欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2654-2664.doi: 10.3724/SP.J.1006.2023.24280

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定

沈庆庆1(), 王天菊2, 王俊刚3, 张树珍3, 赵雪婷1, 何丽莲1(), 李富生1,4()   

  1. 1云南农业大学农学与生物技术学院, 云南昆明 650201
    2楚雄师范学院资源环境与化学学院, 云南楚雄 675000
    3中国热带农业科学院热带生物技术研究所, 海南海口 571101
    4云南农业大学云南省作物生产与智慧农业重点实验室, 云南昆明 650201
  • 收稿日期:2022-12-20 接受日期:2023-04-17 出版日期:2023-10-12 网络出版日期:2023-04-26
  • 通讯作者: 李富生, E-mail: lfs810@sina.com; 何丽莲, E-mail: helilian905@sohu.com
  • 作者简介:E-mail: wsqq2022@163.com
  • 基金资助:
    国家自然科学基金项目(31960451);国家重点研发计划项目(2018YFD1000503);云南省作物生产与智慧农业重点实验室专项(202105AG070007);云南省重大科技专项(202202AE090021);云南省教育厅科学研究基金项目(2020Y203)

Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane

SHEN Qing-Qing1(), WANG Tian-Ju2, WANG Jun-Gang3, ZHANG Shu-Zhen3, ZHAO Xue-Ting1, HE Li-Lian1(), LI Fu-Sheng1,4()   

  1. 1College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, Yunnan, China
    3Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
    4Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2022-12-20 Accepted:2023-04-17 Published:2023-10-12 Published online:2023-04-26
  • Contact: E-mail: lfs810@sina.com; E-mail: helilian905@sohu.com
  • Supported by:
    National Natural Science Foundation of China(31960451);National Key Research and Development Program of China(2018YFD1000503);Special Projects of the Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province(202105AG070007);Major Science and Technology Projects in Yunnan Province(202202AE090021);Scientific Research Fund Project of Department of Education Yunnan Province(2020Y203)

摘要:

SsWRKY1是甘蔗属野生种割手密WRKY家族成员基因, 开展SsWRKY1基因的功能分析, 为研究SsWRKY1参与干旱调控的分子机制提供有价值的信息。本研究利用农杆菌介导转化技术获得SsWRKY1过表达株系和RNAi干扰株系, PEG干旱胁迫处理发现过表达株系受干旱胁迫伤害程度明显轻于非转基因植株, 而干扰表达株系则表现严重的干旱胁迫伤害; 过表达株系脯氨酸(Pro)含量显著增加, 丙二醛(MDA)含量显著下降, 超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等抗氧化酶活性出现不同程度的提高, 且胁迫响应基因MAPK级联信号传递基因MAPK、ABA生物合成基因NCED、脯氨酸生物合成基因P5CS、以及ROS清除系统基因SODPODCAT的表达水平明显升高, 说明过表达SsWRKY1能够提高甘蔗应对干旱胁迫的能力。本研究表明, SsWRKY1基因通过激活抗氧化系统和调节胁迫响应基因的方式增强了甘蔗对干旱的抗性, 可作为甘蔗抗性遗传改良的重要基因资源。

关键词: WRKY转录因子, 转基因甘蔗, 抗旱性, 功能鉴定

Abstract:

SsWRKY1 is a member gene of the WRKY family in Saccharum spontaneum. The functional analysis provides valuable information for studying the molecular mechanism of SsWRKY1 involved in drought regulation. In this study, SsWRKY1 overexpression lines and RNAi interference expression lines were obtained by Agrobacterium-mediated transformation technology. The results showed that overexpression lines were significantly less damaged by drought stress than non-transgenic plants, while the interference expression lines showed severe drought stress damage with PEG to simulate drought stress. The content of proline in the overexpression lines increased significantly, the content of malondialdehyde decreased significantly, and the activities of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase increased to varying degrees. The relative expression levels of MAPK Cascade signal transduction gene MAPK, ABA biosynthesis gene NCED, proline biosynthesis gene P5CS, ROS scavenging system gene SOD, POD, and CAT were significantly increased, indicating that SsWRKY1 overexpression could improve the ability of sugarcane to cope with drought stress. In conclusion, SsWRKY1 enhanced the drought resistance of sugarcane by activating the antioxidant system and regulating stress response genes and could be used as an important gene resource for genetic improvement of sugarcane resistance.

Key words: WRKY transcription factors, transgenic sugarcane, drought tolerance, functional identification

图1

SsWRKY1过表达和RNAi干扰表达载体图谱 A: SsWRKY1过表达载体。B: SsWRKY1 RNAi干扰表达载体。"

表1

胁迫响应基因qRT-PCR分析的引物"

引物名称
Primer name
引物序列
Primer sequences (5'-3')
SOD-F
SOD-R
GTGAAGGCTGTTGCTGTGCTT
CGGTTCTCATCTTCTGGTGCT
POD-F
POD-R
AATCGGAGAAGTCCTCGTCCCATAG
TTCTACCACAACAACCTCGCCAAG
CAT-F
CAT-R
CATCCCACTCAACTACAGGCACATG
TCACACCACAAGTAGGCTTCCAATG
P5CS-F
P5CS-R
TTTGGATTGGGTGCTGAGGTTGG
ATCCTTGTCACCGTTCACCACTTG
MAPK-F
MAPK-R
GGTCTTCCTCTCCTCCGTCGTC
TCCTCCGCTCATCGTCTTCTTCC
NCED-F
NCED-R
CTTCCACGGCACCTTCATCACTG
GGCTCCTCTGTTCCTCCTCCAAG

图2

SsWRKY1过表达和RNAi干扰表达载体分子检测 A: 过表达载体酶切鉴定。B: RNAi干扰表达载体菌液检测。"

图3

农杆菌介导的甘蔗遗传转化 A: 胚性愈伤组织。B: 愈伤组织开始分化成苗。C: Basta第1次抗性筛选。D: Basta第2次抗性筛选。E: 抗性植株的生根及炼苗。F: 转基因植株移栽。"

图4

SsWRKY1转基因甘蔗的分子检测 A: 目的基因PCR检测。M: DNA marker DL2000, +: 阳性对照, -: 阴性对照, 1~10: 转基因甘蔗。B: Bar基因试纸检测。-: 阴性对照, 1~5: 转基因甘蔗。C: 过表达株系中目的基因qRT-PCR检测, WT代表未转化甘蔗植株, OE4、OE5、OE8代表不同的过表达株系。D: 干扰表达株系中目的基因qRT-PCR检测, WT代表未转化甘蔗植株, R1、R2、R5代表不同的RNAi干扰表达株系。APRT基因的表达为内参, 差异显著性分析采用t测验方法, *P < 0.05、**P < 0.01。"

图5

SsWRKY1过表达株系的抗旱性鉴定 A: 干旱胁迫条件下过表达株系的表型变化, WT代表未转化甘蔗植株, OE4、OE5、OE8代表不同的过表达株系。差异显著性分析采用t测验方法, *P < 0.05、**P < 0.01。"

图6

SsWRKY1干涉表达株系的抗旱性鉴定 A: 干旱胁迫条件下干涉表达株系的表型变化, WT代表未转化甘蔗植株, R1、R2、R5代表不同的RNAi干扰表达株系。差异显著性分析采用t测验方法, *P < 0.05、**P < 0.01。"

图7

SsWRKY1过表达株系中干旱胁迫响应基因的表达谱分析 WT代表未转化甘蔗植株, OE4、OE5、OE8代表不同的过表达株系。差异显著性分析采用t测验方法, *P < 0.05、**P < 0.01。"

图8

SsWRKY1干扰表达株系中干旱胁迫响应基因的表达谱分析 WT代表未转化甘蔗植株, R1、R2、R5代表不同的RNAi干扰表达株系。差异显著性分析采用t测验方法, *P < 0.05、**P < 0.01。"

[1] Grivet L, Arruda P. Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol, 2002, 5: 122-127.
doi: 10.1016/s1369-5266(02)00234-0 pmid: 11856607
[2] Lam E, Shine J, Silva J D, Lawton M, Bonos S, Calvino M, Carrer H, Silva-Filho M C, Glynn N, Helsel Z. Improving sugarcane for biofuel: engineering for an even better feedstock. GCB Bioenergy, 2009, 3: 251-255.
[3] Zhang J, Arro J, Chen Y, Ming R. Haplotype analysis of sucrose synthase gene family in three Saccharum species. BMC Genomics, 2013, 14: 314.
doi: 10.1186/1471-2164-14-314
[4] Manoj V M, Anunanthini P, Swathik P C, Dharshini S, Ashwin Narayan J, Manickavasagam M, Sathishkumar R, Suresha G S, Hemaprabha G, Ram B, Appunu C. Comparative analysis of glyoxalase pathway genes in Erianthus arundinaceus and commercial sugarcane hybrid under salinity and drought conditions. BMC Genomics, 2019, 19: 986.
doi: 10.1186/s12864-018-5349-7
[5] 陈如凯, 张木清, 陆裔波. 干旱胁迫对甘蔗生理影响的研究. 甘蔗, 1995, 2(1): 1-6.
Chen R K, Zhang M Q, Lu Y B. Studies on the effect of water deficits on physiology in sugarcane (Saccharum officinarum L.). Sugarcane, 1995, 2(1): 1-6. (in Chinese with English abstract)
[6] Yang Z, Chi X, Guo F, Jin X, Luo H, Hawar A, Chen Y, Feng K, Wang B, Qi J, Yang Y, Sun B. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J Plant Physiol, 2020, 246/247: 153142.
doi: 10.1016/j.jplph.2020.153142
[7] Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L, Yahiaoui N, Healey A, Sims D, Cherukuri Y, Sreedasyam A, Kilian A, Chan A, Sluys M V, Swaminathan K, Town C, Bergès H, Simmons B, Glaszmann J C, Vossen E, Henry R, Schmutz J, D'Hont A. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun, 2018, 9: 2638.
doi: 10.1038/s41467-018-05051-5 pmid: 29980662
[8] Yang H, Wang T, Yu X, Yang Y, Wang C, Yang Q, Wang X. Enhanced sugar accumulation and regulated plant hormone signaling genes contribute to cold tolerance in hypoploid Saccharum spontaneum. BMC Genomics, 2020, 21: 507.
doi: 10.1186/s12864-020-06917-z
[9] D'Hont A, Grivet L, Feldmann P, Glaszmann J C, Rao S, Berding N. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet, 1996, 250: 405-413.
[10] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247-258.
doi: 10.1016/j.tplants.2010.02.006 pmid: 20304701
[11] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gene Genet, 1994, 244: 563-571.
[12] Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol, 2010, 10: 281.
doi: 10.1186/1471-2229-10-281 pmid: 21167067
[13] Song Y, Ai C R, Jing S J, Yu D Q. Research progress on function analysis of rice WRKY gene. Rice Sci, 2010, 17: 60-72.
doi: 10.1016/S1672-6308(08)60105-5
[14] 王瑞, 吴华玲, 王会芳, 黄珂, 霍春艳, 倪中福, 孙其信. 小麦TaWRKY44基因的克隆、表达分析及功能鉴定. 作物学报, 2013, 39: 1944-1951.
doi: 10.3724/SP.J.1006.2013.01944
Wang R, Wu H L, Wang H F, Huang K, Huo C Y, Ni Z F, Sun Q X. Cloning, characterization, and functional analysis of TaWRKY44 gene from wheat. Acta Agron Sin, 2013, 39: 1944-1951 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.01944
[15] 刘佼佼, 王学敏, 马琳, 崔苗苗, 曹晓宇, 赵威. 紫花苜蓿MsWRKY42的分离、鉴定及其对非生物胁迫的响应. 中国农业科学, 2020, 53: 3455-3466.
doi: 10.3864/j.issn.0578-1752.2020.17.004
Liu J J, Wang X M, Ma L, Cui M M, Cao X Y, Zhao W. Isolation, identification, and response to abiotic stress of MsWRKY42 gene from Medicago sativa L. Sci Agric Sin, 2020, 53: 3455-3466. (in Chinese with English abstract)
[16] 王婷婷, 丛亚辉, 柳聚阁, 王宁, 帅琴, 李艳, 盖钧镒. 大豆中一个WRKY28-like基因的克隆与功能分析. 作物学报, 2016, 42: 469-481.
Wang T T, Cong Y H, Liu J G, Wang N, Shuai Q, Li Y, Gai J Y. Cloning and functional analysis of a WRKY28-like gene in soybean. Acta Agron Sin, 2016, 42: 469-481. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00469
[17] Li Z, Hua X, Zhong W, Yuan Y, Wang Y, Wang Z, Ming R, Zhang J. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum. Plant Cell Physiol, 2020, 61: 616-630.
doi: 10.1093/pcp/pcz227
[18] 徐荣, 吴清莲, 孟玉, 陈疏影, 王先宏, 何丽莲, 李富生. 割手密SsWRKY1基因的克隆与表达分析. 分子植物育种, 2020, 18: 866-872.
Xu R, Wu Q L, Meng Y, Chen S Y, Wang X H, He L L, Li F S. Cloning and expression analysis of the SsWRKY1 gene in Saccharum spontaneum. Mol Plant Breed, 2020, 18: 866-872. (in Chinese with English abstract)
[19] 王玲, 刘峰, 戴明剑, 孙婷婷, 苏炜华, 王春风, 张旭, 毛花英, 苏亚春, 阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析. 作物学报, 2018, 44: 1367-1379.
doi: 10.3724/SP.J.1006.2018.01367
Wang L, Liu F, Dai M J, Sun T T, Su W H, Wang C F, Zhang X, Mao H Y, Su Y C, Que Y X. Cloning and expression characteristic analysis of ScWRKY4 gene in sugarcane. Acta Agron Sin, 2018, 44: 1367-1379. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01367
[20] Wang L, Liu F, Zhang X, Wang W, Sun T, Chen Y, Dai M, Yu S, Xu L, Su Y, Que Y. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane. Int J Mol Sci, 2018, 19: 4059.
doi: 10.3390/ijms19124059
[21] Wang D, Wang L, Su W, Ren Y, You C, Zhang C, Que Y, Su Y. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci Rep, 2020, 10: 20964.
doi: 10.1038/s41598-020-78007-9 pmid: 33262418
[22] 张旭, 凌辉, 刘峰, 黄宁, 王玲, 毛花英, 李聪娜, 汤翰臣, 苏炜华, 苏亚春, 阙友雄. 一个甘蔗IId类WRKY转录因子基因的克隆和表达分析. 中国农业科学, 2018, 51: 4409-4423.
doi: 10.3864/j.issn.0578-1752.2018.23.002
Zhang X, Ling H, Liu F, Huang N, Wang L, Mao H Y, Li C N, Tang H C, Su W H, Su Y C, Que Y X. Cloning and expression analysis of a IId sub-group WRKY transcription factor gene from sugarcane. Sci Agric Sin, 2018, 51: 4409-4423. (in Chinese with English abstract)
[23] 喻时周, 张树珍, 杨本鹏, 蔡文伟, 罗遵喜, 顾丽红. 甘蔗锌指蛋白ShZP基因正义反义植物表达载体的构建及转化烟草. 热带作物学报, 2009, 30: 1330-1336.
Yu S Z, Zhang S Z, Yang B P, Cai W W, Lu Z X, Gu L H. Construction of plant expression vectors for sense and anti-sense zinc finger proteins gene of sugarcane and transformation of these genes into tobacco. Chin J Trop Crops, 2009, 30: 1330-1336. (in Chinese with English abstract)
[24] 王文治, 杨志坚, 杨本鹏, 熊国如, 蔡文伟, 冯翠莲, 王俊刚, 伍苏然, 张树珍. 高效快速甘蔗转基因方法探索. 热带作物学报, 2012, 33: 1619-1624.
Wang W Z, Yang Z J, Yang B P, Xiong G R, Cai W W, Feng C L, Wang J G, Wu S R, Zhang S Z. A fast and efficient gene transformation method for sugarcane. Chin J Trop Crops, 2012, 33: 1619-1624. (in Chinese with English abstract)
[25] Casu R E, Selivanova A, Perroux J M. High-throughput assessment of transgene copy number in sugarcane using real-time quantitative PCR. Plant Cell Rep, 2012, 31: 167-177.
doi: 10.1007/s00299-011-1150-7 pmid: 21953330
[26] Xue B, Guo J, Que Y, Fu Z, Wu L, Xu L. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane. Int J Mol Sci, 2014, 15: 8846-8862.
doi: 10.3390/ijms15058846 pmid: 24857916
[27] 王天菊, 王先宏, 杨清辉. 26份割手密种质材料的抗旱性差异评价. 热带作物学报, 2017, 38: 1645-1652.
Wang T J, Wang X H, Yang Q H. Comprehensive evaluation on drought resistance difference of twenty-six Saccharum spontaneum L. accessions. Chin J Trop Crops, 2017, 38: 1645-1652. (in Chinese with English abstract)
[28] Gerszberg A, Hnatuszko-Konka K. Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul, 2017, 83: 175-198.
doi: 10.1007/s10725-017-0251-x
[29] Ashrafi-Dehkordi E, Alemzadeh A, Tanaka N, Razi H. Meta- analysis of transcriptomic responses to biotic and abiotic stress in tomato. PeerJ, 2018, 17: e4631.
[30] Gao Y F, Liu J K, Yang F M, Zhang G Y, Wang D, Zhang L, Ou Y B, Yao Y A. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant, 2020, 168: 98-117.
doi: 10.1111/ppl.v168.1
[31] El-Esawi M A, Al-Ghamdi A A, Ali H M, Ahmad M. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes, 2019, 10: 163.
doi: 10.3390/genes10020163
[32] Wei W, Liang D W, Bian X H, Shen M, Xiao J H, Zhang W K, Ma B, Lin Q, Lyu J, Chen X, Chen S Y, Zhang J S. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. Plant J, 2019, 100: 384-398.
doi: 10.1111/tpj.14449
[33] Shi W Y, Du Y T, Ma J, Min D H, Jin L G, Chen J, Chen M, Zhou Y B, Ma Y Z, Xu Z S, Zhang X H. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci, 2018, 19: 4087.
doi: 10.3390/ijms19124087
[34] Gao F, Yao H, Zhao H, Zhou J, Luo X, Huang Y, Li C, Chen H, Wu Q. Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiol Biochem, 2016, 109: 387-396.
doi: 10.1016/j.plaphy.2016.10.022
[35] Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot, 2011, 62: 4731-4748.
doi: 10.1093/jxb/err210 pmid: 21737415
[36] Sharma P, Jha A B, Dubey R S, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot, 2012, 2012: 217037.
[37] Sairam R, Deshmukh P, Saxena D. Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant, 1998, 3: 387-394.
[38] Ullah A, Sun H, Hakim, Yang X, Zhang X. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol Plant, 2018, 162: 439-454.
doi: 10.1111/ppl.12651 pmid: 29027659
[39] 魏鑫, 王寒涛, 魏恒玲, 付小康, 马亮, 芦建华, 王省芬, 喻树迅. 陆地棉GhWRKY33的克隆及抗旱功能分析. 中国农业科学, 2020, 53: 4537-4549.
doi: 10.3864/j.issn.0578-1752.2020.22.002
Wei X, Wang H T, Wei H L, Fu X K, Ma L, Lu J H, Wang S F, Yu S X. Cloning and drought resistance analysis of GhWRKY33 in upland cotton. Sci Agric Sin, 2020, 53: 4537-4549. (in Chinese with English abstract)
[40] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 2005, 444: 139-158.
doi: 10.1016/j.abb.2005.10.018 pmid: 16309626
[41] Couée I, Sulmon C, Gouesbet G, El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot, 2006, 57: 449-459.
pmid: 16397003
[42] Waseem M, Rong X, Li Z. Dissecting the role of a basic Helix-Loop-Helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Front Plant Sci, 2019, 10: 734.
doi: 10.3389/fpls.2019.00734
[43] Guo X Y, Zhang L, Wang X Z, Zhang M H, Xi Y X, Wang A Y, Zhu J B. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants. PLoS One, 2019, 14: e0225090.
doi: 10.1371/journal.pone.0225090
[44] Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, Venkatesh B, Anthony Johnson A M, Sudhakar C. A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Front Plant Sci, 2018, 9: 346.
doi: 10.3389/fpls.2018.00346 pmid: 29616059
[45] Liu G Y, Li B, Li X, Wei Y X, He C Z, Shi H T. MaWRKY80 positively regulates plant drought stress resistance through modulation of abscisic acid and redox metabolism. Plant Physiol Biochem, 2020, 156: 155-166.
doi: 10.1016/j.plaphy.2020.09.015
[46] Gao H, Wang Y, Xu P, Zhang Z. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front Plant Sci, 2018, 9: 997.
doi: 10.3389/fpls.2018.00997
[47] Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front Plant Sci, 2019, 9: 1979.
doi: 10.3389/fpls.2018.01979
[48] Yan J W, Li J, Zhang H P, Liu Y, Zhang A Y. ZmWRKY104 positively regulates salt tolerance by modulating ZmSOD4 expression in maize. Crop J, 2022, 10: 555-564.
doi: 10.1016/j.cj.2021.05.010
[1] 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768.
[2] 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583.
[3] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[4] 周文期, 强晓霞, 李思雨, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041.
[5] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[6] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[7] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[10] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[11] 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818.
[12] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
[13] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[14] 张笑笑,潘映红,任富莉,蒲伟军,王道平,李玉斌,陆平,李桂英,朱莉. 基于多重表型分析的准确评价高粱抗旱性方法的建立[J]. 作物学报, 2019, 45(11): 1735-1745.
[15] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[5] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[6] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[7] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[8] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[9] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[10] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .