欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2665-2676.doi: 10.3724/SP.J.1006.2023.34020

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究

杨宗桃(), 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升()   

  1. 福建农林大学农业农村部福建甘蔗生物学与遗传育种重点实验室 / 国家甘蔗工程技术研究中心, 福建福州 350002
  • 收稿日期:2023-01-30 接受日期:2023-04-17 出版日期:2023-10-12 网络出版日期:2023-04-27
  • 通讯作者: 徐景升, E-mail: xujingsheng@126.com
  • 作者简介:E-mail: YZT@fafu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31971991);福建农林大学科技创新基金项目(CXZX2019132G);广西甘蔗生物学重点实验室开放课题(GXKLSCB-202003)

Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection

YANG Zong-Tao(), JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng()   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University / National Engineering Research Center for Sugarcane, Fuzhou 350002, Fujian, China
  • Received:2023-01-30 Accepted:2023-04-17 Published:2023-10-12 Published online:2023-04-27
  • Contact: E-mail: xujingsheng@126.com
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2019132G);Open Project of Guangxi Key Laboratory of Sugarcane Biology(GXKLSCB-202003)

摘要:

谷胱甘肽S-转移酶(glutathione S-transferase, GST, EC2.5.1.18)广泛分布于具有细胞结构的生物中。在植物中, GST参与调控生长发育、异生物质解毒及逆境应答。本课题组以甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)编码蛋白P3N-PIPO为诱饵, 从甘蔗(Saccharum spp. hybrid)叶片cDNA酵母文库中筛选到1个GST基因, 并从甘蔗原始栽培种Badila中克隆了该基因, 其开放读码框(open reading frame, ORF)长度为645 bp, 编码214个氨基酸。序列比对及进化树分析表明, 该基因编码蛋白属于GST家族的Phi (F)类型(GSTF), 因此命名为ScGSTF1。进一步的生物信息学分析表明, ScGSTF1不存在跨膜区域, 为稳定的亲水性脂溶蛋白; GST蛋白在单子叶和双子叶植物中及C3和C4植物中存在明显的分化。酵母双杂交(yeast two-hybrid, Y2H)和双分子荧光互补(bimolecular fluorescence complementation, BiFC)试验表明, ScGSTF1与SCMV-P3N-PIPO蛋白互作。亚细胞定位试验表明ScGSTF1定位于内质网。实时荧光定量PCR分析表明, ScGSTF1在甘蔗各个组织中显著差异表达, 在第3节间中的表达量最高, 在心叶及根中的表达量最低; SCMV侵染显著性影响ScGSTF1基因的表达水平, 侵染早期上调表达, 随后下调, 但仍保持显著高于对照的水平。

关键词: 甘蔗, 甘蔗花叶病毒, 谷胱甘肽硫转移酶, P3N-PIPO, 蛋白互作

Abstract:

The Glutathione S-transferases (GSTs) are widely distributed in cellular organisms and participate in the regulation of growth and development, detoxification of xenobiotics, and response to stress in plants. In the present study, we screened a sugarcane (Saccharum spp. hybrid) cDNA library and obtained a GST gene from sugarcane original cultivar Badila using Sugarcane mosaic virus (SCMV)-encoded protein P3N-PIPO as bait. The open reading frame (ORF) of the cloned GST gene was 645 bp in length, encoding a protein with 214 amino acids. Sequence alignment and phylogenetic tree showed that this GST belonged to the Phi (F) class (GSTF) designated as ScGSTF1 in GST family. Further bioinformatics revealed that ScGSTF1 protein was a stable hydrophilic lipoprotein without transmembrane domain. Phylogenetic tree demonstrated that ScGSTF1 was divergent between monocotyledons and dicotyledonous, as well as in C3 and C4 plants. Yeast two-hybrid (Y2H) and biomolecular fluorescence complementation (BiFC) assays confirmed the interaction of ScGSTF1 with SCMV-P3N-PIPO. Subcellular localization assays indicated that ScGSTF1 was localized in the endoplasmic reticulum. The qRT-PCR analysis showed that ScGSTF1 gene was significantly differently expressed in different tissues of sugarcane plants with the highest expression level in the 3rd internode and the lowest expression level in leaf roll or roots. SCMV infection affected the relative expression level of ScGSTF1 gene, which was up-regulated at the early stage of infection and down-regulated later, but still maintained a significantly higher level than the control.

Key words: sugarcane, Sugarcane mosaic virus, glutathione S-transferase, P3N-PIPO, protein interaction

表1

本研究使用的引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
pPR3-ScGSTF1-F GCAGAGTGGCCATTACGATGGCCGGCGGTGGCGGCGA 酵母双杂交载体构建
pPR3-ScGSTF1-R ATTCTCGAGAGGCCGAGCTGATGGCTTCATCATGG Vector generation for Y2H
221-ScGSTF1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCCGGCGGTGGCGGCGA 双分子荧光互补载体构建
221-ScGSTF1-R GGGGACCACTTTGTACAAGAAAGCTGGGTCAGCTGATGGCTTCATCATGG Vector generation for BiFC
ScGSTF1-qF TGGACGAGGCGAACGAGACC 定量PCR
ScGSTF1-qR AGCGGCGGTGAGGCAGAC Real-time-qPCR
GAPDH-F CACGGCCACTGGAAGCA 内参基因[69]
GAPDH-R TCCTCAG GGTTCCTGATGCC Real-time-qPCR[69]
Actin-F CCTGAAGATCACCCTGTGCT 内参基因[70]
Actin-R GCAGTCTCCAGCTCCTGTTC Reference gene[70]
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测[71]
SCMV-CP-R ACGCTACACCAGAAGACACT Detection of SCMV[71]

图1

ScGST与拟南芥和水稻的GST蛋白的系统进化树分析 ScGST以红色字体的突出显示; 粉色进化枝代表Tau (GSTU)类, 紫色进化枝代表dehydroascorbate reductase (DHAR)类, 蓝色进化枝代表Lambda (GSTL)类, 红色进化枝代表Zeta (GSTZ)类, 绿色进化枝代表tetrachlorohydroquinone dehalogenase (TCHQD)类, 棕色进化枝代表Theta (GSTT)类, 青色进化枝代表γ-subunit of translation elongation factor (EF1G)类, 黑色进化枝代表Phi (GSTF)类。"

图2

ScGSTF1与其他物种GSTF蛋白的系统进化树分析 甘蔗: ScGSTF1 (OQ333021); 高粱: SbGSTF1 (XP_002458541.1); 玉米: ZmGSTF2 (ACG25283.1); 柳叶稷: PvGSTF1 (XP_039849196.1); 狗尾草: SvGSTF1 (XP034596925.1); 二穗短柄草: BdGSTF1 (XP_010232378.1); 大麦: HvGSTF1 (XP_044977142.1); 小麦: TaGSTF1 (XP_044350191.1); 烟草NbGSTF1 (XP_016472830.1); 马铃薯: StGSTF1 (KAH0657425.1); 拟南芥: AtGSTF13 (AT3G62760); 大豆: GmGSTF21 (NP_001291446.1); 葡萄: VvGSTF13 (RVW54521.1); 桃树: PpGSTF13 (XP_007209587.1); 毛果杨: PtGSTF13 (XP_006386755.1)。红色框、绿色框和黄色框分别代表亚群I-1、亚群I-2和群II。"

图3

甘蔗ScGSTF1与其他植物GSTF的二级结构 甘蔗: ScGSTF1 (OQ333021); 拟南芥: AtGSTF13 (At3g62760); 杨树: PtGSTF1 (Potri.002G015100.1); 水稻: OsGSTF1 (XP_015642391.1)。灰色箭头为β-折叠, 蓝色螺旋为α-螺旋。"

图4

ScGSTF1-YFP在本氏烟表皮细胞中的定位 ScGSTF1-YFP亚细胞定位。标尺为25 μm。"

图5

Y2H检测ScGSTF1与SCMV-P3N-PIPO的互作 pNubG-Fe65和pTSU2-APP组合作为阳性对照, pNubG-Fe65和pPR3-N组合作为阴性对照。DDO+X-Gal: 添加了5-溴-4-氯-3-吲哚-β-D-半乳糖苷的缺少亮氨酸(Leu)和色氨酸(Trp)的酵母合成限定基本培养基; QDO+X-Gal: 添加了X-Gal的缺少亮氨酸(Leu)、色氨酸(Trp)、组氨酸(His)和腺嘌呤(Ade)的酵母合成限定基本培养基。"

图6

BiFC检测ScGSTF1与SCMV-P3N-PIPO的互作 A: cYFP融合于P3N-PIPO的N末端, nYFP融合于ScGSTF1的C末端。B: cYFP融合于ScGSTF1的N末端, nYFP融合于SCMV-P3N-PIPO的C末端。将P3N-PIPO-YC和ScGSTF1-YN (A)、ScGSTF1-YC和P3N-PIPO-YN (B)分别共注射到本氏烟叶片中进行瞬时表达, 48 h后激光共聚焦观察。比例尺为25 μm。"

图7

ScGSTF1基因的组织特异性表达分析 LR: 心叶; +1 L: +1叶; +7 L: +7叶; +3 I: 第3节间; +8 I: 第8节间; R: 根。误差线为每组处理的标准误差(n = 3)。柱上不同的小写字母表示在P < 0.05时显著性差异。"

图8

ScGSTF1基因应答SCMV侵染的表达模式 误差线为每组处理的标准误差(n = 3)。柱上不同的小写字母表示在P < 0.05时显著性的差异。"

[1] Edwards R, Dixon D P, Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci, 2000, 5: 193-198.
doi: 10.1016/s1360-1385(00)01601-0 pmid: 10785664
[2] Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem, 2002, 277: 30859-30869.
doi: 10.1074/jbc.M202919200
[3] Dixon D P, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol, 2002, 3: 3004.
pmid: 11897031
[4] Gullner G, Komives T, Király L, Schröder P. Glutathione S-transferase enzymes in plant-pathogen interactions. Front Plant Sci, 2018, 9: 1836.
doi: 10.3389/fpls.2018.01836 pmid: 30622544
[5] Wang R B, Ma J F, Zhang Q, Wu C L, Zhao H Y, Wu Y N, Yang G X, He G Y. Genome-wide identification and expression profiling of glutathione transferase gene family under multiple stresses and hormone treatments in wheat (Triticum aestivum L.). BMC Genomics, 2019, 20: 986.
doi: 10.1186/s12864-019-6374-x
[6] Rea P A. MRP subfamily ABC transporters from plants and yeast. J Exp Bot, 1999, 50: 895-913.
doi: 10.1093/jxb/50.Special_Issue.895
[7] Dixon D P, Edwards R. Glutathione transferases. Arabidopsis Book, 2010, 8: e0131.
doi: 10.1199/tab.0131
[8] Cummins I, Wortley D J, Sabbadin F, He Z, Coxon C R, Straker H E, Sellars J D, Knight K, Edwards L, Hughes D, Kaundun S S, Hutchings S J, Steel P G, Edwards R. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Natl Acad Sci USA, 2013, 110: 5812-5817.
doi: 10.1073/pnas.1221179110 pmid: 23530204
[9] 王通, 迟晓元, 王冕, 潘丽娟, 陈明娜, 陈娜, 焦坤. 花生GSTs家族基因的全基因组分析. 花生学报, 2019, 48(4): 25-34.
Wang T, Chi X Y, Wang M, Pan L J, Chen M N, Chen N, Jiao K. Comprehensive genome-wide analysisof GSTs gene family in peanut. J Peanut Sci, 2019, 48(4): 25-34. (in Chinese with English abstract)
[10] 苏久厂, 聂阳, 李龙娜, 沈文飚. S-谷胱甘肽化修饰的研究进展. 生物化学与生物物理进展, 2019, 46(1): 32-42.
Su J C, Nie Y, Li L N, Shen W B. Research progress in S-glutathionylation. Prog Biochem Biophys, 2019, 46(1): 32-42. (in Chinese with English abstract)
[11] Vaish S, Gupta D, Mehrotra R, Mehrotra S, Basantani M K. Glutathione S-transferase: a versatile protein family. 3 Biotech, 2020, 10: 321.
doi: 10.1007/s13205-020-02312-3 pmid: 32656054
[12] Georgakis N, Poudel N, Vlachakis D, Papageorgiou A C, Labrou N E. Phi class glutathione transferases as molecular targets towards multiple-herbicide resistance: Inhibition analysis and pharmacophore design. Plant Physiol Biochem, 2021, 158: 342-352.
doi: 10.1016/j.plaphy.2020.11.018
[13] Georgakis N, Poudel N, Papageorgiou A C, Labrou N E. Comparative structural and functional analysis of phi class glutathione transferases involved in multiple-herbicide resistance of grass weeds and crops. Plant Physiol Biochem, 2020, 149: 266-276.
doi: 10.1016/j.plaphy.2020.02.012
[14] Dos Santos R N, Machado B R, Hefler S M, Zanette J. Glutathione S-transferase activity in aquatic macrophytes and halophytes and biotransformation potential for biocides. J Plant Res, 2021, 134: 577-584.
doi: 10.1007/s10265-021-01266-8 pmid: 33682041
[15] Ioannou E, Papageorgiou A C, Labrou N E. Directed evolution of Phi class glutathione transferases involved in multiple-herbicide resistance of grass weeds and crops. Int J Mol Sci, 2022, 23: 7469.
doi: 10.3390/ijms23137469
[16] Duan Q, Li G R, Qu Y P, Yin D X, Zhang C L, Chen Y S. Genome-wide identification, evolution and expression analysis of the glutathione S-transferase supergene family in euphorbiaceae. Front Plant Sci, 2022, 13: 808279.
doi: 10.3389/fpls.2022.808279
[17] Zhang A Q, Luo R, Li J W, Miao R Q, An H, Yan X F, Pang Q Y. Arabidopsis glutathione-S-transferases GSTF11 and GSTU20 function in aliphatic glucosinolate biosynthesis. Front Plant Sci, 2021, 12: 816233.
doi: 10.3389/fpls.2021.816233
[18] Fang X, An Y Y, Zheng J, Shang-Guan L F, Wang L J. Genome-wide identification and comparative analysis of GST gene family in apple (Malus domestica) and their expressions under ALA treatment. 3 Biotech, 2020, 10: 307.
doi: 10.1007/s13205-020-02299-x
[19] Shao D N, Li Y J, Zhu Q H, Zhang X Y, Liu F, Xue F, Sun J. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Sci, 2021, 305: 110827.
doi: 10.1016/j.plantsci.2021.110827
[20] Li H, Yang Y X, Li H R, Wang W, Zheng H, Tao J M. Genome-wide identification of glutathione S-transferase and expression analysis in response to anthocyanin transport in the flesh of the new teinturier grape germplasm ‘Zhongshan-HongYu'. Int J Mol Sci, 2022, 23: 7717.
doi: 10.3390/ijms23147717
[21] Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou N E. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep, 2017, 36: 791-805.
doi: 10.1007/s00299-017-2139-7 pmid: 28391528
[22] Zhang Y H, He J Y, Xiao Y Z, Zhang Y G, Liu Y Q, Wan S Q, Liu L, Dong Y, Liu H, Yu Y B. CsGSTU8, a glutathione S-transferase from camellia sinensis, is regulated by CsWRKY48 and plays a positive role in drought tolerance. Front Plant Sci, 2021, 12: 795919.
doi: 10.3389/fpls.2021.795919
[23] Gao H S, Yu C Y, Liu R C, Li X Y, Huang H Q, Wang X T, Zhang C, Jiang N, Li X F, Cheng S, Zhang H X, Li B. The glutathione S-transferase PtGSTF1 improves biomass production and salt tolerance through regulating xylem cell proliferation, ion homeostasis and reactive oxygen species scavenging in poplar. Int J Mol Sci, 2022, 23: 11288.
doi: 10.3390/ijms231911288
[24] Wang T Z, Zhang D, Chen L, Wang J, Zhang W H. Genome-wide analysis of the Glutathione S-Transferase family in wild Medicago ruthenica and drought-tolerant breeding application of MruGSTU39 gene in cultivated alfalfa. Theor Appl Genet, 2022, 135: 853-864.
doi: 10.1007/s00122-021-04002-x
[25] Wang Q, Guo J, Jin P F, Guo M Y, Guo J, Cheng P, Li Q, Wang B T. Glutathione S-transferase interactions enhance wheat resistance to powdery mildew but not wheat stripe rust. Plant Physiol, 2022, 190: 1418-1439.
doi: 10.1093/plphys/kiac326 pmid: 35876538
[26] Otulak-Kozieł K, Kozieł E, Horváth E, Csiszár J. AtGSTU19 and AtGSTU24 as moderators of the response of Arabidopsis thaliana to Turnip mosaic virus. Int J Mol Sci, 2022, 23: 11531.
doi: 10.3390/ijms231911531
[27] Yang Q, Han X M, Gu J K, Liu Y J, Yang M J, Zeng Q Y. Functional and structural profiles of GST gene family from three populus species reveal the sequence-function decoupling of orthologous genes. New Phytol, 2019, 221: 1060-1073.
doi: 10.1111/nph.15430 pmid: 30204242
[28] Akbar S, Yao W, Qin L F, Yuan Y, Powell C A, Chen B S, Zhang M Q. Comparative analysis of sugar metabolites and their transporters in sugarcane following Sugarcane mosaic virus (SCMV) infection. Int J Mol Sci, 2021, 22: 13574.
doi: 10.3390/ijms222413574
[29] 刘晓雪, 曹付珍, 李凯, 高三基. 全球蔗糖产业竞争力比较及中国提升路径探讨: 基于巴西、澳大利亚、泰国、印度的比较分析. 价格理论与实践, 2021, (12): 12-17.
Liu X X, Cao F Z, Li K, Gao S J. Comparison of global sucrose industry competitiveness and china's improvement path discussion: a comparative analysis based on Brazil, Australia, Thailand, and India. Price: Theory Practice, 2021, (12): 12-17. (in Chinese with English abstract)
[30] 张跃彬, 邓军, 胡朝晖. “十三五”我国蔗糖产业现状及“十四五”发展趋势. 中国糖料, 2022, 44(1): 71-76.
Zhang Y B, Deng J, Hu C H. The 13th Five-Year Plan of cane sugar industry in China and development trend of the 14th Five-Year Plan. Sugar Crops China, 2022, 44(1): 71-76. (in Chinese with English abstract)
[31] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1): 11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Canesugar, 2005, (1): 11-16. (in Chinese with English abstract)
[32] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008, 153: 1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601
[33] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016, 46: 775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016, 46: 775-782 (in Chinese with English abstract).
[34] 李文凤, 丁铭, 方琦, 黄应昆, 张仲凯, 董家红, 苏晓霞, 李婷婷. 云南甘蔗花叶病病原的初步鉴定. 中国糖料, 2006, (2): 4-7.
Li W F, Ding M, Fang Q, Huang Y K, Zhang Z K, Dong J H, Su X X, Li T T. Preliminary identification of sugarcane mosaic pathogeny in Yunnan. Sugar Crops China, 2006, (2): 4-7. (in Chinese with English abstract)
[35] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018, 48: 389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018, 48: 389-394. (in Chinese with English abstract)
[36] Wu L J, Zu X F, Wang S X, Chen Y H. Sugarcane mosaic virus- long history but still a threat to industry. Crop Prot, 2012, 42: 74-78.
doi: 10.1016/j.cropro.2012.07.005
[37] Putra L K, Kristini A, Achadian E M, Damayanti T A. Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Technol, 2014, 16: 392-399.
doi: 10.1007/s12355-013-0279-9
[38] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015, 46: 609-613.
Zhou F J, Huang C H, Li Z W, Shuang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015, 46: 609-613. (in Chinese with English abstract)
[39] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016, 45(2): 135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016, 45(2): 135-140. (in Chinese with English abstract)
[40] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017, 44: 363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017, 44: 363-370 (in Chinese with English abstract).
[41] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus (SCSMV). Trop Plant Biol, 2017, 10: 45-55.
doi: 10.1007/s12042-016-9183-2
[42] Yao W, Ruan M H, Qin L F, Yang C Y, Chen R K, Chen B S, Zhang M Q. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017, 8: 104.
[43] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017, 33(7): 22-28.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0084
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017, 33(7): 22-28. (in Chinese with English abstract)
[44] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from Florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018, 102: 2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899
[45] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus (SCMV) in Nigeria. Plant Dis, 2019, 103: 818-824.
doi: 10.1094/PDIS-08-18-1445-RE pmid: 30806574
[46] 沈林波, 吴楠楠, 冯小艳, 熊国如, 赵婷婷, 王文治, 王俊刚, 张树珍. 52个甘蔗品种在广西受病毒侵染情况. 热带作物学报, 2020, 41(1): 116-126.
Shen L B, Wu N N, Feng X Y, Xiong G R, Zhao T T, Wang W Z, Wang J G, Zhang S Z. Virus infection situation of fifty-two sugarcane varieties in Guangxi. Chin J Trop Crops, 2020, 41(1): 116-126. (in Chinese with English abstract)
[47] 杨荣仲, 周会, 肖祎, 吕达, 廖红香, 陈道德, 刘昔辉, 雷敬超, 林垠孚. 甘蔗主要亲本自然条件下抗甘蔗花叶病测定. 中国糖料, 2020, 42(2): 47-52.
Yang R Z, Zhou H, Xiao Y, Lyu D, Liao H X, Chen D D, Liu X H, Lei J C, Lin Y F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crops China, 2020, 42(2): 47-52. (in Chinese with English abstract)
[48] Akbar S, Yao W, Yuan Y, Khan M T, Qin L F, Powell C A, Chen B S, Zhang M Q. Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection. BMC Plant Biol, 2020, 20: 532.
doi: 10.1186/s12870-020-02737-1
[49] Akbar S, Yao W, Yu K, Qin L F, Ruan M H, Powell C A, Chen B S, Zhang M Q. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynth Res, 2021, 150: 279-294.
doi: 10.1007/s11120-019-00706-w
[50] Hincapie M, Sood S, Mollov D, Odero D C, Grisham M, Rott P. Eight species of poaceae are hosting different genetic and pathogenic strains of Sugarcane mosaic virus in the everglades agricultural area. Phytopathology, 2021, 111: 1862-1869.
doi: 10.1094/PHYTO-11-20-0489-R
[51] 李银煳, 李婕, 覃伟, 王晓燕, 张荣跃, 赵俊, 单红丽, 李文凤, 黄应昆. 国家糖料体系区试示范甘蔗新品种(系)病情调查与抗性分析. 中国糖料, 2022, 44(2): 58-63.
Li Y H, Li J, Qin W, Wang X Y, Zhao R Y, Zhao J, Shan H L, Li W F, Huang Y K. Diseases investigation and resistance analysis of new sugarcane varieties (clones) in the regional test demonstration of the national sugar system. Sugar Crops China, 2022, 44(2): 58-63. (in Chinese with English abstract)
[52] Lu G L, Wang Z T, Xu F, Pan Y B, Grisham M P, Xu L P. Sugarcane mosaic disease: characteristics, identification and control. Microorganisms, 2021, 9: 1984.
doi: 10.3390/microorganisms9091984
[53] Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991, 32: 269-296.
pmid: 1657820
[54] Hall J S, Adams B, Parsons T J, French R, Lane L C, Jensen S G. Molecular cloning, sequencing, and phylogenetic relationships of a new potyvirus: Sugarcane streak mosaic virus, and a reevaluation of the classification of the Potyviridae. Mol Phylogenet Evol, 1998, 10: 323-332.
pmid: 10051385
[55] Xu D L, Zhou G H, Xie Y J, Mock R, Li R. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010, 40: 432-439.
doi: 10.1007/s11262-010-0457-8 pmid: 20162446
[56] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus (SCSMV). Arch Virol, 2011, 156: 2101-2104.
doi: 10.1007/s00705-011-1090-0
[57] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3NPIPO. Sci Rep, 2017, 7: 9868.
doi: 10.1038/s41598-017-10497-6
[58] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016, 44: 7618-7629.
doi: 10.1093/nar/gkw441 pmid: 27185887
[59] Chung B Y W, Miller W A, Atkins J F, Firth A E. An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA, 2008, 105: 5897-5902.
doi: 10.1073/pnas.0800468105
[60] Cheng G Y, Yang Z T, Zhang H, Zhang J S, Xu J S. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2020, 225: 2122-2139.
doi: 10.1111/nph.v225.5
[61] Chai M Z, Wu X Y, Liu J H, Fang Y, Luan Y M, Cui X Y, Zhou X P, Wang A M, Cheng X F. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J Virol, 2020, 94: e01898.
[62] Kumar G, Dasgupta I. Variability, functions and interactions of plant virus movement proteins: what do we know so far? Microorganisms, 2021, 9: 695.
doi: 10.3390/microorganisms9040695
[63] Wang A M. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr Opin Virol, 2021, 48: 10-16.
doi: 10.1016/j.coviro.2021.03.002
[64] Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010, 76: 1-32.
doi: 10.1016/S0065-3527(10)76001-2 pmid: 20965070
[65] Wang A M. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015, 53: 45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[66] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019, 20: 3867.
doi: 10.3390/ijms20163867
[67] Yang Z T, Dong M, Cheng G Y, Liu S X, Zhang H, Shang H Y, Zhou Y S, Huang G Q, Zhang M Q, Wang F J, Xu J S. Selective interaction of sugarcane eIF4E with VPgs from sugarcane mosaic pathogens. Viruses, 2021, 13: 518.
doi: 10.3390/v13030518
[68] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作. 作物学报, 2022, 48: 332-341.
doi: 10.3724/SP.J.1006.2022.14001
Yang Z T, Liu S X, Cheng G Y, Zhang H, Zhou Y S, Shang H Y, Huang G Q, Xu J S. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2. Acta Agron Sin, 2022, 48: 332-341. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14001
[69] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014, 4: 7042.
doi: 10.1038/srep07042 pmid: 25391499
[70] Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
doi: 10.1371/journal.pone.0097469
[71] Xu J S, Deng Y Q, Cheng G Y, Zhai Y S, Peng L, Dong M, Xu Q, Yang Y Q. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana. J Intergr Agric, 2019, 18: 2294-2301.
[72] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒 P3 蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014, 34: 676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014, 34: 676-681. (in Chinese with English abstract)
[73] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods, 2001, 4: 402-408.
[74] Sappl P G, Carroll A J, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh K B. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J, 2009, 58: 53-68.
doi: 10.1111/j.1365-313X.2008.03761.x
[75] Wagner U, Edwards R, Dixon D P, Mauch F. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol, 2002, 49: 515-532.
doi: 10.1023/A:1015557300450
[76] Jain M, Ghanashyam C, Bhattacharjee A. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics, 2010, 11: 73.
doi: 10.1186/1471-2164-11-73 pmid: 20109239
[77] Dixon D P, Hawkins T, Hussey P J, Edwards R. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot, 2009, 60: 1207-1218.
doi: 10.1093/jxb/ern365
[78] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373-399.
pmid: 15377225
[79] Morales M, Munné-Bosch S. Oxidative stress: a master regulator of plant trade-offs? Trends Plant Sci, 2016, 21: 996-999.
doi: S1360-1385(16)30156-X pmid: 27751713
[80] Camejo D, Guzmán-Cedeño A, Vera-Macias L, Jiménez A. Oxidative post-translational modifications controlling plant-pathogen interaction. Plant Physiol Biochem, 2019, 144: 110-117.
doi: 10.1016/j.plaphy.2019.09.020
[81] Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. New Phytol, 2019, 221: 1197-1214.
doi: 10.1111/nph.15488 pmid: 30222198
[82] Qi J S, Wang J L, Gong Z Z, Zhou J M. Apoplastic ROS signaling in plant immunity. Curr Opin Plant Biol, 2017, 38: 92-100.
doi: S1369-5266(17)30073-0 pmid: 28511115
[83] Qi J S, Song C P, Wang B S, Zhou J N, Kangasjärvi J, Zhu J K, Gong Z Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol, 2018, 60: 805-826.
doi: 10.1111/jipb.12654
[84] Anashkina A A, Poluektov Y M, Dmitriev V A, Kuznetsov E N, Mitkevich V A, Makarov A A, Petrushanko I Y. A novel approach for predicting protein S-glutathionylation. BMC Bioinf, 2020, 21: 282.
doi: 10.1186/s12859-020-03571-w
[85] Corpas F J, González-Gordo S, Rodríguez-Ruiz M, Muñoz- Vargas M A, Palma J M. Thiol-based oxidative posttranslational modifications (OxiPTMs) of plant proteins. Plant Cell Physiol, 2022, 63: 889-900.
doi: 10.1093/pcp/pcac036
[86] Moffett A S, Bender K W, Huber S C, Shukla D. Allosteric control of a plant receptor kinase through S-glutathionylation. Biophys J, 2017, 113: 2354-2363.
doi: S0006-3495(17)31074-3 pmid: 29211989
[1] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397.
[2] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[3] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[4] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[5] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[6] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[7] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[8] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[9] 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664.
[10] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[11] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[12] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[13] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[14] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[15] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .