Xu C, Ren Y H, Jian Y Q, Guo Z F, Zhang Y, Xie C X, Fu J J, Wang H W, Wang G Y, Xu Y B, Li P, Zou C. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Mol Breed, 2017, 37: 20.
doi: 10.1007/s11032-017-0622-z |
[16] |
Tian H L, Yang Y, Yi H M, Xu L W, He H, Fan Y M, Wang L, Ge J R, Liu Y W, Wang F G, Zhao J R. New resources for genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application. Plant J, 2021, 105: 1113-1122.
doi: 10.1111/tpj.v105.4 |
[17] | 王凤格, 晋芳, 田红丽, 易红梅, 赵久然, 金石桥, 杨扬, 王蕊, 葛建镕, 支巨振, 赵建宗. 玉米品种真实性鉴定SNP标记法. 中华人民共和国农业行业标准, NY/T 4022-2021, 2021. |
Wang F G, Jin F, Tian H L, Yi H M, Zhao J R, Jin S Q, Yang Y, Wang R, Ge J R, Zhi J Z, Zhao J Z. Maize (Zea mays L.) variety genuineness identification: SNP based method. Agricultural Industry Standards of the People’s Republic of China, NY/T 4022-2021 2021 (in Chinese). | |
[18] |
赵久然, 王元东, 宋伟, 张如养, 李春辉, 刘新香. 玉米骨干自交系京2416的选育与应用. 植物遗传资源学报, 2020, 21: 1051-1057.
doi: 10.13430/j.cnki.jpgr.20200221001 |
Zhao J R, Wang Y D, Song W, Zhang R Y, Li C H, Liu X X. Breeding and application of maize founder inbred line Jing 2416. J Plant Genet Resour, 2020, 21: 1051-1057 (in Chinese with English abstract). | |
[19] |
赵久然, 李春辉, 宋伟, 刘新香, 王元东, 张如养, 王继东, 孙轩, 王夏青. 玉米骨干自交系京2416杂种优势及遗传重组解析. 中国农业科学, 2020, 53: 4527-4536.
doi: 10.3864/j.issn.0578-1752.2020.22.001 |
Zhao J R, Li C H, Song W, Liu X X, Wang Y D, Zhang R Y, Wang J D, Sun X, Wang X Q. Heterosis and genetic recombination dissection of maize key inbred line Jing 2416. Sci Agric Sin, 2020, 53: 4527-4536 (in Chinese with English abstract). | |
[20] | 王凤格, 易红梅, 赵久然, 刘平, 张新明, 田红丽, 堵苑苑. 玉米品种鉴定技术规程SSR标记法. 中华人民共和国农业行业标准, NY/T 1432-2014, 2014. |
Wang F G, Yi H M, Zhao J R, Liu P, Zhang X M, Tian H L, Du Y Y. Protocol for the Identification of Maize Varieties: SSR Marker Method. Agricultural Industry Standards of the People’s Republic of China, NY/T 1432-2014 2014 (in Chinese). | |
[21] |
赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊. 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018, 51: 626-634.
doi: 10.3864/j.issn.0578-1752.2018.04.003 |
Zhao J R, Li C H, Song W, Wang Y D, Zhang R Y, Wang J D, Wang F G, Tian H L, Wang R. Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-Chips. Sci Agric Sin, 2018, 51: 626-634 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.04.003 |
|
[22] |
Oróstica K Y, Verdugo R A. ChromPlot: visualization of genomic data in chromosomal context. Bioinformatics, 2016, 32: 2366-2369.
doi: 10.1093/bioinformatics/btw137 pmid: 27153580 |
[23] | 赵久然, 王凤格, 田红丽, 易红梅, 王蕊, 葛建镕. 适于农作物品种分子身份鉴别和确权鉴定的检测方法. 中国发明专利, 2017, ZL 201710527354.5. |
Zhao J R, Wang F G, Tian H L, Yi H M, Wang R, Ge J R. Detection Methods for Identity Distinguish and Intellectual Property Confirmation of Crop Varieties Using Molecular Markers. Chinese Invention Patent, 2017, ZL 201710527354.5. (in Chinese). | |
[24] |
Zhao Y K, Tian H L, Li C H, Yi H M, Zhang Y L, Li X H, Zhao H, Huo Y X, Wang R, Kang D M, Lu Y C, Liu Z H, Liang Z Y, Xu L W, Yang Y, Zhou L, Wang T Y, Zhao J R, Wang F G. HTPdb and HTPtools: exploiting maize haplotype-tag polymorphisms for germplasm resource analyses and genomics-informed breeding. Plant Commun, 2022, 3: 100331.
doi: 10.1016/j.xplc.2022.100331 |
[25] |
徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001 |
Xu Y, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001 |
|
[26] | 崔野韩, 温雯, 陈红, 杨扬, 堵苑苑, 卢新. 我国农业植物新品种保护工作回顾与展望. 中国种业, 2019, (2): 9-11. |
Cui Y H, Wen W, Chen H, Yang Y, Du Y Y, Lu X. Review and respect of the plant new variety protection in China. China Seed Industry, 2019, (2): 9-11 (in Chinese). | |
[27] | 邓伟, 崔野韩. 中国农业植物新品种保护制度及发展的研究. 中国种业, 2020, (11): 1-7. |
Deng W, Cui Y H. Study on the protection system and development of the plant new variety protection in China. China Seed Industry, 2020, (11): 1-7 (in Chinese). | |
[28] | 温雯, 闫东哲, 刘衎, 崔野韩. 健全我国农业植物新品种保护制度体系的思考. 农业科技管理, 2022, 41(1): 71-75. |
Wen W, Yan D Z, Liu K, Cui Y H. Considerations on perfecting agricultural protection system of new plant varieties in China. Manag Agric Sci Technol, 2022, 41(1): 71-75 (in Chinese with English abstract). | |
[29] |
Smith J S C. The future of essentially derived variety (EDV) status: predominantly more explanations or essential change. Agronomy, 2021, 11: 1261.
doi: 10.3390/agronomy11061261 |
[30] |
万志前, 张媛. 实质性派生品种制度的缘起、困境与困应. 浙江农业学报, 2020, 32: 2067-2076.
doi: 10.3969/j.issn.1004-1524.2020.11.18 |
Wan Z Q, Zhang Y. Origin, implementation difficulties and countermeasures of essential derived variety system. Acta Agric Zhejiangensis, 2020, 32: 2067-2076 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-1524.2020.11.18 |
|
[31] | 张上都, 袁定阳, 路洪凤, 简燕, 李秀欣, 黄安平, 罗正良, 吕启明, 谭炎宁, 张勇飞, 袁隆平, 柏连阳. 基因组学方法用于水稻种质资源实质派生的检测结果和应用讨论. 中国科学: 生命科学, 2020, 50: 633-649. |
Zhang S D, Yuan D Y, Lu H F, Jian Y, Li X X, Huang A P, Luo Z L, Lyu Q M, Tan Y N, Zhang Y F, Yuan L P, Bai L Y. The results of rice germplasm EDV test by genomic analysis and related discussions. Sci Sin: Life Sci, 2020, 50: 633-649 (in Chinese with English abstract). | |
[32] | 简燕, 李小波, 王博, 赵静, 索海翠, 黄安平, 胡柏耿, 曹春梅, 张勇飞. 马铃薯实质派生品种鉴定的基因组学技术. 中国马铃薯, 2020, 34: 321-328. |
Jian Y, Li X B, Wang B, Zhao J, Suo H C, Huang A P, Hu B G, Cao C M, Zhang Y F. Genomics technique for detection of potato essentially derived variety. Chin Potato J, 2020, 34: 321-328 (in Chinese with English abstract). | |
[33] |
田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maizeSNP384标记筛选与玉米杂交种DNA指纹图谱构建. 作物学报, 2020, 46: 1006-1015.
doi: 10.3724/SP.J.1006.2020.93048 |
Tian H L, Yang Y, Wang L, Wang R, Yi H M, Xu L W, Zhang Y L, Ge J R, Wang F G, Zhao J R. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties. Acta Agron Sin, 2020, 46: 1006-1015 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.93048 |
|
[34] |
Noli E, Teriaca M S, Conti S. Criteria for the definition of similarity thresholds for identifying essentially derived varieties. Plant Breed, 2013, 132: 525-531.
doi: 10.1111/pbr.12109 |
[1] | 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445. |
[2] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[3] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[4] | 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076. |
[5] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[6] | 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096. |
[7] | 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929. |
[8] | 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022. |
[9] | 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757. |
[10] | 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828. |
[11] | 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629. |
[12] | 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495. |
[13] | 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652. |
[14] | 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362. |
[15] | 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304. |
|