Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2331-2343.doi: 10.3724/SP.J.1006.2023.23069
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HUANG Yu-Jie(), ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei(), DING Shuang-Cheng()
[1] |
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front Chem, 2018, 6: 26.
doi: 10.3389/fchem.2018.00026 pmid: 29520357 |
[2] |
Hunter M C, Smith R G, Schipanski M E, Atwood L W, Mortensen D A. Agriculture in 2050: recalibrating targets for sustainable intensification. BioScience, 2017, 67: 386-391.
doi: 10.1093/biosci/bix010 |
[3] | Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Muller C, Pugh T A, Rolinski S, Schaphoff S, Schmid E, Wang X, Schlenker W, Frieler K. Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun, 2017, 8: 13931. |
[4] |
悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060 |
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract). | |
[5] |
Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci, 2000, 5: 241-246.
pmid: 10838614 |
[6] |
Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14: S165-S183.
doi: 10.1105/tpc.000596 |
[7] |
Hetherington A M, Brownlee C. The generation of Ca2+ signals in plants. Annu Rev Plant Biol, 2004, 55: 401-427.
pmid: 15377226 |
[8] |
Liu J P, Zhang C C, Wei C C, Liu X, Wang M G, Yu F F, Xie Q, Tu J M. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol, 2016, 170: 429-443.
doi: 10.1104/pp.15.00879 pmid: 26564152 |
[9] |
Abdelrahman M, Ishii T, El-Sayed M, Tran L S P. Heat sensing and lipid reprograming as a signaling switch for heat stress responses in wheat. Plant Cell Physiol, 2020, 61: 1399-1407.
doi: 10.1093/pcp/pcaa072 pmid: 32467978 |
[10] |
Guerrero-Valero M, Marin-Vicente C, Gomez-Fernandez J C, Corbalan-Garcia S. The C2 domains of classical PKCs are specific PtdIns(4,5)P2-sensing domains with different affinities for membrane binding. J Mol Biol, 2007, 371: 608-621.
pmid: 17586528 |
[11] |
Zhang D P, Aravind L. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene, 2010, 469: 18-30.
doi: 10.1016/j.gene.2010.08.006 pmid: 20713135 |
[12] |
Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14(S1): S389-S400.
doi: 10.1105/tpc.001115 |
[13] |
Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 1988, 334: 661-665.
doi: 10.1038/334661a0 |
[14] |
Ono Y, Fujii T, Igarashi K, Kuno T, Tanaka C, Kikkawa U, Nishizuka Y. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc Natl Acad Sci USA, 1989, 86: 4868-4871.
pmid: 2500657 |
[15] | Ramirez-Ortega F A, Herrera-Pola P S, Toscano-Morales R, Xoconostle-Cazares B, Ruiz-Medrano R. Overexpression of the pumpkin (Cucurbita maxima) 16 kDa phloem protein CmPP16 increases tolerance to water deficit. Plant Signal Behav, 2014, 9: e973823. |
[16] |
Ouelhadj A, Kuschk P, Humbeck K. Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2 domain-like protein. New Phytol, 2006, 170: 261-273.
pmid: 16608452 |
[17] |
Yang W Q, Lai Y, Li M N, Xu W Y, Xue Y B. A novel C2-domain phospholipid-binding protein, OsPBP1, is required for pollen fertility in rice. Mol Plant, 2008, 1: 770-785.
doi: 10.1093/mp/ssn035 |
[18] |
Qin T, Tian Q Z, Wang G F, Xiong L M. LOWER TEMPERATURE 1 enhances ABA responses and plant drought tolerance by modulating the stability and localization of C2-Domain ABA-related proteins in Arabidopsis. Mol Plant, 2019, 12: 1243-1258.
doi: 10.1016/j.molp.2019.05.002 |
[19] |
Zhu Y, Yang H J, Mang H Y G, Hua J. Induction of BAP1 by a moderate decrease in temperature is mediated by ICE1 in Arabidopsis. Plant Physiol, 2011, 155: 580-588.
doi: 10.1104/pp.110.169466 |
[20] |
Hou L X, Zhang G K, Zhao F G, Zhu D, Fan X X, Zhang Z, Liu X. VvBAP1 is involved in cold tolerance in Vitis vinifera L. Front Plant Sci, 2018, 9: 726.
doi: 10.3389/fpls.2018.00726 |
[21] | Ye Q, Yu J T, Zhang Z, Hou L X, Liu X. VvBAP1, a grape C2 domain protein, plays a positive regulatory role under heat stress. Front Plant Sci, 2020, 11: 544374. |
[22] |
Liu L J, Song X, He D D, Komma C, Kita A, Virbasius J V, Huang G Q, Bellamy H D, Miki K, Czech M P, Zhou G W. Crystal structure of the C2 domain of class II phosphatidylinositide 3-kinase C2alpha. J Biol Chem, 2006, 281: 4254-4260.
doi: 10.1074/jbc.M510791200 pmid: 16338929 |
[23] |
Nalefski E A, Falke J J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci, 1996, 5: 2375-2390.
pmid: 8976547 |
[24] |
Finn R D, Clements J, Arndt W, Miller B L, Wheeler T J, Schreiber F, Bateman A, Eddy S R. HMMER web server: 2015 update. Nucleic Acids Res, 2015, 43: W30-38.
doi: 10.1093/nar/gkv397 |
[25] | Marchlerbauer A, Lu S, Anderson J B, Chitsaz F, Derbyshire M K, Deweesescott C, Fong J H, Geer L Y, Geer R C, Gonzales N R. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res, 2011, 39: D225-D229. |
[26] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[27] | 冯信, 张春梅, 王宏伟. 玉米ZmEXO70s基因家族鉴定及苗期耐热性关联分析. 南方农业学报, 2021, 52: 867-878. |
Feng X, Zhang C M, Wang H W. Genome-wide identification of ZmEXO70s gene family in Zea mays L. and association analysis of natural variations in ZmEXO70s genes with thermotolerance in seedlings. J Southern Agric, 2021, 52: 867-878. (in Chinese with English abstract) | |
[28] |
Fu J J, Cheng Y B, Linghu J J, Yang X H, Kang L, Zhang Z X, Zhang J, He C, Du X M, Peng Z Y, Wang B, Zhai L H, Dai C M, Xu J B, Wang W D, Li X R, Zheng J, Chen L, Luo L H, Liu J J, Qian X J, Yan J B, Wang J, Wang G Y. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun, 2013, 4: 2832.
doi: 10.1038/ncomms3832 pmid: 24343161 |
[29] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[30] |
Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565-1572.
doi: 10.1038/nprot.2007.199 |
[31] |
Townsley F M, Frigerio G, Pelham H R. Retrieval of HDEL proteins is required for growth of yeast cells. J Cell Biol, 1994, 127: 21-28.
pmid: 7929564 |
[32] |
Robinson D G, Aniento F. A model for ERD2 function in higher plants. Front Plant Sci, 2020, 11: 343.
doi: 10.3389/fpls.2020.00343 pmid: 32269585 |
[33] |
Wipf D, Pfister C, Mounier A, Leborgne-Castel N, Frommer W B, Courty P E. Identification of putative interactors of Arabidopsis sugar transporters. Trends Plant Sci, 2021, 26: 13-22.
doi: 10.1016/j.tplants.2020.09.009 |
[34] |
Lupanga U, Rohrich R, Askani J, Hilmer S, Kiefer C, Krebs M, Kanazawa T, Ueda T, Schumacher K. The Arabidopsis V-ATPase is localized to the TGN/EE via a seed plant-specific motif. eLife, 2020, 9: e60568
doi: 10.7554/eLife.60568 |
[35] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079 |
[36] |
Kuchipudi S V, Tellabati M, Nelli R K, White G A, Perez B B, Sebastian S, Slomka M J, Brookes S M, Brown I H, Dunham S P, Chang K C. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol J, 2012, 9: 230.
doi: 10.1186/1743-422X-9-230 pmid: 23043930 |
[37] | Wang F W, Deng Y, Zhou Y G, Dong J Y, Chen H, Dong Y Y, Wang N, Li X W, Li H Y. Genome-wide analysis and expression profiling of the phospholipase C gene family in soybean (Glycine max). PLoS One, 2015, 10: e0138467. |
[38] | Schnable P S, Ware D, Fulton R S, Stein J C, Wei F S, Pasternak S, Liang C Z, Zhang J W, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M, Belter E, Du F Y, Kim K, Abbott R M, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S M, Gillam B, Chen W Z, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J K, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy M J, Mcmahan L, Van Buren P, Vaughn M W, Ying K, Yeh C T, Emrich S J, Jia Y, Kalyanaraman A, Hsia A P, Barbazuk W B, Baucom R S, Brutnell T P, Carpita N C, Chaparro C, Chia J M, Deragon J M, Estill J C, Fu Y, Jeddeloh J A, Han Y J, Lee H, Li P H, Lisch D R, Liu S Z, Liu Z J, Nagel D H, McCann M C, Sanmiguel P, Myers A M, Nettleton D, Nguyen J, Penning B W, Ponnala L, Schneider K L, Schwartz D C, Sharma A, Soderlund C, Springer N M, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber T K, Yang L X, Yu Y, Zhang L F, Zhou S G, Zhu Q H, Bennetzen J L, Dawe R K, Jiang J M, Jiang N, Presting G G, Wessler S R, Aluru S, Martienssen R A, Clifton S W, McCombie W R, Wing R A, Wilson R K. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326: 1112-1115. |
[39] | Lee T H, Tang H B, Wang X Y, Paterson A H. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res, 2013, 41: D1152-1158. |
[40] |
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[41] |
Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development. Plant Cell Rep, 2013, 32: 959-970.
doi: 10.1007/s00299-013-1418-1 pmid: 23535869 |
[42] |
Zheng L S, Liu Y T, Chen L, Wang Y, Rui Y N, Huang H Z, Lin S Y, Wang J, Wang Z X, Lin S C, Wu J W. Structure and mechanism of the unique C2 domain of Aida. FEBS J, 2014, 281: 4622-4632.
doi: 10.1111/febs.12966 pmid: 25117763 |
[43] |
Rizo J, Sudhof T C. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem, 1998, 273: 15879-15882.
doi: 10.1074/jbc.273.26.15879 pmid: 9632630 |
[1] | AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445. |
[2] | YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330. |
[3] | BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076. |
[4] | WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087. |
[5] | WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096. |
[6] | WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929. |
[7] | LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022. |
[8] | MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757. |
[9] | CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828. |
[10] | ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629. |
[11] | LI Lu-Lu, MING Bo, GAO Shang, XIE Rui-Zhi, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun. Characteristic difference in grain in-field drydown between maize cultivars with various maturation [J]. Acta Agronomica Sinica, 2023, 49(6): 1643-1652. |
[12] | WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362. |
[13] | LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304. |
[14] | ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409. |
[15] | YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248. |
|