作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2863-2875.doi: 10.3724/SP.J.1006.2023.34025
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
李佳佳1(), 龙群1(), 朱尚尚1(), 单雅敬1, 吴美燕1, 鲁云1, 支现管1, 廖威1, 陈浩然1, 赵振邦3, 苗龙1, 高慧慧1, 李英慧2, 王晓波1,*(), 邱丽娟2,*()
LI Jia-Jia1(), LONG Qun1(), ZHU Shang-Shang1(), SHAN Ya-Jing1, WU Mei-Yan1, LU Yun1, ZHI Xian-Guan1, LIAO Wei1, CHEN Hao-Ran1, ZHAO Zhen-Bang3, MIAO Long1, GAO Hui-Hui1, LI Ying-Hui2, WANG Xiao-Bo1,*(), QIU Li-Juan2,*()
摘要:
极端高温事件频增导致大豆生产接连遭受高温热害, 严重影响其产量构成和品质性状。种子在发芽阶段对外界环境变化较为敏感, 温度升高及伴随而来的干旱等现象会影响大豆种子出苗。建立一套科学的大豆芽期耐高温评价方法, 可以为早期耐高温鉴定、耐高温种质选育以及遗传机制研究提供理论基础。本研究以385份大豆种质资源为材料, 利用人工气候培养箱创造高温环境, 于芽期进行高温处理3 d (40℃, 8 h光照/16 h黑暗)。相较于对照(25℃, 8 h光照/16 h黑暗), 高温处理后大豆芽期下胚轴长显著下降10.9% (P<0.05); 根鲜重、根干重和根冠比等指标分别极显著增加了13.10%、22.20%和16.90% (P<0.01), 结果表明, 高温处理会显著影响大豆芽期地上部与地下部生物量的分布。对各性状耐高温系数进行主成分分析, 将11个指标转换成3个主成分因子, 进一步通过隶属函数标准化分析计算获得大豆响应高温胁迫综合评价值(H), 并基于H值对参试品种进行聚类分析。最终将385份种质资源芽期耐高温特性划分为5个等级, 即: I级(耐高温型)、II级(较耐高温型)、III级(中间型)、IV级(高温较敏感型)和V级(高温敏感型), 综合试验中具体表现, 筛选出4个芽期耐高温型大豆品种(H245、H070、H268和H216)。对各项指标逐步回归分析后, 建立大豆芽期耐高温综合评价(H值)预测模型: H = 0.191+0.017X1-0.007X2+0.013X7+0.027X8-0.009X10 (R2=0.9752), 筛选出下胚轴长(X1)、主根长(X2)、下胚轴干重(X7)、根鲜重(X8)和简化活力指数(X10) 5个指标可以作为大豆芽期耐高温评价指标。
[1] |
Li B, Tian L, Zhang J Y, Huang L, Han F X, Yan S R, Wang L Z, Zheng H K, Sun J M. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics, 2014, 15: 1086.
doi: 10.1186/1471-2164-15-1086 |
[2] |
Kurek I, Chang T K, Bertain S M. Enhanced thermostability of Arabidopsis rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell, 2007, 19: 3230-3241.
doi: 10.1105/tpc.107.054171 |
[3] | 骆倩雯. 35.1℃!北京今年首个高温日来临,比常年提前13天. 京报网, 2022 [2023-02-13], https://baijiahao.baidu.com/s?id=1734054271630784824&wfr=spider&for=pc. |
Luo Q W. 35.1℃!The first hot day in Beijing this year is coming,13 days ahead of normal. Tex: Beijing News Network, 2022 [2023-02-13], https://baijiahao.baidu.com/s?id=1734054271630784824&wfr=spider&for=pc. | |
[4] | 仵妮平. 高温胁迫对小麦产量及品质性状的影响. 石河子大学硕士学位论文, 新疆石河子, 2020. |
Wu N P. Effects of High Temperature Stress on Yield and Quality Characters of Wheat. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2020 (in Chinese with English abstract). | |
[5] |
王明, 吴辉, 孙小成, 蒋小军, 雷干农, 陶卫, 柏长青, 徐敏. 孕穗期高温对水稻生理特性和产量性状影响研究. 中国农学通报, 2022, 38(30): 1-5.
doi: 10.11924/j.issn.1000-6850.casb2021-1054 |
Wang M, Wu H, Sun X C, Jiang X J, Lei G N, Tao W, Bai C Q, Xu M. Effects of high temperature at booting stage on physiological characteristics and yield traits of rice. Chin Agric Sci Bull, 2022, 38 (30): 1-5 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2021-1054 |
|
[6] | 陈岩, 岳丽杰, 杨勤, 张会玲, 柯国华, 刘永红. 高温热害对玉米生长发育的影响及研究进展. 耕作与栽培, 2019, (1): 26-31. |
Chen Y, Yue L J, Yang Q, Zhang H L, Ke G H, Liu Y H. Effects of high temperature and heat damage on maize growth and development and research progress. Tillage Cult, 2019, (1): 26-31 (in Chinese with English abstract). | |
[7] | 李才媛, 彭春华, 赵勤炳, 谢萍, 谌伟. 武汉市2003年盛夏异常高温特征分析. 华中师范大学学报(自然科学版), 2004, 38: 379-382. |
Li C Y, Peng C Y, Zhao Q B, Xie P, Chen W. Characteristics of abnormal high temperature in mid-summer of 2003 in Wuhan. J Chin Central Norm Univ (Nat Sci Edn), 2004, 38: 379-382 (in Chinese with English abstract). | |
[8] |
Apraku B, Hunter R B, Tollenaar M. Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.). Can J Plant Sci, 1983, 63: 357-363.
doi: 10.4141/cjps83-040 |
[9] |
Jumrani K, Bhatia V S. Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiol Mol Biol Plant, 2018, 24: 37-50.
doi: 10.1007/s12298-017-0480-5 |
[10] | Demir I, Mavi K, Matthew S. Mean germination time of pepper seed lots (Capsicum annuum L.) predicts size and uniformity of seedling singer mination tests and transplant modules. Seed Sci Technol, 2008, 36: 2130. |
[11] | 卢琼琼, 宋新山, 严登华. 高温胁迫对大豆幼苗生理特性的影响. 河南师范大学学报(自然科学版), 2012, 40(1): 112-115. |
Lu Q Q, Song X S, Yan D H. Effects of high temperature stress on physiological characteristics of soybean seedlings. J Henan Norm Univ (Nat Sci Edn), 2012, 40(1): 112-115 (in Chinese with English abstract). | |
[12] |
Nadeem M, Li J J, Wang M H, Shah L, Lu S Q, Wang X B, Ma C X. Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy, 2018, 8: 128.
doi: 10.3390/agronomy8070128 |
[13] |
Vu L D, Xu X Y, Gevaert K, De S I. Developmental plasticity at high temperature. Plant Physiol, 2019, 81: 399-411.
doi: 10.1111/ppl.1991.81.issue-3 |
[14] | 靳路真. 大豆品种(系)耐热性鉴定及其生理机制研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2016. |
Jin L Z. Identification of Heat Tolerance and Physiological Mechanism of Soybean. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2016 (in Chinese with English abstract). | |
[15] | 莫先树. 花荚期热浪胁迫对大豆生长的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021. |
Mo X S. Effects of Heat Wave Stress on Soybean Growth in Flowering and Pod Stage. MS thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract). | |
[16] |
Kanchan J, Virender S B, Govind P P. Screening soybean genotypes for high temperature tolerance by in vitro pollen germination, pollen tube length, reproductive efficiency and seed yield. Indian J Plant Physiol, 2018, 23: 77-90.
doi: 10.1007/s40502-018-0360-1 |
[17] |
Liu Y H, Li J J, Zhu Y L. Heat stress in legume seed setting: effects, causes, and future prospects. Front Plant Sci, 2019, 10: 938.
doi: 10.3389/fpls.2019.00938 pmid: 31417579 |
[18] |
汪明华, 李佳佳, 陆少奇, 邵文韬, 程安东, 张文明, 王晓波, 邱丽娟. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定. 植物遗传资源学报, 2019, 20: 891-902.
doi: 10.13430/j.cnki.jpgr.20181027004 |
Wang M H, Li J J, Lu S Q, Shao W T, Cheng A D, Zhang W M, Wang X B, Qiu L J. Evaluation methods of high temperature tolerance of soybean varieties and screening and identification of high temperature tolerance germplasm. J Plant Genet Resour, 2019, 20: 891-902 (in Chinese with English abstract). | |
[19] |
Li J J, Nadeem M, Chen L Y, Wang M H, Wan M Y, Qiu L J, Wang X B. Differential proteomic analysis of soybean anthers by iTRAQ under high temperature stress. J Proteomics, 2020, 229: 103968.
doi: 10.1016/j.jprot.2020.103968 |
[20] | 牛远, 杨修艳, 戴存凤, 王博文, 任高磊, 吴静磊, 王飞兵, 陈新红. 大豆芽期和苗期耐盐性评价指标筛选. 大豆科学, 2018, 37: 215-223. |
Niu Y, Yang X Y, Dai C F, Wang B W, Ren G L, Wu J L, Wang F B, Chen X H. Screening of evaluation indexes of salt tolerance in soybean bud and seedling stage. Soybean Sci, 2018, 37: 215-223 (in Chinese with English abstract). | |
[21] |
彭智, 李龙, 柳玉平, 刘惠民, 景蕊莲. 小麦芽期和苗期耐盐性综合评价. 植物遗传资源学报, 2017, 18: 638-645.
doi: 10.13430/j.cnki.jpgr.2017.04.005 |
Peng Z, Li L, Liu Y P, Liu H M, Jing R L. Comprehensive evaluation of salt tolerance at bud and seedling stages of wheat. J Plant Genet Resour, 2017, 18: 638-645 (in Chinese with English abstract). | |
[22] | 王伟, 姜伟, 张金龙, 苗龙, 赵团结, 盖钧镒, 李艳. 大豆种质的耐旱性鉴定及耐旱指标筛选. 大豆科学, 2015, 34: 808-818. |
Wang W, Jiang W, Zhang J L, Miao L, Zhao T J, Gai J Y, Li Y. Identification of drought tolerance and screening of drought tolerance indexes of soybean germplasm. Soybean Sci, 2015, 34: 808-818 (in Chinese with English abstract). | |
[23] | 邵桂花, 李舒凡. 大豆芽期抗旱生理指标之探讨. 种子世界, 1990, (5): 22-23. |
Shao G H, Li S F. Study on physiological indexes of drought resistance in soybean sprout stage. Seed World, 1990, (5): 22-23 (in Chinese). | |
[24] | 靳路真, 王洋, 张伟, 邱红梅, 陈健, 候云龙, 马晓萍, 王跃强, 谢甫绨. 大豆品种(系)耐热性鉴定及分级评价. 中国油料作物学报, 2016, 38(1): 77-87. |
Jin L Z, Wang Y, Zhang W, Qiu H M, Chen J, Hou Y L, Ma X P, Wang Y Q, Xie F T. Identification and grading evaluation of heat resistance of soybean varieties (lines). Chin J Oil Crops, 2016, 38(1): 77-87 (in Chinese with English abstract). | |
[25] |
Cao Y Y, Zhao H. Protective roles of brassinolide on rice seedlings under high temperature stress. Rice Sci, 2008, 15: 63-68.
doi: 10.1016/S1672-6308(08)60021-9 |
[26] |
Djanaguiraman M, Prasad P V V, Boyle D L. Soybean pollen anatomy, viability and pod set under high temperature stress. J Agron Crop Sci, 2012, 199: 171-177.
doi: 10.1111/jac.12005 |
[27] |
Halvorsen H. The gas exchange of flax seeds in relation to temperature: I.Experiment with immature seeds and capsules. Physiol Plant, 2010, 8: 501-511.
doi: 10.1111/ppl.1955.8.issue-3 |
[28] | 郭小红, 韦清源, 汤复跃, 陈文杰, 梁江, 谢甫绨, 陈渊. 萌发期耐高温大豆种质资源筛选及耐热指标评价. 大豆科学, 2022, 41: 513-519. |
Guo X H, Wei Q Y, Tang F Y, Chen W J, Liang J, Xie F T, Chen Y. Screening of high temperature tolerance soybean germplasm resources and evaluation of heat tolerance indexes at germination stage. Soybean Sci, 2022, 41: 513-519 (in Chinese with English abstract). | |
[29] | 徐小万, 雷建军, 李颖, 王恒明, 徐晓美, 罗少波. 基于数学模型的辣椒芽期耐高温多湿性综合评价方法. 中国农业科技导报, 2013, 15(6): 174-180. |
Xu X W, Lei J J, Li Y, Wang H M, Xu X M, Luo S B. Comprehensive evaluation method of high temperature and humidity tolerance of pepper in bud stage based on mathematical model. Agric Sci Technol Rev, 2013, 15(6): 174-180 (in Chinese with English abstract). | |
[30] | 陈增举. 芥蓝耐热性鉴定及耐热材料筛选. 华南农业大学硕士学位论文, 广东广州, 2017. |
Chen Z J. Identification of Heat Resistance of Chinese Kale and Screening of Heat-resistant Materials. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2017 (in Chinese with English abstract). | |
[31] |
Ren C, Bilyeu K D, Beuselinck P R. Composition, vigor, and proteome of mature soybean seeds developed under high temperature. Crop Sci, 2009, 49: 1010-1022.
doi: 10.2135/cropsci2008.05.0247 |
[32] | Li S, Fu Q, Chen L, Huang W D, Yu D Q. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Plant, 2011, 233: 1237-1252. |
[33] |
Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143-1151.
doi: 10.1104/pp.006858 pmid: 12427981 |
[34] |
Larkindale J, Hall J D, Knight M R. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol, 2005, 138: 882-897.
doi: 10.1104/pp.105.062257 pmid: 15923322 |
[35] |
Mao L, Deng M, Jiang S. Characterization of the SIDREBA4-type transcription factor (SlDREBA4), which contributes to heat tolerance in tomatoes. Front Plant Sci, 2020, 11: 554520.
doi: 10.3389/fpls.2020.554520 |
[36] |
Zhang H, Zhao Y, Zhu J K. Thriving under stress: how plants balance growth and the stress response. Dev Cell, 2020, 55: 529-543.
doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694 |
[37] | 戴鸣凯. 高温胁迫对马铃薯幼苗生长和生理的影响及相关耐热基因分析. 福建农林大学硕士毕业论文,福建福州, 2018. |
Dai M K. Effects of High Temperature Stress on Growth and Physiology of Potato Seedlings and Analysis of Related Heat Tolerance Genes. MS Thesis of Fujian Agricultural and Forestey University, Fuzhou, Fujian, China, 2018 (in Chinese with English abstract). | |
[38] | 吴斌, 蒋秋玮, 顾婷婷, 赵梅, 柳李旺. 高温胁迫下不同耐热性萝卜幼苗生理响应分析. 中国蔬菜, 2010, (10): 25-28. |
Wu B, Jiang Q W, Gu T T, Zhao M, Liu L W. Physiological response of radish seedlings under high temperature stress. China Veget, 2010, (10): 25-28 (in Chinese with English abstract). | |
[39] | 李朝苏, 刘鹏, 蔡妙珍. 养麦对酸铝胁迫生理响应的研究. 水土保持学报, 2005, 19(3): 105-109. |
Li C S, Liu P, Cai M Z. Study on physiological response of wheat to aluminum acid stress. J Soil Water Conserv, 2005, 19(3): 105-109 (in Chinese with English abstract). | |
[40] | 胡承伟, 张学昆, 邹锡玲, 程勇, 曾柳, 陆光远. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35: 48-53. |
Hu C W, Zhang X K, Zou X L, Cheng Y, Zeng L, Lu G Y. Root characteristics and drought resistance of Brassica napus under PEG simulated drought stress. Chin J Oil Crops, 2013, 35(1): 48-53 (in Chinese with English abstract). | |
[41] | Hu D D, Li R F, Dong S T. Maize (Zea mays L.)responses to salt stress in terms of root anatomy, respiration and antioxidative enzyme activity. Plant Biol, 2022, 22: 602. |
[42] |
Zhang Y, Zhou Y Y, Liu C. Tuning drought resistance by using a root-specific expression transcription factor PdNF-YB21 in Arabidopsis thaliana. Plant Cell Tissue Organ Cult, 2021, 145: 379-391.
doi: 10.1007/s11240-021-02014-5 |
[43] |
Burko Y, Willige B C, Seluzicki A. PIF 7 is a master regulator of thermomorphogenesis in shade. Nat Commun, 2022, 13: 4942-4942.
doi: 10.1038/s41467-022-32585-6 |
[44] | 郭望模, 傅亚萍, 孙宗修. 水稻芽期和苗期耐盐指标的选择研究. 浙江农业科学, 2004, (1): 32-35. |
Guo W M, Fu Y P, Sun Z X. Selection of salt tolerance indexes in rice bud and seedling stage. Zhejiang Agric Sci, 2004, (1): 32-35 (in Chinese). | |
[45] |
李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47: 2927-2939.
doi: 10.3864/j.issn.0578-1752.2014.15.003 |
Li C H, Yao X D, Ju B T, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F T, Song S H. Analysis of shade tolerance of different genotypes of soybean and screening of identification indexes. Sci Agric Sin, 2014, 47: 2927-2939 (in Chinese with English abstract). | |
[46] | 李合生. 现代植物生理学(第2版). 北京: 高等教育出版社, 2007. pp 348-352. |
Li H S. Modern Plant Physiology, 2nd edn. Beijing: Higher Education Press, 2007. pp 348-352 (in Chinese). | |
[47] |
Ashraf M. Salt tolerance of cotton: some new advances. Crit Rev Plant Sci, 2002, 21: 1-30.
doi: 10.1080/0735-260291044160 |
[48] | 庞强强, 周曼, 孙晓东, 陈贻诵, 蔡兴来. 不同菜心品种萌发期和苗期耐热性分析及其鉴定指标筛选. 西北农业学报, 2020, 29(2): 295-305. |
Pang Q Q, Zhou M, Sun X D, Chen Y C, Cai X L. Heat resistance analysis and identification index screening of different cabbage heart varieties at germination and seedling stage. J Northwest Agric Sci, 2020, 29(2): 295-305 (in Chinese with English abstract). |
[1] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[2] | 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561. |
[3] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[4] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[5] | 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183. |
[6] | 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261. |
[7] | 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064. |
[8] | 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139. |
[9] | 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150. |
[10] | 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844. |
[11] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[12] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[13] | 李继军, 陈雅慧, 王艺瑾, 周志华, 郭子越, 张建, 涂金星, 姚璇, 郭亮. 甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选[J]. 作物学报, 2023, 49(12): 3162-3175. |
[14] | 牛志远, 秦超, 刘军, 王海泽, 李宏宇. 不同Cas9启动子对大豆CRISPR/Cas9系统效率的作用分析[J]. 作物学报, 2023, 49(12): 3227-3238. |
[15] | 张红梅, 熊雅文, 许文静, 张威, 王琼, 刘晓庆, 刘慧, 崔晓艳, 陈新, 陈华涛. 大豆R6期籽粒氨基酸含量的全基因组关联分析[J]. 作物学报, 2023, 49(12): 3277-3288. |
|