Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1643-1652.doi: 10.3724/SP.J.1006.2023.23043

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristic difference in grain in-field drydown between maize cultivars with various maturation

LI Lu-Lu1,2,3(), MING Bo1,*(), GAO Shang1, XIE Rui-Zhi1, WANG Ke-Ru1, HOU Peng1, XUE Jun1, LI Shao-Kun1,*()   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, Hainan, China
    3Hainan Yazhou Bay Seed Laboratory, Sanya 572025, Hainan, China
  • Received:2022-05-19 Accepted:2022-10-10 Online:2023-06-12 Published:2022-10-18
  • Contact: *E-mail: lishaokun@caas.cn;E-mail: mingbo@caas.cn, Tel: 010-82108891
  • Supported by:
    National Natural Science Foundation of China(31971849);China Agriculture Research System of MOF and MARA(CARS-02-25);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202004)

Abstract:

The grain moisture concentration at harvest stage varies vastly among maize cultivars with various maturities, which is an important factor affecting mechanical grain harvesting and grain quality. Differences in maturation result in various environmental conditions for grain drying in the field, thus increasing the difficulty of comparing the characteristics of grain dehydration between cultivars. Maize cultivars with different maturities were seeded eight times at 10-day intervals from early spring to late summer in 2018 and 2019, supplying the different environmental conditions for grain in-field drying. The dynamics of grain moisture concentration were measured for all cultivars to analyze varietal differences in characterization of grain in-field drydown. Grain moisture concentration at harvest was positively correlated to growth period (r = 0.810*, 2018; r = 0.912**, 2019). Usually, the early-maturing cultivars had lower moisture concentration at harvest stage than the late-maturing cultivars. Grain moisture concentration at physiological maturity was negatively correlated to grain filling period (r = -0.484**). It was higher for early-maturing cultivars than late-maturing cultivars. Grain moisture loss rates of pre- (r = -0.655**) and post-maturity (r = -0.492**) were both inversely associated with the growth period, and were faster for early- than late-maturing cultivars. Furthermore, there was a significantly positive correlation between the grain moisture loss rate of pre-maturity and post-maturity (r = 0.466**). Overall, the cultivars with high moisture loss rate before maturity declined moisture quickly after maturity, while there was the particular cultivar with high moisture loss rate before maturity but low moisture loss rate after maturity. Duration of growth period affected grain dehydration rate. Generally, compared to late-maturing cultivar, grain of early-maturing cultivar had faster drying rates of pre- and post-maturity and lower moisture concentration at harvest stage. However, there was the noticeable case of particular cultivar when breeding and screening maize with rapid grain dehydration.

Key words: maize, growth period, grain, moisture concentration, moisture loss rate

Table 1

Planting dates in the experiment (month/day)"

年份
Year
第1播期
The first sowing
第2播期
The second sowing
第3播期
The third sowing
第4播期
The fourth sowing
第5播期
The fifth sowing
第6播期
The sixth sowing
第7播期
The seventh sowing
第8播期
The eighth sowing
2018 4/19 4/30 5/10 5/24 6/3 6/13 6/23 7/3
2019 4/24 5/4 5/14 5/24 6/3 6/13 6/23 7/3

Fig. 1

Conditions of air temperature, precipitation, wind speed, and relative humidity of experimental field The solid lines represent the mean air temperature and the shading represents the lowest and highest air temperature on panels A and B."

Fig. 2

Bilinear model fitted for the dynamic of grain weight (A) and the staged linear model for grain moisture concentration (B)"

Fig. 3

Growth progresses of different maize cultivars in the fifth sowing date (left panels), grain moisture concentration on October 1 (middle panels), and correlation analysis between the moisture concentration and the duration of growth period (right panels) * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively. HT1: Hetian 1; FK139: Fengken 139; ZY8911: Zeyu 8911; JNK728: Jingnongke 728; DK517: Dika 517; XY335: Xianyu 335; ZD958: Zhengdan 958; DK653: Dika 653."

Fig. 4

Grain moisture concentration at physiological maturity and its relationship with grain-filling duration. Different lowercase letters indicate significant differences at the 0.05 probability level. ** indicate significant differences at the 0.01 probability level. × represents the sample mean. Abbreviations are the same as those given in Fig. 3."

Fig. 5

Moisture loss rates of pre- and post-maturity of all maize cultivars Different lowercase letters indicate significant differences at the 0.05 probability level. × represents the sample mean, and the dotted lines indicate the lower sample borders of cultivar HT1. Abbreviations are the same as those given in Fig. 3."

Table 2

Correlation analysis between the moisture loss rates and the growth periods"

性状
Trait
出苗-吐丝
Emergence-silking
吐丝-成熟
Silking-maturity
出苗-成熟
Emergence-maturity
生理成熟前脱水速率Moisture loss rate of pre-maturity stage -0.211* -0.641** -0.655**
生理成熟后脱水速率Moisture loss rate of post-maturity stage -0.183* -0.464** -0.492**
总脱水速率Moisture loss rate of pre- and post-maturity stage -0.287** -0.509** -0.592**

Fig. 6

Relationship between the moisture loss rates of pre- and post-maturity stages The solid lines are the linear fitting equation and the 95% confidence interval, the vertical dotted line is the average of the moisture loss rate before physiological maturity, and the horizontal dotted line is the average of the moisture loss after physiological maturity. Abbreviations are the same as those given in Fig. 3."

[1] Borrás L, Gambín B L. Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach. Field Crops Res, 2010, 118: 1-12.
doi: 10.1016/j.fcr.2010.04.010
[2] Brooking I R. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Res, 1990, 23: 55-68.
doi: 10.1016/0378-4290(90)90097-U
[3] Gambín B L, Borrás L, Otegui M E. Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2007, 101: 1-9.
doi: 10.1016/j.fcr.2006.09.001
[4] Sala R G, Andrade F H, Westgate M E. Maize kernel moisture at physiological maturity as affected by the source-sink relationship during grain filling. Crop Sci, 2007, 47: 711-716.
doi: 10.2135/cropsci2006.06.0381
[5] Sala R G, Westgate M E, Andrade F H. Source/sink ratio and the relationship between maximum water content, maximum volume, and final dry weight of maize kernels. Field Crops Res, 2007, 101: 19-25.
doi: 10.1016/j.fcr.2006.09.004
[6] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018, 51: 1878-1889.
doi: 10.3864/j.issn.0578-1752.2018.10.007
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018, 51: 1878-1889. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.10.007
[7] 万泽花, 任佰朝, 赵斌, 刘鹏, 张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化. 作物学报, 2019, 45: 1446-1453.
doi: 10.3724/SP.J.1006.2019.83078
Wan Z H, Ren B Z, Zhao B, Liu P, Zhang J W. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities. Acta Agron Sin, 2019, 45: 1446-1453. (in Chinese with English abstract)
[8] 荆彦平. 小麦和玉米颖果的生长及胚乳细胞的发育. 扬州大学硕士学位论文, 江苏扬州, 2014.
Jing Y P. The Caryopsis Growth and the Endosperm Cell Development in Wheat and Maize. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2014 (in Chinese with English abstract).
[9] Henderson S M, Perry R L. Agricultural Process Engineering. New York: John Wiley & Sons, Inc. 1955. pp 277-287.
[10] Van Ee G R, Kline G L. CORNSIM: a corn production model for central Iowa. Trans ASAE, 1990, 33: 757-763.
doi: 10.13031/2013.31397
[11] Piggott S D. Simulation of Corn in-Field Dry Down. MS Thesis of Michigan State University, Michigan, America, 2010.
[12] Maiorano A, Fanchini D, Donatelli M. MIMYCS. Moisture, a process-based model of moisture content in developing maize kernels. Eur J Agron, 2014, 59: 86-95.
doi: 10.1016/j.eja.2014.05.011
[13] 王金涛, 董心亮, 肖宇, 刘青松, 张冬梅, 韩金玲, 刘毅, 高广瑞, 刘占卯, 孙宏勇. 基于扩散理论的华北春玉米生理成熟后籽粒脱水过程分析. 中国农业生态学报, 2020, 28: 545-557.
Wang J T, Dong X L, Xiao Y, Liu Q S, Zhang D M, Han J L, Liu Y, Gao G D, Liu Z M, Sun H Y. Analysis of kernel dry down process after physiological maturity of spring maize based on diffusion theory in the North China. Chin J Eco-Agric, 2020, 28: 545-557. (in Chinese with English abstract)
[14] Gao S, Ming B, Li L L, Yin X B, Xue J, Wang K R, Xie R Z, Li S K. Relationship and distribution of in-field dry-down and equilibrium in maize grain moisture content. Agric For Meteorol, 2021, 304/305: 108409.
doi: 10.1016/j.agrformet.2021.108409
[15] Baron V S, Daynard T B. Factors affecting grain dry-down in early-maturing European and Canadian corn hybrids. Can J Plant Sci, 1984, 64: 465-474.
doi: 10.4141/cjps84-069
[16] Mišević D, Alexander D E, Dumanović J, Kerečki B, Ratković S. Grain moisture loss rate of high-oil and standard-oil maize hybrids. Agron J, 1988, 80: 841-845.
doi: 10.2134/agronj1988.00021962008000050032x
[17] Newton S D, Eagles H A. Development traits affecting time to low ear moisture in maize. Plant Breed, 1991, 106: 58-67.
doi: 10.1111/pbr.1991.106.issue-1
[18] Yang J, Carena M J, Uphaus J. Area under the dry down curve (AUDDC): a method to evaluate rate of dry down in maize. Crop Sci, 2010, 50: 2347-2354.
doi: 10.2135/cropsci2010.02.0098
[19] 张亚军, 张林, 周艳春, 王振华. 玉米杂交种生理成熟后子粒田间自然脱水速率差异分析. 作物杂志, 2010, (2): 58-61.
Zhang Y J, Zhang L, Zhou Y C, Wang Z H. Analysis of dehydration rate after physiological maturity in maize hybrids. Crops, 2010, (2): 58-61. (in Chinese with English abstract)
[20] 李德新, 宫秀杰, 钱春荣. 玉米籽粒灌浆及脱水速率品种差异与相关分析. 中国农学通报, 2011, 27(27): 92-97.
Li D X, Gong X J, Qian C R. Difference and correlation analysis of grain milking rate and grain dehydrating rate on maize. Chin Agric Sci Bull, 2011, 27(27): 92-97 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2011-0831
[21] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50: 2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
Wang K R, Li S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017, 50: 2027-2035. (in Chinese with English abstract)
[22] Hillson M T, Penny L H. Dry matter accumulation and moisture loss during maturation of corn grain. Agron J, 1965, 57: 150-153.
doi: 10.2134/agronj1965.00021962005700020007x
[23] Hunter R B, Mortimore G, Gerrish E E, Kannenberg L W. Field drying of flint and dent endosperm maize. Crop Sci, 1979, 19: 401-402.
doi: 10.2135/cropsci1979.0011183X001900030031x
[24] 李璐璐, 谢瑞芝, 范盼盼, 雷晓鹏, 王克如, 侯鹏, 李少昆. 郑单958与先玉335子粒脱水特征研究. 玉米科学, 2016, 24(2): 57-61.
Li L L, Xie R Z, Fan P P, Lei X P, Wang K R, Hou P, Li S K. Study on dehydration in kernel between Zhengdan 958 and Xianyu 335. J Maize Sci, 2016, 24(2): 57-61. (in Chinese with English abstract)
[25] Hallauer A R, Russell W A. Estimates of maturity and its inheritance in maize. Crop Sci, 1962, 2: 289-294.
doi: 10.2135/cropsci1962.0011183X000200040006x
[26] Borrás L, Zinselmeier C, Senior M L, Westgate M E, Muszynski M G. Characterization of grain-filling patterns in diverse maize germplasm. Crop Sci, 2009, 49: 999-1009.
doi: 10.2135/cropsci2008.08.0475
[27] Prado S A, López C G, Gambín B L, Abertondo V J, Borrás L. Dissecting the genetic basis of physiological processes determining maize kernel weight using the IBM (B73×Mo17) Syn4 population. Field Crops Res, 2013, 145: 33-43.
doi: 10.1016/j.fcr.2013.02.002
[28] Prado S A, López C G, Senior M L, Borrás L. The genetic architecture of maize (Zea mays L.) kernel weight determination. Genes Genom Genet, 2014, 4: 1611-1621.
[29] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, (2): 88-92.
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai Region. Crops, 2017, (2): 88-92. (in Chinese with English abstract)
[30] 张立国, 范骐骥, 陈喜昌, 李波, 张宇, 修丽丽. 玉米生理成熟后籽粒脱水速率与主要农艺性状的相关分析. 黑龙江农业科学, 2012, (3): 1-5.
Zhang L G, Fan Q J, Chen X C, Li B, Zhang Z, Xiu L L. Correlation analysis on dry-down rate and main agricultural traits in maize after physiological maturity. Heilongjiang Agric Sci, 2012, (3): 1-5. (in Chinese with English abstract)
[31] 张立国, 张林, 管春云, 金益, 王振华, 任晓亮, 宫纪娟. 玉米生理成熟后籽粒脱水速率与品质性状的相关分析. 东北农业大学学报, 2007, 38: 582-585.
Zhang L G, Zhang L, Guan C Y, Jin Y, Wang Z H, Ren X L, Gong J J. Correlation analysis on dry-down rate and quality traits in corn after physiological maturity. J Northeast Agric Univ, 2007, 38: 582-585. (in Chinese with English abstract)
[32] 李淑芳, 张春宵, 路明, 刘文国, 李晓辉. 玉米籽粒自然脱水速率研究进展. 分子植物育种, 2014, 12: 825-829.
Li S F, Zhang C X, Lu M, Liu W G, Li X H. Research development of kernel dehydration rate in maize. Mol Plant Breed, 2014, 12: 825-829. (in Chinese with English abstract)
[33] 雷蕾, 王威振, 方伟, 张子学, 刘正, 李文阳. 影响夏玉米生理成熟后子粒脱水的相关因素分析. 玉米科学, 2016, 24(3): 103-109.
Lei L, Wang W Z, Fang W, Zhang Z X, Liu Z, Li W Y. Analysis of factors affecting the kernel dehydrating after physiological mature in summer maize. J Maize Sci, 2016, 24(3): 103-109. (in Chinese with English abstract)
[34] 代力强, 吴律, 董青松, 吴楠, 张卓, 王丕武. 玉米生理成熟后子粒自然脱水速率的遗传变异与相关分析. 吉林农业大学学报, 2016, 38: 261-265.
Dai L Q, Wu L, Dong Q S, Wu N, Zhang Z, Wang P W. Analysis of genetic variation and correlation of dehydration rate of maize after physiological maturity. J Jilin Agric Univ, 2016, 38: 261-265. (in Chinese with English abstract)
[35] Gambín B L, Borrás L, Otegui M E. Source-sink relations and kernel weight differences in maize temperate hybrids. Field Crops Res, 2006, 95: 316-326.
doi: 10.1016/j.fcr.2005.04.002
[36] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺. 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018, 44: 137-143.
doi: 10.3724/SP.J.1006.2018.00137
Ren B Z, Gao F, Wei Y J, Dong S T, Zhao B, Liu P, Zhang J W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agron Sin, 2018, 44: 137-143. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00137
[37] Troyer A F, Ambrose W B. Plant characteristics affecting field drying rate of ear corn. Crop Sci, 1971, 11: 529-531.
doi: 10.2135/cropsci1971.0011183X001100040019x
[38] 吕香玲, 兰进好, 张宝石. 玉米果穗脱水速率的研究. 西北农林科技大学学报(自然科学版), 2006, 34(2): 48-52.
Lyu X L, Lan J H, Zhang B S. Study on ear moisture loss rate in maize. J Northwest Agric For Univ (Nat Sci Edn), 2006, 34(2): 48-52. (in Chinese with English abstract)
[39] 谭福忠, 韩翠波, 邹双利, 刘振江, 籍依安. 极早熟玉米品种籽粒脱水特性的初步研究. 中国农学通报, 2008, 24(7): 161-168.
Tan F Z, Han C B, Zou S L, Liu Z J, Ji Y A. Elementary study on kernel dry-down traits in earliest-maturity maize hybrid. Chin Agric Sci Bull, 2008, 24(7): 161-168. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.20086052
[40] Crane P L, Miles S R, Newman J E. Factors associated with varietal differences in rate of field drying in corn. Agron J, 1959, 51: 318-320.
doi: 10.2134/agronj1959.00021962005100060003x
[41] Cross H Z. A selection procedure for ear drying-rates in maize. Euphytica, 1985, 34: 409-418.
doi: 10.1007/BF00022936
[42] Cavalieri A J, Smith O S. Grain filling and field drying of a set of maize hybrids released from 1930 to 1982. Crop Sci, 1985, 25: 856-860.
doi: 10.2135/cropsci1985.0011183X002500050031x
[43] Cross H Z, Kabir K M. Evaluation of field dry-down rates in early maize. Crop Sci, 1989, 29: 54-58.
doi: 10.2135/cropsci1989.0011183X002900010012x
[44] 孙生林, 张树光, 薛继生, 张天英, 高树仁, 向春阳. 玉米粒含水量与果穗性状相关性的研究. 黑龙江八一农垦大学学报, 1993, 7(1): 12-17.
Sun S L, Zhang S G, Xue J S, Zhang T Y, Gao S R, Xiang C Y. Study on correlation between kernel dehydration and ear characters of maize. Heilongjiang August First Land Reclam Univ, 1993, 7(1): 12-17. (in Chinese with English abstract)
[45] 张树光, 冯学民, 高树仁, 孙生林. 玉米成熟期籽粒含水量与果穗性状的关系. 中国农学通报, 1994, 10(2): 15-17.
Zhang S G, Feng X M, Gao S R, Sun S L. Study on kernel moisture content and ear characters of maize hybrids with different maturity time. Chin Agric Sci Bull, 1994, 10(2): 15-17. (in Chinese with English abstract)
[46] 张春荣, 岳竞之, 张莉, 郜永强, 孙迷平. 玉米子粒含水量与穗部性状的相关分析. 玉米科学, 2007, 15(1): 59-61.
Zhang C R, Yue J Z, Zhang L, Gao Y Q, Sun J P. Correlation analysis of kernel water content and ear characteristics of maize. J Maize Sci, 2007, 15(1): 59-61. (in Chinese with English abstract)
[47] 闫淑琴, 苏俊, 李春霞, 龚士琛, 宋锡章, 李国良, 扈光辉, 王明泉, 贲利. 玉米籽粒灌浆, 脱水速率的相关与通径分析. 黑龙江农业科学, 2007, (4): 1-4.
Yan S Q, Su J, Li C X, Gong S C, Song X Z, Li G L, Hu G H, Wang M Q, Ben L. Correlation analysis of dry-down and grain filling rate in maize. Heilongjiang Agric Sci, 2007, (4): 1-4. (in Chinese with English abstract)
[48] 张林, 张宝石, 王霞, 王振华. 玉米收获期籽粒含水量与主要农艺性状相关分析. 东北农业大学学报, 2009, 40(10): 9-12.
Zhang L, Zhang B S, Wang X, Wang Z H. Correlation analysis of agronomic characters and grain moisture in maize harvest time. J Northeast Agric Univ, 2009, 40(10): 9-12. (in Chinese with English abstract)
[49] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 玉米品种穗部性状差异及其对籽粒脱水的影响. 中国农业科学, 2018, 51: 1855-1867.
doi: 10.3864/j.issn.0578-1752.2018.10.005
Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Differences of ear characters in maize and their effects on grain dehydration. Sci Agric Sin, 2018, 51: 1855-1867 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.10.005
[1] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[2] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[3] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Me, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[4] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[5] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[6] CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828.
[7] WANG Yuan, WANG Jin-Song, DONG Er-Wei, LIU Qiu-Xia, WU Ai-Lian, JIAO Xiao-Yan. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets [J]. Acta Agronomica Sinica, 2023, 49(7): 1968-1978.
[8] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[9] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[10] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[11] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
[12] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[13] LIU Er-Hua, ZHOU Guang-Sheng, WU Bing-Yi, SONG Yan-Ling, HE Qi-Jin, LYU Xiao-Min, ZHOU Meng-Zi. Response of reproductive growth period length to climate warming and technological progress in the middle and lower reaches of the Yangtze River during 1981-2010 in single-cropping rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1305-1315.
[14] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[15] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .