Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1573-1583.doi: 10.3724/SP.J.1006.2023.21028

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance

ZHU Xu-Dong1(), YANG Lan-Feng1, CHEN Yuan-Yuan1, HOU Ze-Hao1,2, LUO Yi-Rou1, XIONG Ze-Hao1, FANG Zheng-Wu1,*()   

  1. 1College of Agriculture, Yangtze University/Hubei Center for Collaborative Innovation of Grain Industry, Jingzhou 434025, Hubei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-04-18 Accepted:2022-09-05 Online:2023-06-12 Published:2022-09-15
  • Contact: *E-mail: fangzhengwu88@163.com
  • Supported by:
    National Natural Science Foundation of China(31671755)

Abstract:

SGT1 (Suppressor of the G2 Allele of skP1) is an inhibitor of skp1-4, which plays an important role in the abiotic stress response of plants. Based on the early transcriptomics and proteinomics analyses of common buckwheat under drought stress, a FeSGT1 gene was screened and cloned, which contained a 1086 bp open reading frame encoding 361 amino acids and 3 domains including TPR, CS, and SGS. Homologous protein comparison showed that FeSGT1 was closely related to CqSGT1 (XP_021726759.1), BvSGT1 (XP_010671588.1), and SoSGT1 (XP_021839743.1). Besides, FeSGT1 gene encoded membrane localization protein. The relative expression levels revealed that FeSGT1 tended to be up-regulated within 24 hours of drought stress. The expression of FeSGT1 gene peaked at 12 hours and began to decline after 24 hours under salt, low temperature (4℃), and ABA treatments. Overexpression of FeSGT1 gene in transgenic Arabidopsis not only conferred drought and salt tolerance, but also significantly increased root length, fresh weight, and survival rate compared with the wild type (WT) plant, accompanied by the elevated activities of catalase (CAT), the lowered malonaldehyde (MDA) and H2O2 contents, thus allowing plants to better adapt to adverse environments. Our results provided information in the exploring of the molecular regulation mechanism responding to drought tolerance in common buckwheat.

Key words: Common buckwheat (Fagopyrum esculentum), FeSGT1, transgenic Arabidopsis, drought resistance

Table 1

Summary of primer sequence"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Purpose
FeSGT1-F ATGGCGTCCGATCTCGAAAAG ORF扩增
FeSGT1-R TTAGTATTCCCATTTCTTCACCTC Amplification of ORF
Actin-QF ACCTTGCTGGACGTGACCTTAC 荧光定量内参基因
Actin-QR CCATCAGGAAGCTCATAGTTC Reference gene of qRT-PCR
FeSGT1-QF ATCACGCTGAACTCTTCGCA 荧光定量PCR
FeSGT1-QR TGCGTTCATCACACTCACGA Quantitative real time-PCR
pH-FeSGT1-F CTCGAGATGGCCGGCCCTGATATTTTG 亚细胞定位
pH-FeSGT1-R CCTAGGATCCTCTTGGCTCTCATC Subcellular Localization
pBI-FeSGT1-F CTCGAGATGGCCGGCCCTGATATTTTG 转基因拟南芥
pBI-FeSGT1-R CCCGGGCTAATCCTCTTGGCTCTCATC Transgenic Arabidopsis
p121-SGT1-F TTTGGAGAGGACCTCGACCT 转基因拟南芥鉴定
p121-SGT1-R TTAGTATTCCCATTTCTTCACCTC Identification of transgenic Arabidopsis

Fig. 1

Identification and structural analysis of FeSGT1 in common buckwheat A: multiple alignment of FeSGT1 with other plant SGT1 proteins; B: Phylogenetic tree analysis of FeSGT1 protein; C: 3D structure analysis of FeSGT1 protein."

Fig. 2

Subcellular localization of FeSGT1 Subcellular localization of FeSGT1 protein in tobacco leaves. The green indicates GFP signals, and the red indicates chloroplast autofluorescence."

Fig. 3

Expression analysis of FeSGT1 in common buckwheat * and ** indicate significantly different at the 0.05 and 0.01 probability levels, respectively. The error bars indicate ± SD (n = 3)."

Fig. 4

Phenotype analysis of FeSGT1 transgenic Arabidopsis under drought treatment A: seed germination assays of WT and OE lines under drought stress. B: the germination rates of WT and OE lines under drought stress; the germination rate was calculated for the next 5 days. C: root length assays of WT and OE lines under drought stress. D: The total root lengths and fresh weights of WT and OE lines under drought stress; * indicates significantly different at the 0.05 probability level."

Fig. 5

Ectopic expression of FeSGT1 enhanced drought tolerance in transgenic Arabidopsis A: phenotypes of 3-week-old WT and OE lines under drought stress. B: the survival rates of WT and OE lines under drought condition was monitored 7 days after rewatering. C-E: the physiological indicators of WT and OE lines under normal and drought treatments, including MDA (C), H2O2 (D) contents, and CAT (E) activities. * and ** indicate significantly different at the 0.05 and 0.01 probability levels, respectively."

Fig. 6

Phenotype analysis of FeSGT1 transgenic plants under salt treatment A: seed germination assays of WT and OE lines under salt stress. B: the germination rates of WT and OE lines under salt stress; the germination rate was calculated for the next 5 days. C: root length assays of WT and OE lines under salt stress. D: the total root lengths and fresh weights of WT and OE lines under salt stress; * indicates significantly different at the 0.05 probability level."

Fig. 7

Ectopic expression of FeSGT1 enhanced salt tolerance in transgenic Arabidopsis A: phenotypes of 3-week-old WT and OE lines under salt stress. B: the survival rates of WT and OE lines under salt stress. C-E: the physiological indicators of WT and OE lines under normal and salt treatments, including MDA (C), H2O2 (D) contents, and CAT (E) activities; * indicates significantly different at the 0.05 probability level."

[1] 万燕, 韦爽, 贾晓凤, 刘曼, 谭茂玲, 宋超, 向达兵, 赵钢. 荞麦抗旱性研究进展. 作物杂志, 2015, (4): 23-26.
Wan Y, Wei S, Jia X F, Liu M, Tan M L, Song C, Xiang D B, Zhao G. Advances in drought resistance of buckwheat. Crops, 2015, (4): 23-26. (in Chinese with English abstract)
[2] 冯佰利, 姚爱华, 高金峰, 高小丽, 柴岩. 中国荞麦优势区域布局与发展研究. 中国农学通报, 2005, 21(3): 375-377.
Feng B L, Yao A H, Gao J F, Gao X L, Cai Y. Study on regional distribution and development of buckwheat in China. Chin Agric Sci Bull, 2005, 21(3): 375-377. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.0503375
[3] Fang Z W, Xu X Y, Gao J F, Wang P K, Liu Z X, Feng B L. Characterization of FeDREB1 promoter involved in cold- and drought-inducible expression from common buckwheat (Fagopyrum esculentum). Genet Mol Res, 2015, 14: 7990-8000.
doi: 10.4238/2015.July.17.7 pmid: 26214481
[4] Chen L H, Zhang B, Xu Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H(+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res, 2008, 17: 121-132.
doi: 10.1007/s11248-007-9085-z
[5] Płażek A, Hura K, Hura T, Słomka A, Hornyák M, Sychta K. Synthesis of heat-shock proteins HSP-70 and HSP-90 in flowers of common buckwheat (Fagopyrum esculentum) under thermal stress. Crop Past Sci, 2020, 71: 760-767.
doi: 10.1071/CP20011
[6] Ohta M, Schumaker K S, Zhu J K. Mechanisms Underlying Plant Tolerance to Abiotic Stresses. Boston, MA: Springer US, 2006. pp 360-385.
[7] Xiang X Y, Chen J, Xu W X, Qiu J R, Song L, Wang J T, Tang R, Chen D, Jiang C Z, Huang Z. Dehydration-induced WRKY transcriptional factor MfWRKY70 of Myrothamnus flabellifolia enhanced drought and salinity tolerance in Arabidopsis. Biomolecules, 2021, 11: 327.
doi: 10.3390/biom11020327
[8] Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella L R, Xu G, Chao D Y, Li J, Wang P Y, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J K. Plant abiotic stress response and nutrient use efficiency. Sci China: Life Sci, 2020, 63: 635-674.
doi: 10.1007/s11427-020-1683-x
[9] Schachtman D, Liu W. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci, 1999, 4: 281-287.
pmid: 10407444
[10] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1
[11] Forner M Á, Rodríguez J, Primo E, Iglesias D J. Hydraulic and chemical responses of citrus seedlings to drought and osmotic stress. J Plant Growth Regul, 2011, 30: 353-366.
doi: 10.1007/s00344-011-9197-9
[12] Patade V Y, Suprasanna P, Bapat V A. Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. J Plant Growth Regul, 2008, 55: 169-173.
[13] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217-223.
pmid: 10837265
[14] Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science, 2002, 295: 2073-2076.
doi: 10.1126/science.1067554
[15] Austin M J, Muskett P, Kahn K, Feys B J, Jones J D, Parker J E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science, 2002, 295: 2077-2080.
pmid: 11847308
[16] Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z F. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep, 2011, 39: 969-987.
doi: 10.1007/s11033-011-0823-1
[17] Meldau S, Baldwin I T, Wu J. For security and stability: SGT1 in plant defense and development. Plant Signal Behav, 2011, 6: 1479-1482.
doi: 10.4161/psb.6.10.17708
[18] Zhang X C, Millet Y A, Cheng Z, Bush J, Ausubel F M. Jasmonate signaling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. Nat Plant, 2015, 1: 15049.
doi: 10.1038/nplants.2015.49
[19] Shirasu K. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol, 2009, 60: 139-164.
doi: 10.1146/annurev.arplant.59.032607.092906 pmid: 19014346
[20] Muskett P, Parker J. Role of SGT1 in the regulation of plant R gene signaling. Microbes Infect, 2003, 5: 969-976.
pmid: 12941389
[21] Shanmugam A, Thamilarasan S K, Park J I, Jung M Y, Nou I S. Characterization and abiotic stress-responsive expression analysis of SGT1 genes in Brassica oleracea. Genome, 2016, 59: 243-251.
doi: 10.1139/gen-2015-0128 pmid: 26966988
[22] Li R, Yang R, Zheng W, Wu L, Zhang C, Zhang H. Melatonin promotes SGT1-involved signals to ameliorate drought stress adaption in rice. Int J Mol Sci, 2022, 23: 599.
doi: 10.3390/ijms23020599
[23] Fu D Q, Ghabrial S, Kachroo A. GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant-Microbe Interact, 2009, 22: 86-95.
doi: 10.1094/MPMI-22-1-0086
[24] Noël L D, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte C P, Bhat R, Pochon N, Colby T, Parker J E. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell, 2007, 19: 4061-4076.
doi: 10.1105/tpc.107.051896
[25] Bhattarai K K, Li Q, Liu Y, Dinesh-Kumar S P, Kaloshian I. The Mi-1-mediated pest resistance requires HSP90 and SGT1. Plant Physiol, 2007, 144: 312-323.
[26] Gray W M, Muskett P R, Chuang H W, Parker J E. Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell, 2003, 15: 1310-1319.
doi: 10.1105/tpc.010884
[27] Elsasser S, Gali R R, Schwickart M, Larsen C N, Leggett D S, Müller B, Feng M T, Tübing F, Dittmar G A, Finley D. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol, 2002, 4: 725-730.
pmid: 12198498
[28] Lee S S, Cho H S, Yoon G M, Ahn J W, Kim H H, Pai H S. Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum: NtCDPK1 interacts with Rpn3 homolog. Plant J, 2003, 33: 825-840.
doi: 10.1046/j.1365-313X.2003.01672.x
[29] Hou Z H, Yin J L, Lu Y F, Song J H, Wang S P, Wei S D, Liu Z X, Zhang Y X, Fang Z W. Transcriptomic analysis reveals the temporal and spatial changes in physiological process and gene expression in common buckwheat (Fagopyrum esculentum Moench) grown under drought stress. Agronomy (Basel), 2019, 9: 569.
doi: 10.3390/agronomy9100569
[30] 侯泽豪, 卢奕霏, 孙坤坤, 王书平, 张迎新, 刘志雄, 方正武. 甜荞资源萌发期耐旱性鉴定体系建立与种质筛选. 干旱地区农业研究, 2021, 39(1): 95-102.
Hou Z H, Lu Y F, Sun K K, Wang S P, Zhang Y X, Liu Z X, Fang Z W. Establishment of buckwheat drought tolerance identification system at germination stage and screening of drought-tolerance germplasms. Agric Res Arid Areas, 2021, 39(1): 95-102. (in Chinese with English abstract)
[31] 蔡坤妍. 小麦抗病相关蛋白TaSGT1靶标鉴定及其功能分析. 西北农林科技大学硕士学位论文, 陕西咸阳, 2021.
Cai K Y. Identification and function analysis of target of wheat disease-resistance protein TaSGT1. MS Thesis of Northwest A&F University, Xianyang, Shaanxi, China, 2021. (in Chinese with English abstract)
[32] Cazalé A C, Clément M, Chiarenza S, Roncato M A, Pochon N, Creff A, Marin E, Leonhardt N, Noël L D. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J Exp Bot, 2009, 60: 2653-2664.
doi: 10.1093/jxb/erp109
[33] Mayor A, Martinon F, De Smedt T, Pétrilli V, Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol, 2007, 8: 497-503.
doi: 10.1038/ni1459
[34] Yu Y, Yang S, Bian L, Yu K, Meng X, Zhang G, Xu W, Yao W, Guo D. Identification of C3H2C3-type ring E3 ubiquitin ligase in grapevine and characterization of drought resistance function of VyRCHC114. BMC Plant Biol, 2021, 21: 422.
doi: 10.1186/s12870-021-03162-8
[35] Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig D F, Takahashi H. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol, 2009, 50: 924-934.
doi: 10.1093/pcp/pcp044 pmid: 19304739
[36] Meldau S, Baldwin I T, Wu J. SGT1 regulates wounding- and herbivory-induced jasmonic acid accumulation and Nicotiana attenuata’s resistance to the specialist lepidopteran herbivore Manduca sexta. New Phytol, 2011, 189: 1143-1156.
doi: 10.1111/nph.2011.189.issue-4
[37] Wang Y, Mostafa S, Zeng W, Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci, 2021, 22: 8568.
doi: 10.3390/ijms22168568
[38] Tan X, Calderon-Villalobos L I, Sharon M, Zheng C, Robinson C V, Estelle M, Zheng N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 2007, 446: 640-645.
doi: 10.1038/nature05731
[39] Luna C M, Pastori G M, Driscoll S, Groten K, Bernard S, Foyer C H. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot, 2005, 56: 417-423.
doi: 10.1093/jxb/eri039
[1] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[2] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[3] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[6] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[7] Yin-Ping XU, Yong-Dong PAN, Qiang-De LIU, Yuan-Hu YAO, Yan-Chun JIA, Cheng REN, Ke-Cang HUO, Wen-Qing CHEN, Feng ZHAO, Qi-Jun BAO, Hua-Yu ZHANG. Drought resistance identification and drought resistance indexes screening of barley resources at mature period [J]. Acta Agronomica Sinica, 2020, 46(3): 448-461.
[8] ZHANG Xiao-Xiao,PAN Ying-Hong,REN Fu-Li,PU Wei-Jun,WANG Dao-Ping,LI Yu-Bin,LU Ping,LI Gui-Ying,ZHU Li. Establishment of an accurate evaluation method for drought resistance based on multilevel phenotype analysis in sorghum [J]. Acta Agronomica Sinica, 2019, 45(11): 1735-1745.
[9] WANG Can,ZHOU Ling-Bo,ZHANG Guo-Bing,ZHANG Li-Yi,XU Yan,GAO Xu,JIANG Ne,SHAO Ming-Bo. Identification and Indices Screening of Drought Resistance at Adult Plant Stage in Job’s Tears Germplasm Resources [J]. Acta Agron Sin, 2017, 43(09): 1381-1394.
[10] DO Thanh-Trung, LI Jian, ZHANG Feng-Juan, YANG Li-Tao, LI Yang-Rui,XING Yong-Xiu. Analysis of Differential Proteome in Relation to Drought Resistance in Sugarcane [J]. Acta Agron Sin, 2017, 43(09): 1337-1346.
[11] XU Wen,SHEN Hao,GUO Jun,YU Xiao-Cong,LI Xiang,YANG Yan-Hui,MA Xiao,ZHAO Shi-Jie,SONG Jian-Min. Drought Resistance of Wheat NILs with Different Cuticular Wax Contents in Flag Leaf [J]. Acta Agron Sin, 2016, 42(11): 1700-1707.
[12] WU Qi,ZHOU Yu-Fei,GAO Yue,ZHANG Jiao,CHEN Bing-Ru,XU Wen-Juan,HUANG Rui-Dong. Screening and Identification for Drought Resistance during Germination in Sorghum Cultivars [J]. Acta Agron Sin, 2016, 42(08): 1233-1246.
[13] WANG Lan-Fen, WU Jing, JING Rui-Lian, CHENG Xu-Zhen, WANG Shu-Min. Identification of Mungbean Germplasm Resources Resistant to Drought at Adult Stage [J]. Acta Agron Sin, 2015, 41(08): 1287-1294.
[14] LI Long,WANG Lan-Fen,WU Jing,JING Rui-Lian,WANG Shu-Min*. Identification of Drought Resistence at Seedlings Stage in Common Bean (Phaseolus vulgaris L.) Varieties [J]. Acta Agron Sin, 2015, 41(06): 963-971.
[15] WANG Lan-Fen,WU Jing,JING Rui-Lian,CHENG Xu-Zhen,WANG Shu-Min?. Drought Resistance Identification of Mungbean Germplasm Resources at Seedlings Stage [J]. Acta Agron Sin, 2015, 41(01): 145-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .