Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 570-582.doi: 10.3724/SP.J.1006.2023.21008

• RESEARCH NOTES • Previous Articles    

Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages

MENG Yu1(), TIAN Wen-Zhong2, WEN Peng-Fei1, DING Zhi-Qiang2, ZHANG Xue-Pin2, HE Li1, DUAN Jian-Zhao1, LIU Wan-Dai1, GUO Tian-Cai1, FENG Wei1,*()   

  1. 1Agronomy College of Henan Agriculture University / Henna Technology Innovation Centre of Wheat, Zhengzhou 450046, Henan, China
    2Wheat Research Institute, Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471000, Henan, China
  • Received:2022-01-28 Accepted:2022-05-05 Online:2022-05-26 Published:2022-05-26
  • Contact: FENG Wei E-mail:mengyu9540@163.com;fengwei78@126.com
  • Supported by:
    National “13th Five-Year” Key Research and Development Program of China(2017YFD0300204);National Natural Science Foundation of China(32271991)

Abstract:

Screening of drought resistance identification indicators and establishment of evaluation models can provide a basis for the selection and optimization of drought-resistant wheat varieties. Taking 23 winter wheat varieties mainly promoted in Huanghuaihai wheat area as the test materials, setting two treatments of drought and full irrigation, measuring 12 morphological and physiological parameters of wheat at the jointing, booting, flowering, and grain filling stages, and calculating drought resistance coefficient for each morphological and physiological trait. Principal component analysis, membership function method, grey relational degree method, cluster analysis, and stepwise regression analysis were used to comprehensively evaluate the drought resistance of wheat varieties. The results showed that under drought stress, the variation range of traits at booting and filling stages was relatively large (7.4%-41.7%), while the variation range of traits at jointing and flowering stage was relatively small (9.63%-31.63%). The correlation analysis revealed that there was a significant or extremely significant correlation between the measured agronomic parameters at each growth stage. Further, principal component analysis was used to convert the 12 trait parameters into 6 mutually independent comprehensive indicators at jointing, booting, and flowering stages, and 5 mutually independent comprehensive indicators at filling stage, and the cumulative contribution rate reached 89.03%, 88.69%, 87.68%, and 85.83% for above four stages, respectively. The membership function method was introduced to calculate the comprehensive drought resistance evaluation value (SD value) for each growth stage, and the quantitative relationship between SD value and yield drought resistance index (DRI) was analyzed, and the fitting precision of the simulation equation were the highest 0.744 at anthesis and the lowest 0.679 at filling. In order to better integrate the information of drought resistance at different stages, the first four parameters with the highest correlation with SD value at each stage were selected through the grey correlation degree and combined to form an evaluation index system for the whole growth period. The principal component and membership function analysis were carried out again to calculate the comprehensive evaluation value of drought resistance based on whole growth stages (MD), and this derived MD value can explain 87.8% of DRI variation, which represented an 18.1% increase over determinative coefficient of the best single stage. According to MD value, the varieties can be divided into four categories, moderate drought resistance, moderately weak drought resistance, weak drought resistance, and extremely weak drought resistance. A comprehensive evaluation mathematical model (R2=0.995) for the whole growth stage was established through the stepwise regression analysis, and the plant height and leaf water content at jointing, proline, plant height, and chlorophyll a at booting, chlorophyll a and soluble sugar at anthesis, and proline and leaf water content at filling were selected as a set of screening indicators. This study provides the theoretical guidance and information support for the early selection of drought-resistant material of wheat and the identification and promotion in suitable areas.

Key words: winter wheat, drought resistance, principal component analysis, different stage, comprehensive evaluation

Table 1

Yield and drought resistance index of different drought-resistant wheat varieties"

品种
Cultivar
2017-2018 2018-2019 2020-2021
产量GY (kg hm-2) 抗旱指数
DI
产量GY (kg hm-2) 抗旱指数
DI
产量GY (kg hm-2) 抗旱指数
DI
干旱
Drought
对照
Control
干旱
Drought
对照
Control
干旱
Drought
对照
Control
洛旱19 Luohan 19 4116.30 6511.65 0.98 4497.41 9626.30 1.08 5232.84 7924.74 1.07
洛旱22 Luohan 22 4465.50 6712.65 1.12 4629.63 9771.00 1.13 5512.60 8426.90 1.11
洛麦26 Luomai 26 3865.50 6796.95 0.83 4188.70 9740.74 0.93 4964.37 9015.75 0.84
中麦175 Zhongmai 175 3715.80 6522.45 0.80 4001.85 9718.52 0.85 4849.92 8381.60 0.87
百农207 Bainong 207 3622.80 6265.35 0.79 3914.44 8518.52 0.93 4730.24 7771.28 0.89
晋麦47 Jinmai 47 4136.10 6463.05 1.00 4000.01 8259.26 1.00 5175.54 8279.02 1.00
周麦27 Zhoumai 27 2899.65 6366.45 0.50 4015.93 9037.04 0.92 5177.82 8639.05 0.96
中麦895 Zhongmai 895 2485.65 4782.45 0.49 3407.41 8740.74 0.69 4458.67 8921.62 0.69
新科麦169 Xinkemai 169 2955.45 5914.20 0.56 3949.81 8370.37 0.96 4817.19 8981.66 0.80
安农0711 Annong 0711 3843.60 6191.40 0.90 4007.96 8925.93 0.93 5133.58 9256.37 0.88
良星99 Liangxing 99 3801.30 6188.40 0.88 4327.22 9048.70 1.07 4387.07 8062.51 0.74
化成3366 Huacheng 3366 2661.45 5985.45 0.45 3942.78 9296.30 0.86 4411.63 7524.62 0.80
丰德存麦21 Fengdecunmai 21 4082.96 6714.92 0.94 4208.15 9777.78 0.93 4385.17 8371.15 0.71
淮麦33 Huaimai 33 3895.80 5870.10 0.98 3870.37 9185.19 0.84 4646.40 7279.30 0.94
丰德存麦5号 Fengdecunmai 5 3595.80 6722.10 0.73 4008.89 9185.19 0.90 4522.10 7446.05 0.92
郑麦136 Zhengmai 136 3358.35 6592.05 0.65 4031.85 9185.19 0.91
新麦36 Xinmai 36 3481.48 9222.22 0.68 5135.30 9311.73 0.88
丰德存麦1号 Fengdecunmai 1 4177.22 9296.30 0.97 5206.64 8760.67 0.96
周麦32 Zhoumai 32 3159.15 6426.45 0.59
郑麦7698 Zhoumai 7698 3153.45 5208.60 0.72
洛旱7号 Luohan 7 3958.35 6261.45 0.95
郑麦369 Zhengmai 369 3670.19 9407.41 0.74
豫农516 Yunong 516 4011.48 9477.27 0.88

Table 2

Effects of drought treatment on the main traits of wheat"

植株性状
Plant trait
处理
Treatment
拔节期 Jointing 孕穗期 Booting 开花期 Anthesis 灌浆期 Filling
均值±标准差 Mean±SD 变异系数
CV (%)
均值±标准差 Mean±SD 变异系数
CV (%)
均值±标准差 Mean±SD 变异系数
CV (%)
均值±标准差 Mean±SD 变异系数
CV (%)
株高 干旱处理 Drought 36.80±10.55 28.66 61.8±23.19 37.52 79.07±11.64 14.78 80.27±13.03 16.22
Plant height (cm) 灌溉处理 Irrigation 40.20±4.63 11.51 72.93±10.87 14.91 82.67±6.71 8.12 84.33±8.90 10.55
脯氨酸 干旱处理 Drought 132.28±34.40 26.01 150.04±43.16 28.77 172.40±47.31 27.44 212.85±88.81 41.72
Proline (mg g‒1) 灌溉处理 Irrigation 75.79±11.77 15.53 78.68±15.43 19.62 86.06±15.65 17.49 103.43±21.68 20.97
游离氨基酸 干旱处理 Drought 0.60±0.11 16.94 0.63±0.09 15.65 0.55±0.11 21.22 0.65±0.17 27.01
Free amino acids (mg g‒1) 灌溉处理 Irrigation 0.49±0.05 9.43 0.49±0.07 14.54 0.45±0.07 16.42 0.57±0.10 17.62
可溶性糖 干旱处理 Drought 42.06±8.98 21.37 59.37±11.23 18.93 66.63±15.65 23.52 80.93±21.67 26.77
Soluble sugar (mg g‒1) 灌溉处理 Irrigation 27.56±5.16 18.72 38.24±6.20 16.21 46.67±8.88 19.02 54.83±8.86 16.17
叶氮含量 干旱处理 Drought 2.45±0.33 13.42 2.98±0.22 7.4 2.60±0.25 9.63 2.57±0.27 10.56
Leaf N content (%) 灌溉处理 Irrigation 3.00±0.30 10.12 3.25±0.29 8.86 3.27±0.28 8.78 3.15±0.26 8.74
叶水含量 干旱处理 Drought 77.57±24.54 31.63 72.78±15.47 21.26 68.95±13.60 19.72 63.51±22.39 35.26
Leaf water content (%) 灌溉处理 Irrigation 81.65±14.39 17.63 78.38±9.69 12.36 75.07±8.09 10.78 72.33±14.27 19.73
叶面积指数 干旱处理 Drought 1.78±0.30 16.9 2.16±0.37 17.09 1.88±0.30 16.09 1.71±0.31 18.46
Leaf area index 灌溉处理 Irrigation 1.93±0.28 15.01 2.36±0.35 14.86 2.38±0.29 12.13 2.43±0.36 14.81
植株含水量 干旱处理 Drought 79.55±17.54 22.05 74.94±13.85 18.48 67.03±12.99 19.38 62.69±12.59 20.09
Plant water content (%) 灌溉处理 Irrigation 81.08±8.67 10.69 77.95±7.69 9.86 72.59±8.63 11.9 69.24±8.91 12.87
地上干物质 干旱处理 Drought 2474.80±359.09 13.57 4488.80±609.33 14.51 5769.76±725.44 12.57 5304.62±746.69 14.08
Aboveground biomass (kg hm‒2) 灌溉处理 Irrigation 2735.80±264.02 16.46 4998.50±768.06 9.65 6325.79±1147.03 18.13 6267.79±753.72 12.03
叶绿素a含量 干旱处理 Drought 1.83±0.40 21.77 2.01±0.54 27.08 2.55±0.79 31.14 2.36±0.57 24.23
Chlorophyll a (mg g‒1) 灌溉处理 Irrigation 2.29±0.31 13.46 2.74±0.43 15.57 3.37±0.66 19.61 3.17±0.46 14.47
类胡萝卜素 干旱处理 Drought 0.39±0.07 17.39 0.39±0.07 18.38 0.47±0.09 19.15 0.41±0.08 18.43
Carotenoids (mg g‒1) 灌溉处理 Irrigation 0.46±0.05 11.64 0.52±0.07 13.87 0.57±0.07 12.48 0.63±0.09 14.82
等效水厚度 干旱处理 Drought 0.13±0.02 16.8 0.07±0.01 18.86 0.07±0.02 26.83 0.05±0.01 25.71
Equivalent water thickness (g cm‒2) 灌溉处理 Irrigation 0.14±0.02 11.74 0.08±0.01 13.38 0.09±0.02 21.95 0.06±0.01 20.42

Fig. 1

Correlation analysis of drought resistance coefficients of different indexes at different growth stages A, B, C, and D represent the jointing, booting, anthesis, and grain filling stages, respectively. Different colors indicate the intensity of correlation, and the closer to red (plus) or blue (minus), the higher for the significant, the larger the circular diameter, the greater the correlation coefficient, × indicate no significant at P < 0.05. V1: plant height; V2: proline; V3: free amino acids; V4: soluble sugar; V5: leaf nitrogen content; V6: leaf water content; V7: leaf area index; V8: plant water content; V9: above-ground biomass; V10: chlorophyll a; V11: carotenoids; V12: equivalent water thickness."

Table 3

Principal component analysis of various wheat cultivars at different stages"

生育时期
Growth stage
项目
Item
主成分Principal component
CI1 CI2 CI3 CI4 CI5 CI6
拔节期
Jointing
特征值 Eigenvalue 6.377 1.217 0.992 0.826 0.708 0.564
贡献率 Contribution rate (%) 53.141 10.141 8.269 6.880 5.897 4.700
累积贡献率 Accumulative contribution rate (%) 53.141 63.282 71.552 78.432 84.329 89.030
权重Index weight (Wj) 0.597 0.114 0.093 0.077 0.066 0.053
孕穗期
Booting
特征值 Eigenvalue 6.171 1.416 0.955 0.795 0.684 0.623
贡献率 Contribution rate (%) 51.422 11.799 7.955 6.626 5.702 5.188
累积贡献率 Accumulative contribution rate (%) 51.422 63.221 71.176 77.802 83.504 88.692
权重Index weight (Wj) 0.580 0.133 0.090 0.075 0.064 0.058
开花期
Anthesis
特征值 Eigenvalue 5.918 1.636 1.024 0.752 0.691 0.501
贡献率 Contribution rate (%) 49.317 13.636 8.529 6.263 5.759 4.174
累积贡献率 Accumulative contribution rate (%) 49.317 62.953 71.482 77.746 83.505 87.679
权重Index weight (Wj) 0.562 0.156 0.097 0.071 0.066 0.048
灌浆期
Grain filling
特征值 Eigenvalue 5.606 2.418 0.969 0.721 0.586
贡献率 Contribution rate (%) 46.717 20.148 8.076 6.010 4.880
累积贡献率 Accumulative contribution rate (%) 46.717 66.865 74.941 80.951 85.831
权重Index weight (Wj) 0.544 0.235 0.094 0.070 0.057

Fig. 2

Changes of the comprehensive evaluation value of drought resistance in various wheat cultivars at different stages"

Fig. 3

Quantitative relationship between comprehensive evaluation value and yield drought resistance index at different stages"

Table 4

Grey correlation between morphological and physiological indicators at different stages"

性状
Trait
拔节期 Jointing 孕穗期 Booting 开花期 Anthesis 灌浆期 Filling
关联度 Correlation degree 位次 Rank 关联度 Correlation degree 位次 Rank 关联度 Correlation degree 位次 Rank 关联度 Correlation degree 位次 Rank
株高 Plant height 0.7891 1 0.8328 2 0.6304 9 0.7004 7
脯氨酸 Proline 0.7177 7 0.7776 9 0.6574 4 0.7074 5
游离氨基酸 Free amino acids 0.7213 5 0.8426 1 0.6593 3 0.7421 1
可溶性糖 Soluble sugar 0.7002 9 0.7711 10 0.6457 6 0.7120 3
叶片氮含量 Leaf nitrogen content 0.6427 12 0.7067 12 0.6346 8 0.6877 8
叶片含水量 Leaf water content 0.7592 3 0.7921 4 0.6261 10 0.7333 2
叶面积系数 Leaf area index 0.7291 4 0.7164 11 0.6135 11 0.7008 6
植株含水量 Plant water content 0.6962 11 0.7846 7 0.5841 12 0.6846 9
地上部生物量 Aboveground biomass 0.7148 8 0.7835 8 0.6750 2 0.7084 4
叶绿素a Chlorophyll a 0.7886 2 0.8319 3 0.6978 1 0.6107 12
类胡萝卜素 Carotenoids 0.6997 10 0.7876 5 0.6558 5 0.6492 10
等效水厚度 Equivalent water thickness 0.7181 6 0.7871 6 0.6423 7 0.6492 11

Fig. 4

Linear coefficient of determination between yield drought resistance index and MD value with different index numbers"

Table 5

Principal component analysis of the optimal combination index based on whole growth period"

项目
Item
主成分Principal component
CI1 CI2 CI3 CI4 CI5 CI6
特征值 Eigenvalue 9.959 1.095 1.007 0.778 0.635 0.565
贡献率 Contribution rate (%) 62.243 6.842 6.294 4.862 3.967 3.528
累积贡献率 Accumulative contribution rate (%) 62.243 69.086 75.380 80.242 84.209 87.737
权重Index weight (Wj) 0.709 0.078 0.072 0.055 0.045 0.040

Fig. 5

Quantitative relationship between the yield drought resistance index and the comprehensive evaluation value of drought resistance based on whole growth stages"

Fig. 6

Cluster analysis of various wheat cultivars based on MD values ①, ②, ③ represent 2017-2018, 2018-2019, and 2020-2021, respectively."

[1] Davidson D. Gaps in agricultural climate adaptation research. Nat Clim Chang, 2016, 6: 433-435.
doi: 10.1038/nclimate3007
[2] Erice G, Louahlia S, Irigoyen J J, Sanchez-Diaz M, Avice J C. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. J Plant Physiol, 2010, 167: 114-120.
doi: 10.1016/j.jplph.2009.07.016
[3] Mo X G, Hu S, Lin Z H, Liu S X, Xia J. Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Adv Clim Chang Res, 2017, 8: 93-98.
[4] Curtis T, Halford N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol, 2014, 164: 354-372.
pmid: 25540461
[5] Guo Z J, Shi Y, Yu Z W, Zhang Y L. Supplemental irrigation affected flag leaves senescence post-anthesis and grain yield of winter wheat in the Huang-Huai-Hai Plain of China. Field Crops Res, 2015, 180: 100-109.
doi: 10.1016/j.fcr.2015.05.015
[6] 李瑞雪, 孙任洁, 汪泰初, 陈丹丹, 李荣芳, 李龙, 赵卫国. 植物抗旱性鉴定评价方法及抗旱机制研究进展. 生物技术通报, 2017, 33(7): 40-48.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023
Li R X, Sun R J, Wang T C, Chen D D, Li R F, Li L, Zhao W G. Research progress on identification and evaluation methods, and mechanism of drought resistance in plants. Biotechnol Bull, 2017, 33(7): 44-48. (in Chinese with English abstract)
[7] Blum A. Drought resistance, water-use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Aust J Agric Res, 2005, 56: 1159-1168.
doi: 10.1071/AR05069
[8] Nouri-ganbalani A, Nouri-ganbalani G, Hassanpanah D. Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. J Food Agric Environ, 2009, 7: 228-234.
[9] Almeselmani M, Deshmukh P S, Sairam R K, Kushwaha S R, Singh T P. Protective role of antioxidant enzymes under high temperature stress. Plant Sci, 2006, 171: 382-388.
doi: 10.1016/j.plantsci.2006.04.009 pmid: 22980208
[10] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714-727.
doi: 10.3724/SP.J.1006.2021.01048
Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Seedling root characteristics and drought resistance of wheat in Shanxi province. Acta Agron Sin, 2021, 47: 714-727. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01048
[11] 李阳阳, 李驰, 任俊洋, 李志, 张晋峰, 吕蓉蓉, 张恒, 吴丹, 王芹, 周清元, 殷家明, 李加纳, 刘列钊, 唐章林. 甘蓝型油菜苗期耐旱性综合评价与耐旱性鉴定指标筛选. 中国生态农业学报, 2021, 29: 1327-1338.
Li Y Y, Li C, Ren J Y, Li Z, Zhang J F, Lyu R R, Zhang H, Wu D, Wang Q, Zhou Q Y, Yin J M, Li J N, Liu L Z, Tang Z L. Comprehensive evaluation and identification trait selection of drought resistance at the seedling stage of Brassica napus L. Chin J Eco-Agric, 2021, 29: 1327-1338 (in Chinese with English abstract).
[12] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选. 作物学报, 2020, 46: 448-461.
doi: 10.3724/SP.J.1006.2020.91031
Xu Y P, Pan Y D, Liu Q D, Yao Y H, Jia Y C, Ren C, Huo K C, Chen W Q, Zhao F, Bao Q J, Zhang H Y. Drought resistance identification and drought resistance indexes screening of barley resources at mature period. Acta Agron Sin, 2020, 46: 448-461. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91031
[13] 冯朋飞, 远红杰, 郭晋杰, 冯佳, 赵永锋, 陈景堂, 祝丽英. 不同玉米自交系苗期抗旱性鉴定. 广东农业科学, 2013, 40(9): 9-13.
Feng P F, Yuan H J, Guo J J, Feng J, Zhao Y F, Chen J T, Zhu L Y. Evaluation for seeding drought resistance of different genotype maize inbred lines. Guangdong Agric Sci, 2013, 40(9): 9-13. (in Chinese with English abstract)
[14] 罗俊杰, 欧巧明, 叶春雷, 王方, 王镛臻, 陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选. 作物学报, 2014, 40: 1259-1273.
Luo J J, Ou H J, Ye C L, Wang F, Wang Y Z, Chen Y L. Comprehensive valuation of drought resistance and screening of indices of important flax cultivars. Acta Agron Sin, 2014, 40: 1259-1273. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01259
[15] 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44: 988-999.
Li L, Miao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agron Sin, 2018, 44: 988-999. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00988
[16] Shamsun N, Lingaraj S, Bhaben T. Screening of drought tolerant rice through morpho-physiological and biochemical approaches. Biocatal Agric Biotechnol, 2018, 15: 150-159.
doi: 10.1016/j.bcab.2018.06.002
[17] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 184-185, 195-197, 261-263.
Li H S. Technique on Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 184-185, 195-197, 261-263. (in Chinese)
[18] 中国科学院上海植物生理研究所. 现代植物生理学实验指南, 北京: 科学出版社, 1999. p 303.
Shanghai Institute of Plant Physiology, Chinese Academy of Sciences. Modern Plant Physiology Laboratory Manual. Beijing: Science Press, 1999. p 303.(in Chinese)
[19] 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 11: 2452-2459.
Wang S Q, Hu Y G, She K J, Zhou L L, Meng F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Sci Agric Sin, 2007, 11: 2452-2459. (in Chinese with English abstract)
[20] Ahmed K, Shabbir G, Ahmed M, Shah K N. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci Total Environ, 2020, 729: 139082.
doi: 10.1016/j.scitotenv.2020.139082
[21] Mardeh A S S, Ahmadi A, Poustini K, Mohammadi V. Evaluation of drought resistance indices under various environmental conditions. Field Crops Res, 2006, 98: 222-229.
doi: 10.1016/j.fcr.2006.02.001
[22] 徐蕊, 王启柏, 张春庆, 吴承来. 玉米自交系抗旱性评价指标体系的建立. 中国农业科学, 2009, 42: 72-84.
Xu R, Wang Q B, Zhang C Q, Wu C L. Drought-resistance evaluation system of maize inbred. Sci Agric Sin, 2009, 42: 72-84. (in Chinese with English abstract)
[23] 胡标林, 余守武, 万勇, 张铮, 邱兵余, 谢建坤. 东乡普通野生稻全生育期抗旱性鉴定. 作物学报, 2007, 33: 425-432.
Hu B L, Yu S W, Wan Y, Zhang Z, Qiu B Y, Xie J K. Drought-resistance identification of Dongxiang common wild rice (Oryza rufipogon Griff) in whole growth period. Acta Agron Sin, 2007, 33: 425-432. (in Chinese with English abstract)
[24] Sairam R K, Chandrasekhar V, Srivastava G C. Comparison of hexaploid and tetraploid wheat cultivars in their responses to water stress. Biol Plant, 2001, 44: 89-94.
doi: 10.1023/A:1017926522514
[25] Zou J, Hu W, Li Y X, He J Q, Zhu H H, Zhou Z G. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.). J Integr Agric, 2020, 19: 495-508.
doi: 10.1016/S2095-3119(19)62696-1
[26] 周广生, 梅方竹, 周竹青, 朱旭彤. 小麦不同品种耐湿性生理指标综合评价及其预测. 中国农业科学, 2003, 36: 1378-1382.
Zhou G S, Mei F Z, Zhou Z Q, Zhu X T. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties. Sci Agric Sin, 2003, 36: 1378-1382. (in Chinese with English abstract)
[27] Biju S, Fuentes S, Gupta D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought- tolerant lentil genotypes. Plant Physiol Biochem, 2018, 127: 11-24.
doi: 10.1016/j.plaphy.2018.03.005
[28] Liu C Y, Yang Z Y, Hu Y G. Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield. Field Crops Res, 2015, 179: 103-112.
doi: 10.1016/j.fcr.2015.04.016
[29] 王曙光, 朱俊刚, 孙黛珍, 史雨刚, 曹亚萍, 范华, 贾寿山. 山西小麦地方品种幼苗期抗旱性的鉴定. 中国农业大学学报, 2013, 18(1): 39-45.
Wang S G, Zhu J G, Sun D Z, Shi Y G, Cao Y P, Fan H, Jia S S. Analysis of drought resistance of Shanxi wheat at seedling stage. J China Agric Univ, 2013, 18(1): 39-45. (in Chinese with English abstract)
[30] Feng S W, Gu S B, Zhang H B, Wang D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res, 2017, 214: 131-141.
doi: 10.1016/j.fcr.2017.08.007
[31] 孙现军, 姜奇彦, 胡正, 张惠媛, 徐长兵, 邸一桓, 韩龙植, 张辉. 水稻资源全生育期耐盐性鉴定筛选. 作物学报, 2019, 45: 1656-1663.
doi: 10.3724/SP.J.1006.2019.92012
Sun X J, Jiang Q Y, Hu Z, Zhang H Y, Xu C B, Di Y H, Han L Z, Zhang H. Screening and identification of salt-tolerant rice germplasm in whole growth period. Acta Agron Sin, 2019, 45: 1656-1663. (in Chinese with English abstract)
[32] 胡雯媚, 王思宇, 樊高琼, 刘运军, 郑文, 王强生, 马宏亮. 西南麦区小麦品种苗期抗旱性鉴定及其指标筛选. 麦类作物学报, 2016, 36: 182-189.
Hu W M, Wang S Y, Fan G Q, Liu Y J, Zheng W, Wang Q S, Ma H L. Analysis on the drought resistance and screening of drought resistance appraisal indexes of wheat cultivars in seedling stage in southwest area. J Triticeae Crops, 2016, 36: 182-189. (in Chinese with English abstract)
[33] Song Q H, Liu C Y, Bachir D G, Chen L, Hu Y G. Drought resistance of new synthetic hexaploid wheat accessions evaluated by multiple traits and antioxidant enzyme activity. Field Crops Res, 2017, 210: 91-103.
doi: 10.1016/j.fcr.2017.05.028
[34] 张龙龙, 杨明明, 董剑, 赵万春, 高翔, 陈冬阳. 三个小麦新品种不同生育阶段抗旱性的综合评价. 麦类作物学报, 2016, 36: 426-434.
Zhang L L, Yang M M, Dong J, Zhao W C, Gao X, Chen D Y. Comprehensive analysis of drought resistance of three new wheat cultivars at different growth stage. J Triticeae Crops, 2016, 36: 426-434. (in Chinese with English abstract)
[35] 武仙山, 王正航, 昌小平, 景蕊莲. 用株高旱胁迫系数分析小麦发育中的抗旱性动态. 作物学报, 2008, 34: 2010-2018.
doi: 10.3724/SP.J.1006.2008.02010
Wu X S, Wang Z H, Chang X P, Jing R L. Dynamics of drought resistance based on drought stress coefficient derived from plant height in wheat development. Acta Agron Sin, 2008, 34: 2010-2018. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.02010
[36] Komivi D, Louis W Y, Benoit C L L N, Diaga D, Boshou L, Zhang X R, Ndiaga C, Joseph M B. Comprehensive screening of some west and central African sesame genotypes for drought resistance probing by agromorphological, physiological, biochemical and seed quality traits. Agronomy, 2017, 7: 83.
doi: 10.3390/agronomy7040083
[37] 李德全, 郭清福, 张以勤, 邹琦, 程炳嵩. 冬小麦抗旱生理特性的研究. 作物学报, 1993, 19: 125-132.
Li D Q, Guo Q F, Zhang Y Q, Zou Q, Cheng B S. Studies on the physiological characteristics of drought resistance in winter wheat. Acta Agron Sin, 1993, 19: 125-132. (in Chinese with English abstract)
[38] Chen K, Horton R M, Bader D A, Lesk C, Jiang L W, Jones B, Zhou L, Chen X D, Bi J, Kinney P L. Impact of climate change on heat-related mortality in Jiangsu province, China. Environ Pollut, 2017, 224: 317-325.
doi: S0269-7491(16)31930-3 pmid: 28237309
[1] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
[2] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[3] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[4] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[5] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[6] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[7] ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812.
[8] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[9] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[10] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[11] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[12] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[13] ZHU Ya-Di, WANG Hui-Qin, WANG Hong-Zhang, REN Hao, LYU Jian-Hua, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, YIN Fu-Wei, LIU Peng. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage [J]. Acta Agronomica Sinica, 2022, 48(12): 3130-3143.
[14] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[15] ZHENG Yun-Pu, CHANG Zhi-Jie, HAN Yi, LU Yun-Ze, CHEN Wen-Na, TIAN Yin-Shuai, YIN Jia-Wei, HAO Li-Hua. Effects of soil water deficit and elevated atmospheric CO2 concentration on leaf photosynthesis of winter wheat [J]. Acta Agronomica Sinica, 2022, 48(11): 2920-2933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!