Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1397-1409.doi: 10.3724/SP.J.1006.2023.23003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering

ZHANG Jun-Jie1(), CHEN Jin-Ping2, TANG Yu-Lou1, ZHANG Rui3, CAO Hong-Zhang1, WANG Li-Juan1, MA Meng-Jin1, WANG Hao1, WANG Yong-Chao1, GUO Jia-Meng1, KRISHNA SV Jagadish4, YANG Qing-Hua1, SHAO Rui-Xin1,*()   

  1. 1Agronomy College of Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, Zhengzhou 450046, Henan, China
    2National Field Science Observation and Research Station of Shangqiu Agricultural Ecology, Shangqiu 476000, Henan, China
    3Henan Province Agricultural Technology Extension General Station, Zhengzhou 450046, Henan, China
    4Department of Plant and Soil Science, Texas Tech University, Lubbock 79410, Texas, USA
  • Received:2022-01-07 Accepted:2022-10-10 Online:2023-05-12 Published:2022-10-26
  • Contact: *E-mail: shao_rui_xin@126.com
  • Supported by:
    Henan University Science and Technology Innovation Talents Support Plan(20HASTIT036);Sub-project of the National Key Research and Development Program of China(2021YFD1901002-8);Central Plains Talents Program—Central Plains Youth Top Talents

Abstract:

Drought before and after anthesis is one of the important factors affecting the decrease of summer maize yield in Huang-Huai-Hai Rivers region. From 2020 to 2021, a pool planting control experiment was carried out. To study the effect of regulated deficit irrigation before and after anthesis on photosynthetic characteristics, dry matter accumulation and distribution, and yield of summer maize after re-watering, four water gradients were set within 28 days before and after anthesis, including 100% Eapotranspiration (ETc) (CK), 70% ETC (Water deficit, WD1), 40% ETC (WD2), and 0 ETC (WD3) using Zhongkeyu 505 as the test materials. The result showed that the photosynthetic performance of summer maize leaves did not recover after re-watering under drought stress. The SPAD value, net photosynthetic rate, population leaf area index, photosynthetic potential and net assimilation rate were lower than the control, and the dry matter accumulation of the plants was blocked, photosynthetic potential and net assimilation rate were lower than the control, and the dry matter accumulation of the plants was blocked, resulting in the decrease of grain storage capacity. Drought stress prolonged the anthesis-silking interval for 1-3 day (s), increased the seed abortion rate, and decreased the grain number per row and 100-seed weight after re-watering, especially the seed abortion rate in WD3 was significantly increased by 220.71% and 100.73% in 2020 and 2021, respectively. The yield of WD1, WD2, WD3 was decreased by 14.52%, 36.69%, 39.83% and 19.62%, 45.18%, 54.42% in 2020 and 2021, respectively. In conclusion, after re-watering under water deficit before and after anthesis, the photosynthetic performance of maize was still inhibited, which further affected the accumulation and distribution of photosynthetic assimilates, and ultimately leading to a significant decrease in storage capacity and yield.

Key words: anthesis, drought, summer maize, re-watering, photosynthetic characteristics, yield

Fig. 1

Distribution of temperature and precipitation during summer maize growth period in 2020 and 2021 A: the temperature and precipitation distribution of maize in the summer of 2020; B: the temperature and precipitation distribution of maize in the summer of 2021."

Fig. 2

Effects of water deficit before and after anthesis on the anthesis-silking interval of summer maize Data are means ± standard deviations (SDs) (n = 3). The lowercase letters in the figure indicate a significant difference of 0.05 between different treatments. CK: 100% ETC (normal water treatment); WD1: 70% ETC (mild drought); WD2: 40% ETC (moderate drought); WD3: 0 ETC (severe drought)."

Fig. 3

Effects of water deficit before and after anthesis on photosynthetic characteristics of summer maize leaves after re-watering DAP indicates days after pollination; A and B indicates leaf SPAD and PIABS in 2020 and 2021 respectively. C and D indicates the intercellular CO2 concentration (Ci) and net photosynthetic rate (Pn) of leaves at 20 days after pollination in 2021. * indicates that there is a significant difference between treatment and CK in this period. Data are means ± SD (n = 3). Different lowercase letters in the figure indicate that the difference between different treatments in the same period is significant at the 0.05 probability level. Treatments are the same as those given in Fig. 2."

Fig. 4

Effects of water deficit before and after anthesis on leaf area index, photosynthetic potential and net assimilation rate of summer maize population after re-watering DAP indicates days after pollination; A indicates leaf area index at 20 and 30 days after pollination in 2020 and 2021; B indicates photosynthetic potential in 2020 and 2021; C indicates net assimilation rate in 2020 and 2021 respectively. * represents the significant difference among different treatments in the same period (P < 0.05). Data are means ± SD (n = 3). The lowercase letters in the figure indicate significant differences between different treatments at the 0.05 probability level. Treatments are the same as those given in Fig. 2."

Fig. 5

Effects of water deficit on grain storage capacity and kernels filling index of summer maize after re-watering DAP: days after pollination; A: grain storage at 10 days and 20 days after pollination in 2020 and 2021, respectively; B: latent storage capacity (LSC) at 10 and 20 days after pollination in 2020 and 2021, respectively; C: kernels filling index (KFI) at 10 days and 20 days after pollination in 2020 and 2021, respectively; Data are means ± SDs (n = 3). Different lowercase letters in the figure indicate significant difference at the 0.05 probability level among the different treatments at the same time. Treatments are the same as those given in Fig. 2."

Fig. 6

Effects of water deficit before and after flowering on dry matter accumulation and grain contribution rate DAP indicates days after pollination; A indicates the accumulation of stems, leaves, sheaths, tassel + husk + cob, grain at 10 days after pollination (DAP10) and Harvest in 2020 and 2021 respectively. B indicates the contribution of material reuse to grain in 2020 and 2021 respectively; * represents the significant difference among different treatments in the same period (P < 0.05). Data are means ± SDs (n = 3). Different lowercase letters in the figure indicate that there is significant difference at the 0.05 probability level between different treatments. Treatments are the same as those given in Fig. 2."

Table 1

Effect of water deficit before and after flowering on yield, water use efficiency and ear characteristics of summer maize"

处理
Treatment
穗长
Ear length
(cm)
穗粗
Ear diameter (mm)
穗行数
Ear row
行粒数
Grain number per row
秃尖长
Bald tip length (cm)
败育率
The abortive rate (%)
穗粒数
Grain number
per ear
百粒重
Hundred seeds weight (g)
产量
Yield
(g plant-1)
收获指数Harvest index 水分利用效率 Water use efficiency
(kg hm-2 mm-1)
2020
CK 16.51±1.26 a 46.01±1.18 a 14.00±1.15 a 35.60±2.87 a 2.13±0.16 a 5.89±0.77 c 493.83±46.50 a 30.03±0.59 a 154.79±1.64 a 0.54±0.03 a 19.58±0.05 a
WD1 15.98±1.24 ab 44.79±1.38 b 14.57±1.22 a 32.47±3.38 a 2.19±0.20 a 10.73±1.05 b 478.50±45.94 a 27.33±1.59 b 132.31±2.23 b 0.46±0.03 b 16.88±0.09 b
WD2 15.31±1.25 b 43.88±1.63 bc 14.00±0.76 a 28.20±4.54 b 2.51±0.24 a 11.99±1.94 b 389.85±59.90 b 27.13±1.14 b 98.00±4.85 c 0.41±0.03 c 12.33±0.03 c
WD3 15.00±1.82 b 42.91±1.85 c 14.40±0.89 a 28.44±5.79 b 2.62±0.28 a 18.89±3.14 a 369.00±64.40 b 25.18±2.29 c 93.14±2.51 c 0.36±0.04 d 11.77±0.07 d
2021
CK 16.06±0.96 a 39.95±2.30 a 14.00±1.41 a 37.60±1.17 a 0.49±0.13 b 9.61±2.07 c 401.00±27.73 a 28.74±2.00 a 132.57±1.53 a 0.44±0.04 a 13.71±0.06 a
WD1 15.42±1.54 a 39.47±1.38 a 14.50±1.00 a 34.47±1.88 b 0.77±0.01 b 12.80±1.05 b 352.45±22.37 b 23.32±0.93 b 106.56±1.60 b 0.41±0.05 ab 11.06±0.06 b
WD2 14.50±0.93 b 36.63±1.25 b 14.40±0.89 a 28.80±2.14 c 1.44±0.02 a 13.93±3.06 b 291.31±30.72 c 22.01±1.24 b 72.67±1.17 c 0.37±0.04 ab 7.43±0.02 c
WD3 13.18±0.69 b 37.44±1.41 b 14.67±1.15 a 28.24±2.79 c 1.76±0.39 a 19.29±1.19 a 237.60±29.32 d 19.93±1.62 c 60.43±1.41 d 0.25±0.03 b 6.22±0.04 d

Table 2

Correlation analysis of yield and ear characteristics, anthesis-silking interval, grain storage under water deficit before and after flowering in 2020"

ASI DGS LAI PP B EL ED GNR AR GNE HSW Y
开花吐丝间隔 Anthesis-silking interval (ASI) 1
DAP10库容 DAP10 grain storage (DGS) -0.87* 1
叶面积指数 Leaf area index (LAI) 0.51 0.46 1
光合势 Photosynthetic potential (PP) 0.65 0.45* 0.23 1
总生物量 Biomass (B) -0.55 0.42 0.35 0.18 1
穗长 Ear length (EL) -0.20 0.62 0.35 0.12 0.21 1
穗粗 Ear diameter (ED) -0.55 0.56 0.55* 0.43 0.10 0.52** 1
行粒数 Grain number per row (GNR) -0.76** 0.63 0.52* 0.31 0.14 0.82** 0.68** 1
败育率 Abortive rate (AR) 0.89** -0.87** 0.58* -0.44 -0.59** -0.41* -0.53** -0.44* 1
穗粒数 Grain number per ear (GNE) 0.74* 0.45* 0.39* 0.37* 0.51* 0.39** 0.37* 0.53** -0.72** 1
百粒重 Hundred seeds weight (HSW) -0.96** 0.82** 0.619** 0.64** 0.57** 0.33* 0.28 0.32* -0.77** 0.44** 1
产量 Yield (Y) -0.89** 0.83** 0.387 0.53* 0.48 0.38 0.60* 0.55* -0.79** 0.72** 0.88** 1

Table 3

Correlation analysis of yield and ear characteristics, anthesis-silking interval, storage capacity, photosynthetic gas exchange parameters under water deficit before and after flowering in 2021"

ASI GS NPR ICC LAI PP B EL ED GNR AR GPE HSW Y
开花吐丝间隔 Anthesis-silking interval (ASI) 1
库容 Grain storage (GS) -0.42 1
净光合速率 Net photosynthetic rate (NPR) 0.73 -0.49* 1
胞间CO2浓度 Intercellular CO2 concentration (ICC) 0.82 -0.64* -0.68* 1
叶面积指数 Leaf area index (LAI) 0.89** 0.634 0.80* -0.82 1
光合势 Photosynthetic potential (PP) 0.90** 0.84** 0.754* -0.85** 0..88** 1
总生物量 Biomass (B) -0.84 0.70 0.91** -0.87** 0.90** 0.86** 1
穗长 Ear length (EL) -0.84* 0.34 0.88** -0.57 0.80* 0.73* 0.87** 1
穗粗 Ear diameter (ED) -0.40 0.26 0.65* -0.50 0.67 0.47 0.71* 0.54* 1
行粒数 Grain number per row (GNR) -0.78** 0.66** 0.68* -0.61 0.857* 0.77* 0.77 0.66** 0.57* 1
败育率 Abortive rate (AR) 0.89** -0.63** -0.84** 0.73* -0.83* -0.83** -0.89** -0.71** -0.41 -0.64** 1
穗粒数 Grain number per ear (GPE) -0.87** 0.66** 0.82** -0.78** 0.85** 0.87** 0.86** 0.68** 0.49* 0.69** -0.87** 1
百粒重 Hundred seeds weight (HSW) -0.78* 0.68** 0.80** -0.65* 0.819** 0.86** 0.96** 0.60** 0.57* 0.77** -0.76** 0.72** 1
产量 Yield (Y) -0.90* 0.70* 0.84** -0.93** 0.939** 0.94** 0.96** 0.81** 0.66* 0.86** -0.85** 0.91** 0.92** 1
[1] Zhao T B, Dai A G. The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. J Climate, 2015, 28: 4490-4512.
doi: 10.1175/JCLI-D-14-00363.1
[2] Brás T A, Seixas J, Carvalhais N, Jägermeyr J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ Res Lett, 2021, 16: 65012-65025.
doi: 10.1088/1748-9326/abf004
[3] Sah R P, Chakraborty M, Prasad K, Pandit M, Tudu V K, Chakravarty M K, Narayan S C, Rana M, Moharana D. Impact of water deficit stress in maize: phenology and yield components. Sci Rep, 2020, 11: 2944-2958.
doi: 10.1038/s41598-021-82522-8
[4] 于振文. 作物栽培学各论北方本. 北京: 中国农业出版社, 2013. pp 69-111.
Yu Z W. Monographs on Northern Origin of Crop Cultivation. Beijing: China Agriculture Press, 2013. pp 69-111. (in Chinese)
[5] 赵成凤, 王晨光, 李红杰, 郑学慧, 杨梅, 张仁和. 干旱及复水条件下外源褪黑素对玉米叶片光合作用的影响. 生态学报, 2021, 41: 1431-1439.
Zhao C F, Wang C G, Li H J, Zheng X H, Yang M, Zhang R H. Effects of exogenous melatonin on photosynthesis of maize leaves under drought stress and re-watering. Acta Ecol Sin, 2021, 41: 1431-1439. (in Chinese with English abstract)
[6] Liu S L, Wu W B, Yang X G, Yang P, Sun J. Exploring drought dynamics and its impacts on maize yield in the Huang-Huai-Hai farming region of China. Clim Change, 2020, 163: 415-430.
doi: 10.1007/s10584-020-02880-6
[7] Hu Z H, Wu Z R, Zhang Y X, Li Q, Islam A R M T, Pan C C. Risk assessment of drought disaster in summer maize cultivated areas of the Huang-Huai-Hai plain, eastern China. Environ Monit Assess, 2021, 193: 441-455.
doi: 10.1007/s10661-021-09224-6 pmid: 34165640
[8] Fernie A R, Bachem C W B, Helariutta Y, Neuhaus H E, Prat S, Ruan Y L, Stitt M, Sweetlove L J, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. Nat Plants, 2020, 6: 55-66.
doi: 10.1038/s41477-020-0590-x pmid: 32042154
[9] Song X Y, Zhou G S, He Q J. Critical leaf water content for maize photosynthesis under drought stress and its response to re-watering. Sustainability. 2021, 13: 7218-7232.
doi: 10.3390/su13137218
[10] Wang Y F, Guo Y Y, Zhao C F, Li H J, Zhang R H. Exogenous melatonin achieves drought tolerance by improving photosynthesis in maize seedlings leaves. Russ J Plant Physiol, 2021, 68: 718-727.
doi: 10.1134/S102144372104021X
[11] 贾双杰. 穗期干旱胁迫对玉米光合性能和雌花序发育的影响. 河南农业大学硕士学位论文, 河南郑州, 2020.
Jia S J. Effect of Drought Stress on Photosynthetic Performance and Female Inflorescence Development of Maize in Panicle Stage. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2020. (in Chinese with English abstract)
[12] 王佳旭, 王宏伟, 姜文野, 赵彬, 满艳苹, 张旷野, 刁玉霖, 朱康宁. 不同种植方式对玉米干物质积累、分配和产量的影响. 玉米科学, 2021, 29(5): 128-136.
Wang J X, Wang H W, Jiang W Y, Zhao B, Man Y P, Zhang K Y, Diao Y L, Zhu K N. Effect of different planting patterns on dry matter accumulation, distribution and yield of maize. J Maize Sci, 2021, 29(5): 128-136. (in Chinese with English abstract)
[13] Jia Y Y, Xiao W X, Ye Y S, Wang X L, Liu X L, Wang G H, Li G, Wang Y B. Response of photosynthetic performance to drought duration and re-watering in maize. Agronomy, 2020, 10: 533-549.
doi: 10.3390/agronomy10040533
[14] 董智强, 李曼华, 李楠, 薛晓萍, 陈辰, 张继波, 赵红, 侯英雨, 潘志华. 山东夏玉米土壤干旱阈值研究与影响评价. 中国农业科学, 2020, 53: 4376-4387.
doi: 10.3864/j.issn.0578-1752.2020.21.007
Dong Z Q, Li M H, Lin N, Xue X P, Chen C, Zhang J B, Zhao H, Hou Y Y, Pan Z H. The thresholds of soil drought and its impacts on summer maize in Shandong province. Sci Agric Sin, 2020, 53: 4376-4387. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.21.007
[15] Zhang X C, Myrold D D, Shi L L, Kuzyakov Y, Dai H C, Hoang D T T, Dippold M A, Meng X T, Song X N, Li Z Y, Zhou J, Razavi B S. Resistance of microbial community and its functional sensitivity in the rhizosphere hotspots to drought. Soil Biol Biochem, 2021, 161: 108360-108371.
doi: 10.1016/j.soilbio.2021.108360
[16] Shao R X, Jia S J, Tang Y L, Zhang J J, Li H W, L L P, Chen J H, Guo J M, Wang H, Yang Q H, Wang Y C, Liu T X, Zhao X. Soil water deficit suppresses development of maize ear by altering metabolism and photosynthesis. Environ Exp Bot, 2021, 192: 104651-104660.
doi: 10.1016/j.envexpbot.2021.104651
[17] 贾双杰, 李红伟, 江艳平, 赵国强, 王和洲, 杨慎骄, 杨青华, 郭家萌, 邵瑞鑫. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响. 生态学报, 2020, 40: 854-863.
Jia S J, Li H W, Jiang Y P, Zhao G Q, Wang H Z, Yang S J, Yang Q H, Guo J M, Shao R X. Effects of drought on photosynthesis and ear development characteristics of maize. Acta Ecol Sin, 2020, 40: 854-863. (in Chinese with English abstract)
[18] Li Y B, Tao H B, Zhang B C, Huang S B, Wang P. Timing of water deficit limits maize kernel setting in association with changes in the source-flow-sink relationship. Front Plant Sci, 2018, 9: 1326-1336.
doi: 10.3389/fpls.2018.01326 pmid: 30405644
[19] Li F W, Zhang M J, Liu Y Z. Quantitative research on drought loss sensitivity of summer maize based on AquaCrop model. Nat Hazards, 2022, 112: 1065-1084.
doi: 10.1007/s11069-022-05218-w
[20] Liu X W, Yu Y H, Huang S B, Xu C C, Wang X Y, Gao J, Meng Q F, Wang P. The impact of drought and heat stress at flowering on maize kernel filling: Insights from the field and laboratory. Agric For Meteorol, 2022, 312: 108733-108744.
doi: 10.1016/j.agrformet.2021.108733
[21] Shemi R, Wang R, Gheith, El-Sayed M S, Hussain H A, Hussain A, Muhammad I, Cholidah L, Zhang K, Zhang S, Wang L C. Effects of salicylic acid, zinc and glycine betaine on morpho- physiological growth and yield of maize under drought stress. Sci Rep, 2021, 11: 3195-3207.
doi: 10.1038/s41598-021-82264-7
[22] Tigkas D, Vangelis H, Tsakiris G. Implementing crop evapotranspiration in RDI for farm-level drought evaluation and adaptation under climate change conditions. Water Resour Manag, 2020, 34: 4329-4343.
doi: 10.1007/s11269-020-02593-6
[23] 李鹏民, 高辉远, trasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31: 559-566.
Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. J Plant Physiol Mol Biol, 2005, 31: 559-566. (in Chinese with English abstract)
[24] Xue H Y, Wang S F, Zhang X, Zhang Z Y. The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence. Chin J Eco-Agric, 2021, 29: 870-879.
[25] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45: 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019, 45: 1868-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.93011
[26] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应. 作物学报, 2020, 46: 1617-1627.
doi: 10.3724/SP.J.1006.2020.03002
Ma Z B, Dong X R, Tang H H, Yan P, Lu L, Wang Q Y, Fang M Y, Wang Q, Dong Z Q. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics. Acta Agron Sin, 2020, 46: 1617-1627. (in Chinese with English abstract)
[27] Molla S H, Nakasathien S, Ali A, Kha A, Alam R, Hossain A, Farooq M, Sabagh M F. Influence of nitrogen application on dry biomass allocation and translocation in two maize varieties under short pre-anthesis and prolonged bracketing flowering periods of drought. Arch Agron Soil Sci, 2019, 65: 928-944.
doi: 10.1080/03650340.2018.1538557
[28] 李宁, 段留生, 李建民, 翟志席, 李召虎. 播期与密度组合对不同穗型小麦品种花后旗叶光合特性、籽粒库容能力及产量的影响. 麦类作物学报, 2010, 30: 296-302.
Li N, Duan L S, Li J M, Zhai Z X, Li Z H. Effect of sowing date and planting density on flag leaf photosynthesis, storage capacity and yield in different spike type varieties. J Triticeae Crops, 2010, 30: 296-302. (in Chinese with English abstract)
[29] 蔡晓, 王东, 吴祥运, 吴雨晴, 林祥, 张俊鹏. 氮肥减施对夏玉米生长及水氮利用效率的影响. 玉米科学, 2022, 30(1): 158-165.
Cai X, Wang D, Wu X Y, Wu Y Q, Lin X, Zhang J P. Effects of nitrogen reduction on growth and water-nitrogen use efficiency of summer maize. J Maize Sci, 2022, 30(1): 158-165. (in Chinese with English abstract)
[30] 杨慧. 不同耕法和密度对春玉米产量及根系的调控研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018.
Yang H. The Regulation of Yield and Roots Formations through Different Tillage Method and Density Treatments. MS Thesis of Northeastern Agricultural University, Harbin, Heilongjiang, China, 2018. (in Chinese with English abstract)
[31] Qi M, Liu X D, Li Y B, Song H, Yin Z T, Zhang F, He Q J, Xu Z Z, Zhou G S. Photosynthetic resistance and resilience under drought, flooding and re-watering in maize plants. Photosynth Res, 2021, 148: 1-15.
doi: 10.1007/s11120-021-00825-3
[32] Simkin A J, Kapoor L, Doss C G P, Hofmann T A, Lawson T, Ramamoorthy S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth Res, 2022, 152: 23-42.
doi: 10.1007/s11120-021-00892-6
[33] 夏璐, 赵蕊, 王怡针, 金海燕, 吴锡冬, 葛均筑, 臧凤艳, 李子芳, 王金龙. 干旱胁迫对夏玉米光合作用和叶绿素荧光特性的影响. 华北农学报, 2019, 34(3): 102-110.
doi: 10.7668/hbnxb.201751385
Xia L, Zhao R, Wang Y Z, Jin H Y, Wu X D, Ge J Z, Zang F Y, Li Z F, Wang J L. Effect of drought stress on photosynthesis and chlorophyll fluorescence characteristics of summer maize. Acta Agric Boreali-Sin, 2019, 34(3): 102-110. (in Chinese with English abstract)
[34] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异. 作物学报, 2021, 47: 1351-1359.
doi: 10.3724/SP.J.1006.2021.03051
Li J, Wang H Z, Liu P, Zhang J W, Zhao B, Ren B C. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize. Acta Agron Sin, 2021, 47: 1351-1359. (in Chinese with English abstract)
[35] 穆心愿, 夏来坤, 谷利敏, 张凤启, 张君, 丁勇, 齐建双, 唐保军, 赵发欣, 邢建伟. 花期干旱胁迫对不同夏玉米品种花后干物质积累运转及产量的影响. 南方农业学报, 2021, 52: 931-941.
Mu X Y, Xia L K, Gu L M, Zhang F Q, Zhang J, Ding Y, Qi J S, Tang B J, Zhao F X, Xing J W. Effects of drought stress during flowering on post-flowering dry matter accumulation and transfer and yield of different maize cultivars. J Southern Agric, 2021, 52: 931-941. (in Chinese with English abstract)
[36] Jahangirlou M R, Akbari G A, Alahdadi I, Soufizadeh S, Parsons D. Phenotypic traits, grain yield and yield components of maize cultivars under combinations of management practices in semi-arid conditions of Iran. Int J Plant Prod, 2021, 15: 459-471.
doi: 10.1007/s42106-021-00151-7
[37] Yu Y, Qian C R, Gu W R, Li C F. Responses of root characteristic parameters and plant dry matter accumulation, distribution and transportation to nitrogen levels for spring maize in Northeast China. Agriculture, 2021, 11: 308-331
doi: 10.3390/agriculture11040308
[38] 胡旦旦, 李荣发, 刘鹏, 董树亭, 赵斌, 张吉旺, 任佰朝. 密植条件下玉米品种混播提高籽粒灌浆性能和产量. 中国农业科学, 2021, 54: 1856-1868.
doi: 10.3864/j.issn.0578-1752.2021.09.004
Hu D D, Li R F, Liu P, Dong S T, Zhao B, Zhang J W, Ren B C. Mixed-cropping improved on grain filling characteristics and yield of maize under high planting densities. Sci Agric Sin, 2021, 54: 1856-1868. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.09.004
[39] Lucas B, Lucas N V M. Maize reproductive development and kernel set under limited plant growth environments. J Exp Bot, 2018, 69: 3235-3243.
doi: 10.1093/jxb/erx452 pmid: 29304259
[40] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响. 作物学报, 2021, 47: 1324-1331.
doi: 10.3724/SP.J.1006.2021.03045
Gao Z, Liang X G, Zhang L, Zhao X, Du X, Cui Y H, Zhou S L. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain. Acta Agron Sin, 2021, 47: 1324-1331. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.03045
[41] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞. 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015, 23: 383-391.
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P. Effects of drought on ear development and yield of maize. Chin J Eco-Agric, 2015, 23: 383-391. (in Chinese with English abstract)
[1] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[2] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[3] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[4] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[5] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[6] LEI Xin-Hui, LENG Jia-Jun, TAO Jin-Cai, WAN Chen-Xi, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, FENG Bai-Li, GAO Jin-Feng. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1678-1689.
[7] YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531.
[8] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[9] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
[10] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[11] YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248.
[12] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[13] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[14] WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089.
[15] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .