Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (03): 505-513.doi: 10.3724/SP.J.1006.2012.00505
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
MAN Jian-Min1,CAI Can-Hui1,YAN Qiu-Xiang2,HU Mao-Zhi2,LIU Qiao-Quan1,*,WEI Cun-Xu1,*
[1]Gallant D J, Bouchet B, Baldwin P M. Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym, 1997, 32: 177–191[2]Cheetham N W H, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym, 1998, 36: 277–284[3]Wei C X, Qin F L, Zhu L J, Zhou W D, Chen Y F, Wang Y P, Gu M H, Liu Q Q. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 1224–1232[4]Atichokudomchai N, Varavinit S, Chinachoti P. A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR. Carbohydr Polym, 2004, 58: 383–389[5]Sevenou O, Hill S E, Farhat I A, Mitchell J R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol, 2002, 31: 79–85[6]Chung H Y, Hoover R, Liu Q. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. Int J Biol Macromol, 2009, 44: 203–210[7]Rubens P, Snauwaert J, Heremans K, Stute R. In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell. Carbohydr Polym, 1999, 39: 231–235[8]Li Y(李玥), Zhong F(钟芳), Ma J-G(麻建国), Gu X-H(顾小红). Spectra analysis on rice starches from different varieties during pasting. Acta Polymer Sin (高分子学报), 2008, (7): 720–725 (in Chinese with English abstract)[9]Li J H, Vasanthan T, Hoover R, Rossnagel B G. Starch from hull-less barley: V. In-vitro susceptibility of waxy, normal, and high-amylose starches towards hydrolysis by alpha-amylases and amyloglucosidase. Food Chem, 2004, 84: 621–632[10]Wei C X, Xu B, Qin F L, Yu H G, Chen C, Meng X L, Zhu L J, Wang Y P, Gu M H, Liu Q Q. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 7383–7388[11]Konik-Rose C, Thistleton J, Chanvrier H, Tan I, Halley P, Gidley M, Kosar-Hashemi B, Wang H, Larroque O, Ikea J, McMaugh S, Regina A, Rahman S, Morell M, Li Z. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat. Theor Appl Genet, 2007, 115: 1053–1065[12]Shingel K I. Determination of structural peculiarities of dexran, pullulan and ?-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res, 2002, 337: 1445–1451[13]Smits A L M, Ruhnau F C, Wliegenthart J F G, van Soest J J G. Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy. Starch, 1998, 50: 478–483[14]Wei C X, Qin F L, Zhou W D, Yu H G, Xu B, Chen C, Zhu L J, Wang Y P, Gu M H, Liu Q Q. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 11946–11954[15]Wei C X, Qin F L, Zhou W D, Xu B, Chen C, Chen Y F, Wang Y P, Gu M H, Liu Q Q. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its its wild type during heating. Food Chem, 2011, 128: 645–652[16]van Soest J J G, Tournois H, de Wit D, Vliegenthart J F G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res, 1995, 279: 201–214 |
No related articles found! |
|