欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2935-2948.doi: 10.3724/SP.J.1006.2023.24276

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于BSA-seq方法挖掘大豆再生相关候选基因

赵宇晶1(), 张滨烁1, 苏安玉2, 于振海1, 李佳欢1, 林洋1, 张艳婷1, 武小霞1,*(), 赵莹1,*()   

  1. 1东北农业大学农学院, 黑龙江哈尔滨 150030
    2东北农业大学资环学院, 黑龙江哈尔滨 150030
  • 收稿日期:2022-12-12 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-12
  • 通讯作者: 武小霞, E-mail: xxwu2012@126.com; 赵莹, E-mail: tianshi198937@126.com
  • 作者简介:赵宇晶, E-mail: yujingzhao99@163.com第一联系人:

    **同等贡献

  • 基金资助:
    国家自然科学基金项目(31971899);国家自然科学基金项目(32272093);国家重点研发计划项目(2021YFD120160204);国家重点研发计划项目(2021YFD12011040202);黑龙江省自然科学基金项目(TD2022C003);黑龙江省自然科学基金项目(JJ2022YX0475)

Mining candidate genes related to soybean regeneration based on BSA-seq method

ZHAO Yu-Jing1(), ZHANG Bin-Shuo1, SU An-Yu2, YU Zhen-Hai1, LI Jia-Huan1, LIN Yang1, ZHANG Yan-Ting1, WU Xiao-Xia1,*(), ZHAO Ying1,*()   

  1. 1College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2022-12-12 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-12
  • About author:First author contact:

    **Contributed equally to this study

  • Supported by:
    National Natural Science Foundation of China(31971899);National Natural Science Foundation of China(32272093);National Key Research and Development Program of China(2021YFD120160204);National Key Research and Development Program of China(2021YFD12011040202);Heilongjiang Natural Science Foundation(TD2022C003);Heilongjiang Natural Science Foundation(JJ2022YX0475)

摘要:

转基因生物育种技术可以定向改良大豆品种, 为大豆定向育种提供一种新思路。为寻找与大豆再生相关的基因, 探索大豆再生规律、提高遗传转化效率, 本研究利用再生能力强材料东农50、再生能力弱材料Keburi及其子代RIL群体的200份材料进行大豆器官发生试验, 比较不同基因型之间再生能力的差异, 筛选出极端材料各20份, 后通过BSA-seq (bulked segregant analysis sequencing)技术对大豆再生候选基因进行初步定位, 共获得88.04 G的clean data, 平均测序深度为20.03×, 定位到2 Mb区间, 利用GO等数据库对区间内基因进行富集分析, 差异表达基因主要富集在纤维素微纤维组织、植物型细胞壁组织或生物发生等20个条目中, 其中被显著富集的植物型细胞壁组织或生物发生条目中共有6个基因, 对6个基因进行组织表达量分析, 在丛生芽伸长期间表达水平较高, 说明其在大豆再生过程中发挥作用, 可能为影响大豆再生的关键基因。本研究为大豆再生机制研究提供了重要的候选基因信息与必要的材料基础。

关键词: 大豆, 再生, 器官发生, BSA-seq

Abstract:

Transgenic breeding technology can improve soybean directionally, and provide a new idea for improving soybean yield. In order to search for the genes related to soybean regeneration, explore the rules of soybean regeneration, and improve the efficiency of genetic transformation, we conducted soybean organogenesis experiment with 200 materials including DN50 (a material with strong regeneration ability), Keburi (a material with weak regeneration ability), and RILs of its offspring with strong regeneration ability. Compared the differences in regeneration ability between different genotypes, 20 extreme materials each were screened. Preliminary localization of soybean regeneration candidate genes by BSA-seq (bulked segregant analysis sequencing) technology, 88.04 G clean data were obtained in the 2 Mb interval with an average sequencing depth of 20.03 ×. The differentially expressed genes were mainly enriched in 20 items such as cellulose microfiber tissue, plant type cell wall tissue, or biogenesis, among which there were 6 genes in plant type cell wall tissue or biogenesis item significantly enriched. The tissue expression analysis of 6 genes showed that the relative expression level was high during cluster bud elongation, which indicating that it played a role in the process of soybean regeneration and might be the key gene affecting soybean regeneration. This study provides the basic materials for breeding new regenerated soybean varieties, and confirms the feasibility of BSA-seq technology in mining regenerated genes.

Key words: soybean, regeneration, organogenesis, BSA-seq

图1

器官发生试验流程图 A: 萌发; B、C: 诱导丛生芽; D: 丛生芽伸长; E、F: 生根培养。"

图2

DN50和Keburi各个时期生长情况 A、D: 丛生芽诱导; B、E: 丛生芽伸长; C、F: 生根情况。标尺为1 cm。"

图3

显微镜下DN50和Keburi丛生芽生长情况 红色三角形标注点处均为丛生芽。"

图4

父母本再生指标对比 RP: 再生潜力; RA: 再生能力; RE: 再生效率; RR: 再生率。P值由假设方差相等的双尾t检验, **P < 0.01, *P < 0.05。"

图5

极端材料各个时期生长情况 a: 强再生材料; b: 弱再生材料。A、D: 丛生芽诱导; B、E: 丛生芽伸长; C、F: 生根情况。标尺为1 cm。"

图6

显微镜下极端材料丛生芽生长情况 A: 再生好材料; B: 再生差材料。红色三角形标注点处均为丛生芽。"

图7

子代材料数据统计 A: 再生潜力统计; B: 再生能力统计; C: 再生效率统计; D: 再生率统计。"

表1

主成分特征值及贡献率"

性状
Trait
主成分Comprehensive index
F1 F2
再生潜力Regeneration potential -0.07 0.99
再生能力Regeneration ability 0.57 -0.10
再生效率Regeneration efficiency 0.58 0.08
再生率Regeneration rate 0.58 0.03
特征值Eigen values 2.81 1.02
贡献率Contributive ratio (%) 70.15 25.42
累计贡献率Cumulative contributive ratio (%) 70.15 95.57

表2

极端材料的主成分值、隶属函数值、D值"

株系
Strain line
主成分
Comprehensive index
隶属函数
Membership function
D
D-value
综合评价
Comprehensive valuation
F1 F2 F1* F2*
Z14 9.05 -0.34 1.00 0.36 6.55 强再生Strong regenerative ability
Z6 7.22 2.47 0.82 0.95 5.95 强再生Strong regenerative ability
Z1 6.22 -0.6 0.72 0.30 4.41 强再生Strong regenerative ability
Z142 5.51 -0.58 0.65 0.31 3.88 强再生Strong regenerative ability
Z20 5.02 -0.14 0.60 0.40 3.65 强再生Strong regenerative ability
Z77 4.10 2.32 0.51 0.92 3.63 强再生Strong regenerative ability
Z168 4.33 0.76 0.53 0.59 3.38 强再生Strong regenerative ability
Z2 5.22 -1.75 0.62 0.06 3.36 强再生Strong regenerative ability
Z35 5.07 -1.53 0.61 0.11 3.32 强再生Strong regenerative ability
Z98 4.38 0.08 0.54 0.45 3.24 强再生Strong regenerative ability
Z16 4.04 -0.94 0.50 0.23 2.72 强再生Strong regenerative ability
Z3 3.69 -0.01 0.47 0.43 2.70 强再生Strong regenerative ability
Z155 3.56 0.11 0.46 0.45 2.64 强再生Strong regenerative ability
Z53 3.25 0.49 0.42 0.53 2.52 强再生Strong regenerative ability
Z30 3.12 0.71 0.41 0.58 2.48 强再生Strong regenerative ability
Z184 2.36 1.84 0.34 0.82 2.22 强再生Strong regenerative ability
Z176 2.93 0.10 0.39 0.45 2.18 强再生Strong regenerative ability
Z4 3.12 -0.80 0.41 0.26 2.08 强再生Strong regenerative ability
Z52 2.49 0.26 0.35 0.49 1.90 强再生Strong regenerative ability
Z149 2.37 0.53 0.34 0.54 1.88 强再生Strong regenerative ability
Z39 -0.71 -1.88 0.03 0.03 -1.03 弱再生Weak regenerative ability
Z153 -0.71 -1.88 0.03 0.03 -1.03 弱再生Weak regenerative ability
Z180 -0.71 -1.88 0.03 0.03 -1.03 弱再生Weak regenerative ability
Z152 -0.73 -1.63 0.03 0.08 -0.97 弱再生Weak regenerative ability
Z95 -0.74 -1.47 0.03 0.12 -0.94 弱再生Weak regenerative ability
Z161 -0.74 -1.47 0.03 0.12 -0.94 弱再生Weak regenerative ability
Z165 -0.74 -1.47 0.03 0.12 -0.94 弱再生Weak regenerative ability
Z193 -0.74 -1.47 0.03 0.12 -0.94 弱再生Weak regenerative ability
Z44 -0.76 -1.22 0.03 0.17 -0.88 弱再生Weak regenerative ability
Z84 -0.76 -1.22 0.03 0.17 -0.88 弱再生Weak regenerative ability
Z147 -0.76 -1.22 0.03 0.17 -0.88 弱再生Weak regenerative ability
Z197 -0.77 -1.14 0.03 0.19 -0.87 弱再生Weak regenerative ability
Z25 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z62 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z96 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z108 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z111 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z120 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z127 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z129 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability

附表1

4个样本测序比对结果"

样本
Sample
原始
序列数
Raw reads
原始碱基数
Raw bases
过滤后
序列数
Clean reads
过滤后
碱基数
Cleans bases
GC含量
Clean_GC_Rate%
Clean Q30% 平均
测序深度
Average depth
基因组
覆盖率
genome coverage (1X)
基因组
覆盖率
genome coverage (5X)
DN50 150971394 22796680494 148291154 22248395146 35.0791 89.6463 20.25 95.57 93.65
Keburi 145486518 21968464218 143073908 21437801507 35.8134 88.8524 19.87 95.76 93.87
高池Highly pool 151202346 22831554246 147403650 22105336093 35.173 89.5264 19.79 96.75 95.01
低池Lowly pool 151325210 22850106710 148367314 22245451907 35.4202 90.2708 20.22 96.73 94.96

图8

ED关联值在染色体上的分布 横坐标为染色体名称, 彩色的点代表每个SNP位点的ED值, 黑色的线为拟合后的ED值, 红色的虚线代表显著性关联阈值, ED值越高, 代表该点关联效果越好。"

表3

关联分析基因区域内信息统计"

染色体号
Chromosome ID
起始位置
Start position
终止位置
End position
区间距离
Size (Mb)
基因数目
Number of genes
Chr. 18 54560000 55560000 1 185
Chr. 18 55910000 56910000 1 194
总计Total 2 379

图9

候选区域内基因GO注释聚类图"

附表2

候选基因注释"

基因号
Gene ID
NCBI登录号
RefSeq ID
物理位置Physical position
(bp)
拟南芥同源基因Arabidopsis homologous gene CDS
长度
CDS length (bp)
氨基酸
长度
ORF (aa)
分子量
大小
Molecular weight
(kD)
pI 亚细胞定位预测Subcellular localization prediction 基因注释
Gene function prediction
Glyma.18G260900 XM_003552487.5 Gm18:54674591-54677015 AT3G29030 798 266 29.1 9.51 细胞壁
Cell wall
Pollen allergen (Pollen_allerg_1)
Glyma.18G265400 XM_041012184.1 Gm18: 55017312-55018922 AT5G39280 687 229 25.26 8.66 细胞壁
Cell wall
EXPANSIN-A21-RELATED
Glyma.18G271900 XM_014770962.3 Gm18: 55493601-55497764 AT5G60920 1263 421 47.06 9.64 细胞膜
Cell membrane
COBRA-LIKE EXTRACELLULAR GLYCOSYL-PHOSPHATIDYL INOSITOL-ANCHORED FAMILY PROTEIN-RELATED
Glyma.18G272000 XM_003552552.4 Gm18: 55503155-55508039 AT5G60920 1347 449 49.87 8.9 细胞膜
Cell membrane
COBRA-like protein (COBRA)
Glyma.18G272100 NM_001255848.2 Gm18: 55506268-55509726 AT5G15630 1296 432 48.44 9 细胞膜
Cell membrane
COBRA-LIKE PROTEIN 4
Glyma.18G272200 XM_003552554.5 Gm18: 55515800-55518328 AT3G02230 1062 354 40.12 5.61 高尔基体
Golgi apparatus
UDP-ARABINOPYRANOSE MUTASE 1-RELATED

图10

候选基因在不同时期不同材料中的表达量 I-0为SIM-0; I-14为SIM-14; E-3为SEM-3; E-5为SEM-5; E-7为SEM-7; E-14为SEM-14。*和**分别在0.05和0.01概率水平差异显著。"

[1] Cheng T Y, Saka H, Voqui-dinh T H. Plant regeneration from soybean cotyledonary node segments in culture. Plant Sci Lett, 1980, 19: 91-99.
doi: 10.1016/0304-4211(80)90084-X
[2] Wright M S, Ward D V, Hinchee M A, Carnes M G, Kaufman R J. Regeneration of soybean (Glycine max L. Merr.) from cultured primary leaf tissue. Plant Cell Rep, 1987, 6: 83-89.
doi: 10.1007/BF00276659 pmid: 24248483
[3] Barwale U B, Kerns H R, Widholm J M. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta, 1986, 167: 473-481.
doi: 10.1007/BF00391223 pmid: 24240363
[4] Kim J, Lamotte C E, Hack E. Plant regeneration in vitro from primary leaf nodes of soybean (Glycine max) seedlings. J Plant Physiol, 1990, 136: 664-669.
doi: 10.1016/S0176-1617(11)81341-6
[5] 武小霞, 孙晶, 苏安玉, 李静, 刘明, 张彬彬, 李冬梅, 李文滨. 大豆再生抑制消减杂交文库的构建. 东北农业大学学报, 2014, 45(7): 38-44.
Wu X X, Sun J, Su A Y, Li J, Liu M, Zhang B B, Li D M, Li W B. Soybean regeneration inhibits the construction of a subtractive hybrid library. J Northeast Agric Univ, 2014, 45(7): 38-44 (in Chinese with English abstract).
[6] Kartha K K, Pahl K P, Leung N L, Mroginski L A J B. Plant regeneration from meristems of grain legumes: soybean, cowpea, peanut, chickpea, and bean. Botany, 1981, 59: 1671-1679.
[7] Paz M M, Martinez J C, Kalvig A B, Fonger T M, Wang K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep, 2006, 25: 206-213.
doi: 10.1007/s00299-005-0048-7
[8] 王怡婷, 赵莹, 李思琪, 于耸, 郑志民. 大豆U6启动子(YT9)在CRISPR/Cas9基因组编辑体系中的功能分析. 分子植物育种, 2023, 21: 1189-1195.
Wang Y T, Zhao Y, Li S Q, Yu S, Zheng Z M. Functional analysis of the soybean U6 promoter (YT9) in CRISPR/Cas9 genome editing systems. Mol Plant Breed, 2023, 21: 1189-1195 (in Chinese with English abstract).
[9] Li S, Cong Y, Liu Y, Wang T, Shuai Q, Chen N, Gai J, Li Y. Optimization of agrobacterium-mediated transformation in soybean. Front Plant Sci, 2017, 8: 246.
[10] Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999, 283: 1911-1914.
doi: 10.1126/science.283.5409.1911 pmid: 10082464
[11] Long J A, Moan E I, Medford J I, Barton M K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996, 379: 66-69.
doi: 10.1038/379066a0
[12] Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10: 967-979.
doi: 10.1046/j.1365-313x.1996.10060967.x pmid: 9011081
[13] Zuo J, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349-359.
doi: 10.1046/j.1365-313X.2002.01289.x
[14] Leibfried A, To J P, Busch W, Stehling S, Kehle A, Demar M, Kieber J J, Lohmann J U. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 2005, 438: 1172-1175.
doi: 10.1038/nature04270
[15] Mayer K F, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95: 805-815.
doi: 10.1016/s0092-8674(00)81703-1 pmid: 9865698
[16] Su Y H, Zhou C, Li Y J, Yu Y, Tang L P, Zhang W J, Yao W J, Huang R, Laux T, Zhang X S. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2020, 117: 22561-22571.
doi: 10.1073/pnas.2015248117
[17] Matsuo N, Makino M, Banno H. Arabidopsis ENHANCER OF SHOOT REGENERATION (ESR)1 and ESR2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Sci, 2011, 181: 39-46.
doi: 10.1016/j.plantsci.2011.03.007 pmid: 21600396
[18] Banno H, Ikeda Y, Niu Q W, Chua N H. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell, 2001 13: 2609-2618.
[19] 蔡英卿. 龙眼体胚发生过程中SERK等胚性相关基因的克隆与表达分析. 福建农林大学博士学位论文,福建福州, 2011.
Cai Y Q. Cloning and Expression Analysis of Embryonic Genes Such as SERK during Longan Embryogenesis. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2011 (in Chinese with English abstract).
[20] Lutz K A, Martin C, Khairzada S, Maliga P. Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Rep, 2015, 34: 1849-1856.
doi: 10.1007/s00299-015-1832-7
[21] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848-857.
doi: 10.1104/pp.17.00232 pmid: 28830937
[22] Li S N, Cheng P, Bai Y Q, Shi Y, Yu J Y, Li R C, Zhou R N, Zhang Z G, Wu X X, Chen Q S. Analysis of soybean somatic embryogenesis using chromosome segment substitution lines and transcriptome sequencing. Genes (Basel), 2019, 10: 943.
doi: 10.3390/genes10110943
[23] 曾维英, 苏燕竹, 赖振光, 杨守臻, 陈怀珠, 谭玉荣, 孙祖东, 盖钧镒. 基于BSA-Seq技术鉴定大豆耐荫性状相关候选基因. 中国油料作物学报, 2021, 43: 1006-1015.
Zeng W Y, Su Y Z, Lai Z G, Yang S Z, Chen H Z, Tan Y R, Sun Z D, Gai J Y. Identification of candidate gene controlling shade- tolerant by BSA-Seq in soybean. Chin J Oil Crop Sci, 2021, 43: 1006-1015 (in Chinese with English abstract).
[24] 张之昊, 王俊, 刘章雄, 邱丽娟. 基于BSA-Seq技术挖掘大豆中黄622的多小叶基因. 作物学报, 2020, 46: 1839-1849.
doi: 10.3724/SP.J.1006.2020.04075
Zhang Z H, Wang J, Liu Z X, Qiu L J. Mapping of an incomplete dominant gene controlling multifoliolate leaf by BSA-seq in soybean (Glycine max L.). Acta Agron Sin, 2020, 46: 1839-1849 (in Chinese with English abstract).
[25] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位. 作物学报, 2023, 49: 1006-1015.
doi: 10.3724/SP.J.1006.2023.24055
Yan X, Xiang C, Liu R, Li G, Li M W, Li Z L, Zong X X, Yang T, Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique. Acta Agron Sin, 2023, 49: 1006-1015 (in Chinese with English abstract).
[26] Zhong C, Sun S, Li Y, Duan C, Zhu Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theor Appl Genet, 2018, 131: 525-538.
doi: 10.1007/s00122-017-3016-z pmid: 29138903
[27] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因. 作物学报, 2021, 47: 1460-1471.
doi: 10.3724/SP.J.1006.2021.04195
Zeng W Y, Lai Z G, Sun Z D, Yang S Z, Chen H Z, Tang X M. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq. Acta Agron Sin, 2021, 47: 1460-1471 (in Chinese with English abstract).
[28] 李毅丰. 番茄节间长度主效基因定位及候选基因生物信息学分析. 河北科技师范学院硕士学位论文,河北秦皇岛, 2022.
Li Y F. Mapping of Major Genes and Bioinformatics Analysis of Candidate Genes in Tomato Internode Length. MS Thesis of Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China, 2022 (in Chinese with English abstract).
[29] 蒋家焕, 朱永生, 陈丽萍, 郑燕梅, 蔡秋华, 谢华安, 王爱荣, 张建福. 利用BSA-Seq方法定位一个水稻早衰相关基因OsBRCA1. 福建农业学报, 2022, 37(2): 131-137.
Jiang J H, Zhu Y S, Chen L P, Zheng Y M, Cai Q H, Xie A H, Wang A R, Zhang J F. Mapping of early senescence-related OsBRCA1 in rice by BSA-seq technique. Fujian J Agric Sci, 2022, 37(2): 131-137 (in Chinese with English abstract).
[30] 王雪彬, 张健, 韦燕燕, 罗继景, 梁云涛, 蔡中全. 基于BSA-seq的水稻耐陈化QTL定位分析. 分子植物育种, 2021. 2021-11-05. https://kns.cnki.net/kcms/detail/46.1068.S.20211104.1822.015.html.
Wang X B, Zhang J, Wei Y Y, Luo J J, Liang Y T, Cai Z Q. QTLs Mapping on rice grain aging tolerance based on BSA-seq. Mol Plant Breed, 2021. 2021-11-05. https://kns.cnki.net/kcms/detail/46.1068.S.20211104.1822.015.html (in Chinese with English abstract).
[31] 周雨晴, 郭宇玲, 伊然, 陈壁融, 杨羽清, 潘玉朋. 基于BSA-Seq的黄瓜重要园艺性状遗传定位研究进展. 分子植物育种, 2022. 2022-07-05. https://kns.cnki.net/kcms/detail/46.1068.S.20220704.0904.002.html.
Zhou Y Q, Guo Y L, Yi R, Chen B R, Yang Y Q, Pan Y P. Research progress on genetic mapping of cucumber important horticultural traits based on BSA-Seq. Mol Plant Breed, 2022. 2022-07-05. https://kns.cnki.net/kcms/detail/46.1068.S.20220704.0904.002.html (in Chinese with English abstract).
[32] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[33] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[34] Omatsuda T, Ohyama K. Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean Glycine max. Theor Appl Genet, 2004 75: 695-700.
[35] 曹劲宏, 牟少萌, 何雪, 赵波, 杨凯, 李奕松, 李玮瑜, 万平. 不同基因型小豆胚尖再生能力筛选和培养条件优化. 分子植物育种, 2015, 13: 106-118.
Cao J H, Mou S M, He X, Zhao B, Yang K, Li Y S, Li W Y, Wan P. Screening on regeneration capacity of embryonic tip from different genotypes of adzuki bean (Vigna angularis) and optimizing on culture condition. Mol Plant Breed, 2015 13: 106-118 (in Chinese with English abstract).
[36] 武小霞, 李静, 姜成涛, 刘伟婷, 刘淼, 李文滨. 大豆子叶节再生中植物生长调节剂浓度及基因型筛选. 中国油料作物学报, 2011, 33: 123-129.
Wu X X, Li J, Jiang C T, Liu W T, Liu M, Li W B. Optimization of regeneration system from soybean cotyledonary node. Chin J Oil Crop Sci, 2011, 33: 123-129 (in Chinese with English abstract).
[37] 滕卫丽, 郑立娜, 张琦, 赵雪, 韩英鹏, 李文滨. 大豆再生相关性状QTL定位. 东北农业大学学报, 2021, 52(4): 1-10.
Teng W L, Zheng L N, Zhang Q, Zhao X, Han Y P, Li W B. QTL mapping of traits correlated with regeneration in soybean. J Northeast Agric Univ, 2021, 52(4): 1-10 (in Chinese with English abstract).
[38] 李换丽, 王丹, 张树伟, 雷佳, 吴霞, 王新胜, 马燕斌. 山西不同大豆品种再生体系的筛选. 山西农业科学, 2020, 48(2): 161-166.
Li H L, Wang D, Zhang S W, Lei J, Wu X, Wang X S, Ma Y B. Selection of soybean regeneration system with different verieties in Shanxi. J Shanxi Agric Sci, 2020, 48(2): 161-166 (in Chinese with English abstract).
[39] Roudier F O, Fernandez A G, Fujita M, Himmelspach R, Borner G H H, Schindelman G, Song S, Baskin T I, Dupree P, Wasteneys G O, Benfey P N. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell, 2005, 17: 1749-1763.
doi: 10.1105/tpc.105.031732
[40] Ko J H, Kim J H, Jayanty S S, Howe G A, Han K H. Loss of function of COBRA, a determinant of oriented cell expansion, invokes cellular defence responses in Arabidopsis thaliana. J Exp Bot, 2006, 57: 2923-2936.
doi: 10.1093/jxb/erl052
[41] Sindhu A, Langewisch T, Olek A, Multani D S, McCann M C, Vermerris W, Carpita N C, Johal G. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol, 2007, 145: 1444-1459.
doi: 10.1104/pp.107.102582 pmid: 17932309
[42] Zhang W, Yan H, Chen W, Liu J, Jiang C, Jiang H, Zhu S, Cheng B. Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol Genet Genomics, 2014, 289: 1061-1074.
doi: 10.1007/s00438-014-0867-8 pmid: 25213600
[43] Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep, 2016, 35: 949-965.
doi: 10.1007/s00299-016-1948-4 pmid: 26888755
[44] Fleming A J, McQueen-mason S J, Mandel T, Kuhlemeier C J S. Induction of leaf primordia by the cell wall protein expansin. Science, 1997, 276: 1415-1418.
doi: 10.1126/science.276.5317.1415
[45] Zavaliev R, Sagi G, Gera A, Epel B L. The constitutive expression of Arabidopsis plasmodesmal-associated class 1 reversibly glycosylated polypeptide impairs plant development and virus spread. J Exp Bot, 2009, 61: 131-142.
doi: 10.1093/jxb/erp301
[46] Gallardo K, Le Signor C, Vandekerckhove J, Thompson R D, Burstin J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol, 2003, 133: 664-682.
pmid: 12972662
[47] Sumiyoshi M, Inamura T, Nakamura A, Aohara T, Ishii T, Satoh S, Iwai H. UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa). Plant Cell Physiol, 2014, 56: 232-241.
doi: 10.1093/pcp/pcu132
[1] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[2] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[3] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[4] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015.
[5] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[6] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[7] 吴冬青, 李洲, 郭春林, 邹京南, 庞孜钦, 林非凡, 何海斌, 林文雄. 再生季稻与同期抽穗主季稻干物质分配特性及机制研究[J]. 作物学报, 2023, 49(3): 755-771.
[8] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[9] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[10] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[11] 牛志远, 秦超, 刘军, 王海泽, 李宏宇. 不同Cas9启动子对大豆CRISPR/Cas9系统效率的作用分析[J]. 作物学报, 2023, 49(12): 3227-3238.
[12] 张红梅, 熊雅文, 许文静, 张威, 王琼, 刘晓庆, 刘慧, 崔晓艳, 陈新, 陈华涛. 大豆R6期籽粒氨基酸含量的全基因组关联分析[J]. 作物学报, 2023, 49(12): 3277-3288.
[13] 李佳佳, 龙群, 朱尚尚, 单雅敬, 吴美燕, 鲁云, 支现管, 廖威, 陈浩然, 赵振邦, 苗龙, 高慧慧, 李英慧, 王晓波, 邱丽娟. 大豆芽期耐高温评价方法构建及耐高温种质资源筛选[J]. 作物学报, 2023, 49(11): 2863-2875.
[14] 高超, 陈平, 杜青, 付智丹, 罗凯, 林萍, 李易玲, 刘姗姗, 雍太文, 杨文钰. 播期、密度对带状间作大豆茎叶生长及产量形成的影响[J]. 作物学报, 2023, 49(11): 3090-3099.
[15] 杨豪, 向仕华, 刘丽, 宁可君, 杨雪, 舒英杰, 何庆元. 川渝大豆生育期性状的全基因组关联分析[J]. 作物学报, 2023, 49(10): 2727-2737.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .