Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2331-2343.doi: 10.3724/SP.J.1006.2023.23069

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize

HUANG Yu-Jie(), ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei(), DING Shuang-Cheng()   

  1. Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Ministry of Agricultural and Rural Affairs (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2022-10-11 Accepted:2023-02-10 Online:2023-09-12 Published:2023-02-22
  • Supported by:
    National Natural Science Foundation of China(31701439)

Abstract:

The objective of this study is to identify the members of maize ZmC2s gene family, to analyze the association between their genetic variations and heat tolerance, and to lay a foundation for clarifying its function and molecular mechanism in maize heat tolerance. Using the C2 protein domain PF00168, hmmsearch was applied to search for the members of the ZmC2s gene family from maize B73 genome. The protein isoelectric point, molecular weight, phylogenetic evolution, and gene family replication were analyzed. Using the method of candidate gene association analysis, the association between the natural variations of ZmC2s and the heat tolerance of maize seedlings was conducted, and the important heat-tolerant candidate genes of maize ZmC2s gene family were found. The relative gene expression level of the heat-tolerant candidate gene under stress was identified by Real time fluorescent quantitative PCR (RT-qPCR). The subcellular expression sites of heat-tolerant candidate gene were identified by transforming maize protoplasts. A total of 95 maize ZmC2s genes were identified from the reference genome B73 in maize. According to the order of their physical coordinates, 95 maize ZmC2s genes were named from ZmC2-1 to ZmC2-95, respectively. The length of the 95 proteins was 130-2141, the isoelectric point was 4.1-10.8, and the molecular weight was 14.1-230.1. The evolution tree of C2 gene in maize, rice, and sorghum genomes was constructed. We found that C2 genes can be divided into three major cluster branches, and each cluster branch can be subdivided into two small cluster branches. Analyzing the whole genome collinearity data of maize, rice, and sorghum, 59 ZmC2s genes were detected to have corresponding replication genes in rice and sorghum genomes. A candidate-gene based on the association analysis of ZmC2s showed that ZmC2-15/60/91 were important candidate genes for heat tolerance in maize (P ≤ 0.001, MLM), among which ZmC2-15 was the most significantly associated to heat tolerance at seedling stage (P ≤ 0.000,01, MLM), and the relative expression level of ZmC2-15 was up-regulated under various stress treatments. Subcellular localization indicated that ZmC2-15 was localized in the cytoplasm, nuclear membrane, and endoplasmic reticulum. The overexpression of ZmC2-15 improved plant heat tolerance. ZmC2-15 can be used as an important candidate gene for regulating heat tolerance in maize.

Key words: maize, heat tolerance, C2 gene family, association analysis of candidate genes, subcellular localization

Fig. 1

Identification of ZmC2s gene family member and protein physicochemical properties analysis The number of introns (A), the exon number (B), protein molecular weight (C), protein isoelectric point (D), protein length (E), gene name (F), gene physical coordinates (G), and genBank accession number (H) for ZmC2 gene family members."

Fig. 2

Phylogenetic tree of C2 domain genes in maize, rice, and sorghum The phylogenetic tree was generated by comparing the amino acid sequences of the C2 domain in MEGA 7. All genes were divided into three groups, I, II, and III, using the neighbor joining method."

Fig. 3

Analysis of gene replication in maize C2 domain and rice and sorghum The gene duplication analysis of ZmC2s located on chromosomes 1, 2 (A), 3, 4 (B), 5, 6 (C), 7, 8, 9, and 10 (D) of rice and sorghum genome; E: the type and number of C2 gene replication in maize, rice, and sorghum genomes."

Fig. 4

Association analysis between genetic variation of ZmC2s with heat tolerance at seedlings stage in maize A: the number of genetic polymorphism markers in ZmC2s. The significant associated ZmC2s and the number of significant associated markers under (GLM, P ≤ 0.01). B: MLM, P ≤ 0.01; C: MLM, P ≤ 0.001; D: MLM, P ≤ 0.000,01; E: the number of genes and markers with significant associations among them; F: the coordinate of ZmC2s; G: ZmC2s gene names; H: QQplot of association analysis of genetic variation of ZmC2 gene with heat tolerance; association analysis of genetic variations in ZmC2-15 (I), ZmC2-60 (J), and ZmC2-91 (K) genes with heat tolerance in maize seedlings."

Fig. 5

Relative expression pattern of ZmC2-15 genes under high temperature (A), drought (B), low temperature (C), ethephon (D), sodium chloride (E), hydrogen peroxide (F), gibberellin (G), ABA (H), and salicylic acid (I) Bar shows mean ± SD. *: P ≤ 0.05; **: P ≤ 0.01; t-test."

Fig. 6

Localization of ZmC2-15-GFP in maize protoplast A: the subcellular localization of GFP protein in maize protoplast; B: the subcellular localization of ZmC2-15-GFP in maize protoplasts after adding nuclear fuel. ZmC2-15-GFP refers to pGreenII-35SΩ-ZmC2-15-GFP, 35S:GFP refers to pGreenII-35SΩ-GFP."

Fig. 7

Subcellular co-localization of ZmC2-15-GFP with ERD2-mCherry (A), ST-mCherry (B), VHA-A1-mCherry (C), and HDEL- mCherryL (D) in maize protoplasts HDEL-mCherry, ERD2-mCherry, ST-mCherry, and VHA-A1-mCherry are used as the protein localization markers for endoplasmic reticulum, cis golgi, golgi, and reverse golgi, respectively."

Fig. 8

Heat stress tolerance of ZmC2-15 transformed Arabidopsis A: before heat treatment; B: after heat treatment; C: primer locations and semi quantitative analysis; D: the histogram of survival rate of VC and transgenic Arabidopsis. VC represents empty-vector pGreenII-35SΩ transformation of Arabidopsis. Bar shows mean ± SD. The values were calculated from three biological replicates, and the total number of individual plants is 30 for each one of VC, OE1, and OE2. *: P ≤ 0.05; **: P ≤ 0.01; t-test."

[1] Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front Chem, 2018, 6: 26.
doi: 10.3389/fchem.2018.00026 pmid: 29520357
[2] Hunter M C, Smith R G, Schipanski M E, Atwood L W, Mortensen D A. Agriculture in 2050: recalibrating targets for sustainable intensification. BioScience, 2017, 67: 386-391.
doi: 10.1093/biosci/bix010
[3] Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Muller C, Pugh T A, Rolinski S, Schaphoff S, Schmid E, Wang X, Schlenker W, Frieler K. Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun, 2017, 8: 13931.
[4] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract).
[5] Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci, 2000, 5: 241-246.
pmid: 10838614
[6] Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14: S165-S183.
doi: 10.1105/tpc.000596
[7] Hetherington A M, Brownlee C. The generation of Ca2+ signals in plants. Annu Rev Plant Biol, 2004, 55: 401-427.
pmid: 15377226
[8] Liu J P, Zhang C C, Wei C C, Liu X, Wang M G, Yu F F, Xie Q, Tu J M. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol, 2016, 170: 429-443.
doi: 10.1104/pp.15.00879 pmid: 26564152
[9] Abdelrahman M, Ishii T, El-Sayed M, Tran L S P. Heat sensing and lipid reprograming as a signaling switch for heat stress responses in wheat. Plant Cell Physiol, 2020, 61: 1399-1407.
doi: 10.1093/pcp/pcaa072 pmid: 32467978
[10] Guerrero-Valero M, Marin-Vicente C, Gomez-Fernandez J C, Corbalan-Garcia S. The C2 domains of classical PKCs are specific PtdIns(4,5)P2-sensing domains with different affinities for membrane binding. J Mol Biol, 2007, 371: 608-621.
pmid: 17586528
[11] Zhang D P, Aravind L. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene, 2010, 469: 18-30.
doi: 10.1016/j.gene.2010.08.006 pmid: 20713135
[12] Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14(S1): S389-S400.
doi: 10.1105/tpc.001115
[13] Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 1988, 334: 661-665.
doi: 10.1038/334661a0
[14] Ono Y, Fujii T, Igarashi K, Kuno T, Tanaka C, Kikkawa U, Nishizuka Y. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc Natl Acad Sci USA, 1989, 86: 4868-4871.
pmid: 2500657
[15] Ramirez-Ortega F A, Herrera-Pola P S, Toscano-Morales R, Xoconostle-Cazares B, Ruiz-Medrano R. Overexpression of the pumpkin (Cucurbita maxima) 16 kDa phloem protein CmPP16 increases tolerance to water deficit. Plant Signal Behav, 2014, 9: e973823.
[16] Ouelhadj A, Kuschk P, Humbeck K. Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2 domain-like protein. New Phytol, 2006, 170: 261-273.
pmid: 16608452
[17] Yang W Q, Lai Y, Li M N, Xu W Y, Xue Y B. A novel C2-domain phospholipid-binding protein, OsPBP1, is required for pollen fertility in rice. Mol Plant, 2008, 1: 770-785.
doi: 10.1093/mp/ssn035
[18] Qin T, Tian Q Z, Wang G F, Xiong L M. LOWER TEMPERATURE 1 enhances ABA responses and plant drought tolerance by modulating the stability and localization of C2-Domain ABA-related proteins in Arabidopsis. Mol Plant, 2019, 12: 1243-1258.
doi: 10.1016/j.molp.2019.05.002
[19] Zhu Y, Yang H J, Mang H Y G, Hua J. Induction of BAP1 by a moderate decrease in temperature is mediated by ICE1 in Arabidopsis. Plant Physiol, 2011, 155: 580-588.
doi: 10.1104/pp.110.169466
[20] Hou L X, Zhang G K, Zhao F G, Zhu D, Fan X X, Zhang Z, Liu X. VvBAP1 is involved in cold tolerance in Vitis vinifera L. Front Plant Sci, 2018, 9: 726.
doi: 10.3389/fpls.2018.00726
[21] Ye Q, Yu J T, Zhang Z, Hou L X, Liu X. VvBAP1, a grape C2 domain protein, plays a positive regulatory role under heat stress. Front Plant Sci, 2020, 11: 544374.
[22] Liu L J, Song X, He D D, Komma C, Kita A, Virbasius J V, Huang G Q, Bellamy H D, Miki K, Czech M P, Zhou G W. Crystal structure of the C2 domain of class II phosphatidylinositide 3-kinase C2alpha. J Biol Chem, 2006, 281: 4254-4260.
doi: 10.1074/jbc.M510791200 pmid: 16338929
[23] Nalefski E A, Falke J J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci, 1996, 5: 2375-2390.
pmid: 8976547
[24] Finn R D, Clements J, Arndt W, Miller B L, Wheeler T J, Schreiber F, Bateman A, Eddy S R. HMMER web server: 2015 update. Nucleic Acids Res, 2015, 43: W30-38.
doi: 10.1093/nar/gkv397
[25] Marchlerbauer A, Lu S, Anderson J B, Chitsaz F, Derbyshire M K, Deweesescott C, Fong J H, Geer L Y, Geer R C, Gonzales N R. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res, 2011, 39: D225-D229.
[26] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[27] 冯信, 张春梅, 王宏伟. 玉米ZmEXO70s基因家族鉴定及苗期耐热性关联分析. 南方农业学报, 2021, 52: 867-878.
Feng X, Zhang C M, Wang H W. Genome-wide identification of ZmEXO70s gene family in Zea mays L. and association analysis of natural variations in ZmEXO70s genes with thermotolerance in seedlings. J Southern Agric, 2021, 52: 867-878. (in Chinese with English abstract)
[28] Fu J J, Cheng Y B, Linghu J J, Yang X H, Kang L, Zhang Z X, Zhang J, He C, Du X M, Peng Z Y, Wang B, Zhai L H, Dai C M, Xu J B, Wang W D, Li X R, Zheng J, Chen L, Luo L H, Liu J J, Qian X J, Yan J B, Wang J, Wang G Y. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun, 2013, 4: 2832.
doi: 10.1038/ncomms3832 pmid: 24343161
[29] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[30] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565-1572.
doi: 10.1038/nprot.2007.199
[31] Townsley F M, Frigerio G, Pelham H R. Retrieval of HDEL proteins is required for growth of yeast cells. J Cell Biol, 1994, 127: 21-28.
pmid: 7929564
[32] Robinson D G, Aniento F. A model for ERD2 function in higher plants. Front Plant Sci, 2020, 11: 343.
doi: 10.3389/fpls.2020.00343 pmid: 32269585
[33] Wipf D, Pfister C, Mounier A, Leborgne-Castel N, Frommer W B, Courty P E. Identification of putative interactors of Arabidopsis sugar transporters. Trends Plant Sci, 2021, 26: 13-22.
doi: 10.1016/j.tplants.2020.09.009
[34] Lupanga U, Rohrich R, Askani J, Hilmer S, Kiefer C, Krebs M, Kanazawa T, Ueda T, Schumacher K. The Arabidopsis V-ATPase is localized to the TGN/EE via a seed plant-specific motif. eLife, 2020, 9: e60568
doi: 10.7554/eLife.60568
[35] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[36] Kuchipudi S V, Tellabati M, Nelli R K, White G A, Perez B B, Sebastian S, Slomka M J, Brookes S M, Brown I H, Dunham S P, Chang K C. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol J, 2012, 9: 230.
doi: 10.1186/1743-422X-9-230 pmid: 23043930
[37] Wang F W, Deng Y, Zhou Y G, Dong J Y, Chen H, Dong Y Y, Wang N, Li X W, Li H Y. Genome-wide analysis and expression profiling of the phospholipase C gene family in soybean (Glycine max). PLoS One, 2015, 10: e0138467.
[38] Schnable P S, Ware D, Fulton R S, Stein J C, Wei F S, Pasternak S, Liang C Z, Zhang J W, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M, Belter E, Du F Y, Kim K, Abbott R M, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S M, Gillam B, Chen W Z, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J K, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy M J, Mcmahan L, Van Buren P, Vaughn M W, Ying K, Yeh C T, Emrich S J, Jia Y, Kalyanaraman A, Hsia A P, Barbazuk W B, Baucom R S, Brutnell T P, Carpita N C, Chaparro C, Chia J M, Deragon J M, Estill J C, Fu Y, Jeddeloh J A, Han Y J, Lee H, Li P H, Lisch D R, Liu S Z, Liu Z J, Nagel D H, McCann M C, Sanmiguel P, Myers A M, Nettleton D, Nguyen J, Penning B W, Ponnala L, Schneider K L, Schwartz D C, Sharma A, Soderlund C, Springer N M, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber T K, Yang L X, Yu Y, Zhang L F, Zhou S G, Zhu Q H, Bennetzen J L, Dawe R K, Jiang J M, Jiang N, Presting G G, Wessler S R, Aluru S, Martienssen R A, Clifton S W, McCombie W R, Wing R A, Wilson R K. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326: 1112-1115.
[39] Lee T H, Tang H B, Wang X Y, Paterson A H. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res, 2013, 41: D1152-1158.
[40] Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[41] Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development. Plant Cell Rep, 2013, 32: 959-970.
doi: 10.1007/s00299-013-1418-1 pmid: 23535869
[42] Zheng L S, Liu Y T, Chen L, Wang Y, Rui Y N, Huang H Z, Lin S Y, Wang J, Wang Z X, Lin S C, Wu J W. Structure and mechanism of the unique C2 domain of Aida. FEBS J, 2014, 281: 4622-4632.
doi: 10.1111/febs.12966 pmid: 25117763
[43] Rizo J, Sudhof T C. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem, 1998, 273: 15879-15882.
doi: 10.1074/jbc.273.26.15879 pmid: 9632630
[1] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[2] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[3] BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076.
[4] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[5] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[6] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[7] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[8] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[9] CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828.
[10] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[11] LI Lu-Lu, MING Bo, GAO Shang, XIE Rui-Zhi, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun. Characteristic difference in grain in-field drydown between maize cultivars with various maturation [J]. Acta Agronomica Sinica, 2023, 49(6): 1643-1652.
[12] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
[13] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[14] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
[15] YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .