Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2344-2361.doi: 10.3724/SP.J.1006.2023.24246
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZUO Chun-Yang(), LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling()
[1] |
Hüttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biot, 2001, 55: 387-394.
doi: 10.1007/s002530000590 |
[2] |
Piontek K, Antorini M, Choinowski T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J Biol Chem, 2002, 277: 37663-37669.
doi: 10.1074/jbc.M204571200 pmid: 12163489 |
[3] |
Claus H. Laccases: structure, reactions, distribution. Micron, 2004, 35: 93-96.
doi: 10.1016/j.micron.2003.10.029 pmid: 15036303 |
[4] |
Ander P, Eriksson K E. The importance of phenol oxidase activity in lignin degradation by the white rot fungus Sporotrichum pulverulentum. Arch Microbiol, 1976, 109: 1-8.
doi: 10.1007/BF00425105 |
[5] | Williamson P R. Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front Biosci, 1997, 2: 99-107. |
[6] |
Carbajo J M, Junca H, Terrón M C, González T, Yagüe S, Zapico E, González A E. Tannic acid induces transcription of laccase gene cglcc1 in the white-rot fungus Coriolopsis gallica. Can J Microbiol, 2002, 48: 1041-1047.
pmid: 12619815 |
[7] |
Weech M H, Chapleau M, Pan L, Ide C, Bede J C. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway. J Exp Bot, 2008, 59: 2437-2448.
doi: 10.1093/jxb/ern108 |
[8] |
Sterjiades R, Dean J F D, Eriksson K E. Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol, 1992, 99: 1162-1168.
doi: 10.1104/pp.99.3.1162 pmid: 16668984 |
[9] |
Liang M, Davis E, Gardner D, Cai X, Wu Y. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 2006, 224: 1185-1196.
doi: 10.1007/s00425-006-0300-6 |
[10] |
Wang G D, Li Q J, Luo B, Chen X Y. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol, 2004, 22: 893-897.
doi: 10.1038/nbt982 |
[11] |
Bao W, O’Malley D M, Whetten R, Sederoff R R. A laccase associated with lignification in loblolly pine xylem. Science, 1993, 260: 672-674.
pmid: 17812228 |
[12] |
Berthet S, Demont C N, Pollet B, Bidzinski P, Cézard L, Le B P, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011, 23: 1124-1137.
doi: 10.1105/tpc.110.082792 |
[13] | Miguel P A, Schneider I, Kroll P, Hofhuis H, Metzger S, Pauly M, Hay A. Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. Proc Natl Acad Sci USA, 2022, 119: e2202287119. |
[14] |
Zhang Y C, Yu Y, Wang C Y, Li Z Y, Liu Q, Xu J, Liao J Y, Wang X J, Qu L H, Chen F, Xin P, Yan C, Chu J, Li H Q, Chen Y Q. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol, 2013, 31: 848-852.
doi: 10.1038/nbt.2646 pmid: 23873084 |
[15] |
Zhong J, He W J, Peng Z, Zhang H, Li F, Yao J L. A putative AGO protein, OsAGO17, positively regulates grain size and grain weight through OsmiR397b in rice. Plant Biotechnol J, 2020, 18: 916-928.
doi: 10.1111/pbi.13256 pmid: 31529568 |
[16] |
Sun Y J, Xiong X G, Wang Q, Zhu L, Wang L, He Y, Zeng H L. Integrated analysis of small RNA, transcriptome, and degradome sequencing reveals the miR156, miR5488 and miR399 are involved in the regulation of male sterility in PTGMS rice. Int J Mol Sci, 2021, 22: 2260.
doi: 10.3390/ijms22052260 |
[17] |
Mayer A M, Staples R C. Laccase: new functions for an old enzyme. Phytochemistry, 2002, 60: 551-565.
doi: 10.1016/s0031-9422(02)00171-1 pmid: 12126701 |
[18] |
Jiao X Y, Li G Q, Wang Y, Nie F, Cheng X, Abdullah M, Lin Y, Cai Y P. Systematic analysis of the pleurotus ostreatus laccase gene (PoLac) family and functional characterization of PoLac2 involved in the degradation of cotton-straw lignin. Molecules, 2018, 23: 880.
doi: 10.3390/molecules23040880 |
[19] |
Li L, Steffens J C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 2002, 215: 239-247.
doi: 10.1007/s00425-002-0750-4 pmid: 12029473 |
[20] |
Choi G H, Larson T G, Nuss D L. Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact, 1992, 5: 119-128.
doi: 10.1094/MPMI-5-119 |
[21] |
Zhu X, Gibbons J, Zhang S, Williamson P R. Copper-mediated reversal of defective laccase in a Δvph1 avirulent mutant of Cryptococcus neoformans. Mol Microbiol, 2003, 47: 1007-1014.
doi: 10.1046/j.1365-2958.2003.03340.x |
[22] | Anagnostakis S L. The Ecology and Physiology of the Fungal Mycelium. Cambridge: Cambridge University Press, 1984. pp 353-366. |
[23] |
Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol, 2018, 176: 1808-1823.
doi: 10.1104/pp.17.01628 |
[24] | Wei T P, Tang Y, Jia P, Zeng Y, Wang B, Wu P, Quan Y G, Chen A M, Li Y C, Wu J H. A cotton lignin biosynthesis gene, GhLAC4, fine-tuned by ghr-miR397 modulates plant resistance against Verticillium dahlia. Front Plant Sci, 2021, 18: 12. |
[25] |
Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966-2980.
doi: 10.1105/tpc.105.035154 |
[26] |
Turlapati P V, Kim K W, Davin L B, Lewis N G. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta, 2011, 233: 439-470.
doi: 10.1007/s00425-010-1298-3 |
[27] |
Niladevi K N, Sukumaran R K, Prema D. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. J Ind Microbiol Biotechnol, 2007, 34: 665-674.
doi: 10.1007/s10295-007-0239-z |
[28] |
Zhang R, Zhou L L, Li Y L, Ma H H, Li Y W, Ma Y Z, Lyu R J, Yang J, Wang W R, Alifu A, Zhang X L, Kong J, Min L. Rapid identification of pollen- and anther-specific genes in response to high-temperature stress based on transcriptome profiling analysis in cotton. Int J Mol Sci, 2022, 23: 3378.
doi: 10.3390/ijms23063378 |
[29] |
Min L, Zhu L F, Tu L L, Deng F L, Yuan D J, Zhang X L. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J, 2013, 75: 823-835.
doi: 10.1111/tpj.2013.75.issue-5 |
[30] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[31] |
McCaig B C, Meagher R B, Dean J F D. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta, 2005, 221: 619-636.
doi: 10.1007/s00425-004-1472-6 |
[32] |
Dharmawardhana D P, Ellis B E, Carlson J E. Characterization of vascular lignification in Arabidopsis thaliana. Can J Bot, 1992, 70: 2238-2244.
doi: 10.1139/b92-277 |
[33] |
Naoumkina M A, Zhao Q, Gallego-Giraldo L, Dai X, Zhao P X, Dixon R A. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol, 2010, 11: 829-846.
doi: 10.1111/j.1364-3703.2010.00648.x pmid: 21029326 |
[34] |
Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield S D. Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol, 2016, 37: 190-200.
doi: 10.1016/j.copbio.2015.10.009 |
[35] |
Min L, Li Y Y, Hu Q, Zhu L F, Gao W H, Wu Y L, Ding Y H, Liu S M, Yang X Y, Zhang X L. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol, 2014, 164: 1293-1308.
doi: 10.1104/pp.113.232314 pmid: 24481135 |
[36] |
Ma Y Z, Min L, Wang M J, Wang C Z, Zhao Y L, Li Y Y, Fang Q D, Wu Y L, Xie S, Ding Y H, Su X J, Hu Q, Zhang Q H, Li X Y, Zhang X L. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell, 2018, 30: 1387-1403.
doi: 10.1105/tpc.18.00074 |
[37] |
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang Z Y, Dixon R A. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013, 25: 3976-3987.
doi: 10.1105/tpc.113.117770 |
[38] |
Balasubramanian V K, Rai K M, Thu S W, Hii M M, Mendu V. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.);expression and biochemical analysis during fiber development. Sci Rep, 2016, 6: 34309.
doi: 10.1038/srep34309 pmid: 27679939 |
[39] |
Johansson M, Denekamp M, Asiegbu F O. Production and isozyme pattern of extracellular laccase in the S and P intersterility groups of the root pathogen Heterobasidion annosum. Mycol Res, 1999, 103: 365-371.
doi: 10.1017/S0953756298007436 |
[40] |
Zhang Y, Wu L Z, Wang X F, Chen B, Zhao J, Cui J, Li Z K, Yang J, Wu G Y, Zhang G Y, Ma Z Y. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Mol Plant Pathol, 2019, 20:309-322.
doi: 10.1111/mpp.12755 pmid: 30267563 |
[41] |
Torres J, Svistunenko D, Karlsson B, Cooper C E, Wilson M T. Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide intermediate. J Am Chem Soc, 2002, 124: 963-967.
pmid: 11829603 |
[42] | 靳蓉, 张飞龙. 漆酶的结构与催化反应机理. 中国生漆, 2012, 31(4): 6-16. |
Jin R, Zhang F L. Structure and catalytic mechanism of laccase. Chin Lacquer, 2012, 31(4): 6-16. (in Chinese with English abstract) | |
[43] |
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang Z Y, Dixon R A. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013, 25: 3976-3987.
doi: 10.1105/tpc.113.117770 |
[44] |
Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph S A, Zakai U I, Morreel K, Boerjan W, Ralph J. Tricin, a flavonoid monomer in monocot lignification. Plant Physiol, 2015, 167: 1284-1295.
doi: 10.1104/pp.114.253757 pmid: 25667313 |
[1] | MA Chun-Min, LI Wei-Xi, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1496-1517. |
[2] | XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271. |
[3] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[4] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[5] | Zuo-Min WANG,Jin LIU,Shi-Chao SUN,Xin-Yu ZHANG,Fei XUE,Yan-Jun LI,Jie SUN. Identification and Expression Analysis of Multidrug and Toxic Compound Extrusion Protein Family Genes in Colored Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1380-1392. |
[6] | Li-Xia QIN, Jing LI, Huan-Yang ZHANG, Sheng LI, Meng-Jie ZHU, Gai-Li JIAO, Shen-Jie WU. Cloning and Expression Analysis of Galactosyltransferase Gene GhGalT1 Promoter in Cotton [J]. Acta Agronomica Sinica, 2018, 44(02): 218-226. |
|