Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1584-1600.doi: 10.3724/SP.J.1006.2023.21033

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic basis analysis of high-yielding in Yannong wheat varieties

WANG Hao1,2,**(), SUN Ni-Na1,**(), WANG Chu1,2, XIAO Lu-Ning1,2, XIAO Bei1,2, LI Dong3, LIU Jie1, QIN Ran4, WU Yong-Zhen4, SUN Han4, ZHAO Chun-Hua4, LI Lin-Zhi1,*(), CUI Fa4,*(), LIU Wei1,*()   

  1. 1Yantai Academy of Agricultural Sciences, Yantai 265500, Shandong, China
    2College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
    3Shandong Provincial Seed Management Station, Jinan 250131, Shandong, China
    4College of Agriculture, Ludong University/Key Laboratory of Crop High Yield and Stress Resistance Molecular Modules in Shandong Higher Education Institutions, Yantai 264025, Shandong, China
  • Received:2022-04-30 Accepted:2022-10-10 Online:2023-06-12 Published:2022-10-24
  • Contact: *E-mail: linzhili2002@163.com;E-mail: sdaucf@126.com;E-mail: liuweisdau@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Shandong Province Agricultural Improved Seed Engineering Project(2019LZGC001);Shandong Province College Youth Innovation Technology Support Program(2019KJF002);Yantai Science and Technology Plan Project(2022XCZX092);China Agriculture Research System of MOF and MARA(Wheat, CARS-3-2-23);Yantai 2022 Seed Engineering Key Project—Wheat Breeding Joint Team Creation

Abstract:

The Yannong series wheat has the characteristics of high yield potential, disease resistance, and wide adaptability. Yannong 1212, a high-yield and multi-resistant variety approved in recent years, has repeatedly broken the national winter wheat yield record for many times. To date, the numerous varieties derived from Yannong series have been released. Lumai 14 has derived from at least 214 wheat authorized varieties and become an important backbone parent by 2020. This objective of the study is to characterize genetic basis of high yielding potential in Yannong series, identify the key chromosomal segments of high yield and wide adaptability, and provide theoretical reference for the genetic improvement of new wheat varieties. The genotype of 38 Yannong series wheat varieties, some of their derived varieties, and 244 authorized varieties (advanced lines) were scanned by wheat 55K SNP array, and the environmental phenotypes were identified. Phenotype evaluation of yield-related traits of the natural mapping population was conducted in multiple environments. The genetic effects of the common high-frequency co-selected genetic segment (HFCS) of Yannong series varieties were characterized in detail based on the genotypes of wheat 55K SNP array. In addition, the HFCS from Lumai 14 to its derived varieties were also specified. The genetic basis of high yield potential in Yannong 1212 and Lumai 14 were revealed at the whole genome-wide level. The genetic similarity coefficients among the 17 Yannong series authorized varieties ranged from 0.80 to 0.99. Based on genotyping data from the 55K SNP array in the 17 Yannong series authorized varieties, 975 HFCS were obtained, and their segments lengths ranged from 1.00 Mb to 75.18 Mb. Most HFCS were distributed on chromosomes 2D, 4D, 6D, and 7B, with the total length accounting for more than 40% of the corresponding chromosomes, respectively. The genetic contribution rate of Lumai 14 to its 23 derived varieties was approximately 71.45% on average at the genome level, with A, B, and D of 69.63%, 66.04%, and 79.82%, respectively. A total of 430 high-frequency transmission genetic segments (HFTGS) 14 were detected in Lumai derived progency and 265 blocks (61.6%) overlapped with the HFSC in the Yannong series. Lumai 14 was a backbone parents and Yannong 1212 was a novel authorized varieties with high yield potential and wide adaptability. To characterize their genetic basis of high yield and wide adaptability, single marker analysis based on the natural population was performed. The results showed that both Lumai 14 and Yannong 1212 had been enriched in excellent alleles for thousand kernel weight (TKW) and yield per plant (YPP). Approximately 92.3% and 84.4% of the significant loci in the HFTGS of Lumai 14 were shown to increase TKW and YPP, mainly distributing on chromosomes 2A, 2B, 2D, 4A, 5B, 6A, and 7A. Yannong series authorized wheat varieties had enriched in excellent alleles of yield-related genes and QTLs especially for TKW and YPP, which played a key role to their high and stable yielding potential.

Key words: wheat, genetic contribution, 55K SNP array, genetic segment, backbone parent

Table 1

Wheat variety, combination, approved and identified year"

编号
Serial
品种
Variety
组合
Combination
审/认定年份
Approved and identified year
1 烟农15 Yannong 15 蚰包//意大利ST2422/464 Youbao//Italy ST2422/464 1982
2 鲁麦14 Lumai 14 C149/F4530 1990, 1992, 1993
3 鲁麦21 Lumai 21 鲁麦13/宝丰7228 Lumai 13/Baofeng 7228 1996
4 烟农22 Yannong 22 鲁麦14//尉132/87初20 Lumai 14//Wei 132/87 Chu 20 2002
5 济麦20 Jimai 20 鲁麦14/884187 Lumai 14/884187 2003, 2004
6 烟农23 Yannong 23 烟1061/鲁麦14 Yan 1061/Lumai 14 2003
7 良星99 Liangxing 99 91102/鲁麦14//PH85-16 91102/Lumai 14//PH85-16 2004, 2006
8 泰山22 Taishan 22 鲁麦18/鲁麦14 Lumai 18/Lumai 14 2004
9 烟农24 Yannong 24 陕229/安麦1号 Shaanxi 229/Anmai 1 2004
10 济麦22 Jimai 22 935024/935106 2006, 2007
11 青丰1号Qingfeng 1 鲁麦14/烟农15 Lumai 14/Yannong 15 2006
12 烟2415 Yan 2415 烟849/鲁麦21 Yan 849/Lumai 21 2006
13 烟农5158 Yannong 5158 烟航选2号/烟农15 Yanhangxuan 2/Yannong 15 2007, 2009, 2010
14 泰农18 Tainong 18 莱州137/烟369-7 Laizhou 137/Yan 369-7 2008
15 山农17 Shannong 17 L156/莱州137 L156/Laizhou 137 2009
16 青农2号 Qingfeng 2 鲁麦14/烟农15//矮秆麦
Lumai 14/Yannong 15//Dwarf wheat
2010
17 泰农19 Tainong 19 莱州137/济南17 Laizhou 137/Jinan 17 2011
18 烟农999 Yannong 999 烟航选2号/临9511//烟BLU14-15
Yanhangxuan 2/Lin 9511//Yan BLU14-15
2011, 2016, 2018
19 石农086 Shinong 086 鲁麦14/邯6172 Lumai 14/Han 6172 2014
20 烟农836 Yannong 836 山农721511/鲁麦21 Shannong 721511/Lumai 21 2010, 2014
21 济麦23 Jimai 23 豫麦34/济麦22 Yumai 34/Jimai 22 2016
22 烟农173 Yannong 173 济麦22/烟2415 Jimai 22/Yan 2415 2016
23 冀麦738 Jimai738 藁9618/良星99 Gao 9618/Liangxing 99 2016
24 石麦25 Shimai 25 济麦22/金禾9123 Jimai 22/Jinhe 9123 2016
25 中信麦99 Zhongxinmai 99 良星99/222 Liangxing 99/222 2016
编号
Serial
品种
Variety
组合
Combination
审/认定年份
Approved and identified year
26 轮选266 Lunxuan 266 济麦19/济麦22//济麦22 Jimai 19/Jimai 22//Jimai 22 2018
27 泰科麦31 Taikemai 31 泰山26/淮麦20 Taishan 26/Huaimai 20 2018
28 淄麦29 Zimai 29 泰农18//烟5072 Tainong 18//Yan 5072 2018
29 邯麦19 Hanmai 19 邯02-6018/济麦22 Han 02-6018/Jimai 22 2018
30 中麦23 Zhongmai 23 济麦22/淮9701 Jimai 22/Huai 9701 2019
31 烟农1212 Yannong 1212 烟5072/石94-5300 Yan 5072/Shi 94-5300 2018, 2019, 2021
32 烟农377 Yannong 377 By114/烟6089 By114/Yan 6089 2020
33 烟农215 Yannong 215 烟672/烟农999 Yan 672/Yannong 999 2020
34 烟农161 Yannong 161 济麦22/烟农1212 Jimai 22/Yannong 1212 2021
35 烟农301 Yannong 301 济麦22/烟1201 Jimai 22/Yan 1201 2021
36 烟农1766 Yannong 1766 烟农09135 /济麦22 Yannong 09135/Jimai 22 区试1年
Regional test varieties for one year
37 烟农30 Yannong 30 烟农09135 /济麦22 Yannong 09135/Jimai 22 区试2年
Regional test varieties for two years
38 烟农31 Yannong 31 烟农09135 /济麦22 Yannong 09135/Jimai 22 区试1年
Regional test varieties for one year

Fig. 1

UPGMA cluster map of Yannong series wheat varieties"

Table 2

Distribution of high frequency co-selection genetic segments in 21 wheat chromosomes"

染色体
Chromosome
区段数
Number of segments
区段总长
Total segments length (Mb)
染色体总长
Chromosome length (Mb)
区段占比
Segments’ proportion (%)
1A 57 219.93 602 36.53
1B 42 267.54 752 35.58
1D 19 65.61 503 13.04
2A 89 292.47 794 36.84
2B 69 317.71 800 39.71
2D 30 305.46 654 46.71
3A 22 81.68 762 10.72
3B 58 191.00 845 22.60
3D 28 83.15 616 13.50
4A 72 194.43 753 25.82
4B 25 133.95 675 19.85
4D 72 213.40 519 41.12
5A 37 257.47 718 35.86
5B 33 133.51 716 18.65
5D 19 53.17 572 9.30
6A 34 237.01 618 38.35
6B 73 241.14 712 33.87
6D 40 200.17 490 40.85
7A 62 321.62 744 43.23
7B 59 356.53 762 46.79
7D 35 90.63 648 13.99

Table 3

Genetic contribution of Lumai 14 to its 23 derived varieties at the genome level (%)"

衍生材料
Derived varieties
A基因组
A genome
B基因组
B genome
D基因组
D genome
全基因组
Whole genome
济麦20 Jimai 20 68.25 65.57 78.66 70.32
济麦22 Jimai 22 69.41 63.33 80.57 70.75
济麦23 Jimai 23 68.70 64.98 81.28 71.07
良星99 Liangxing 99 69.43 69.75 80.83 72.58
轮选266 Lunxuan 266 69.41 63.34 80.67 70.78
青丰1号 Qingfeng 1 70.88 66.77 81.33 72.57
青农2号 Qingnong 2 70.85 66.67 81.43 72.55
山农17 Shannong 17 69.11 66.02 81.08 72.84
泰科麦31 Taikemai 31 70.38 64.23 81.28 71.63
泰农18 Tainong 18 69.08 63.19 80.62 70.58
泰农19 Tainong 19 69.08 63.29 80.67 70.62
泰山22 Taishan 22 69.78 66.32 77.35 70.88
烟农173 Yannong 173 69.08 65.03 79.62 70.81
烟农22 Yannong 22 80.92 69.25 80.17 77.54
烟农23 Yannong 23 68.96 66.32 81.03 71.48
烟农999 Yannong 999 66.78 66.22 80.12 70.21
中麦23 Zhongmai 23 68.85 64.18 79.47 70.43
淄麦29 Zimai 29 69.32 67.81 80.62 71.94
邯麦19 Hanmai 19 69.11 66.02 74.23 69.65
冀麦738 Jimai 738 70.29 68.06 82.49 72.96
石麦25 Shimai 25 66.22 69.60 79.97 70.84
石农086 Shinong 086 68.73 69.25 72.47 69.88
中信麦99 Zhongxinmai 99 68.88 63.64 79.72 70.36
平均值 Average 69.63 66.04 79.81 71.45

Fig. 2

Distribution of yield-related QTLs on high frequency co-selection genetic segments"

Fig. 3

UPGMA cluster map of backbone parent Lumai 14 and its part of derived-varieties"

Fig. 4

Pedigree chart of backbone parent Lumai 14 and its part of derived-varieties"

Table 4

Distribution of Lumai 14 high-frequency transmission genetic segments on different chromosomes"

染色体
Chromosome
区段数
Number of segments
区段总长
Total segments length (Mb)
染色体总长
Chromosome length (Mb)
区段占比
Segments’ proportion (%)
1A 37 95.88 602 15.93
1B 9 26.48 752 3.52
1D 5 9.16 503 1.82
2A 35 94.48 794 11.90
2B 23 69.23 800 8.65
2D 19 58.96 654 9.01
3A 8 21.91 762 2.88
3B 17 41.93 845 4.96
3D 5 12.19 616 1.98
4A 77 186.03 753 24.71
4B 9 36.98 675 5.48
4D 18 69.80 519 13.45
5A 11 26.67 718 3.71
5B 13 23.14 716 3.23
5D 6 17.98 572 3.14
6A 41 103.25 618 16.71
6B 18 35.33 712 4.96
6D 21 52.36 490 10.69
7A 32 85.46 744 11.49
7B 18 57.44 762 7.54
7D 8 61.76 648 9.53

Fig. 5

Synergy analysis of high-frequency transmission genetic segments (locus) in Lumai 14 on yield-related traits Each unit has three parts. The green segments on the left rectangle is the HFTGS of the corresponding chromosome. The blue segments on the middle rectangle are the heat map of the LOD value of the HFTGS. The color on the right is the synergistic effect value of the HFTGS on yield-related traits, and it contains red, yellow, blue, purple, these colors represent TKW, SNPP, KNS, and YPP, respectively."

Fig. 6

Proportions of synergistic loci yield-traits based on Lumai 14 and Yannong 1212 genotype analysis A: the proportions of synergistic SNP loci in Lumai 14 yield-related traits; B: the proportions of synergistic SNP loci in Yannong 1212 yield-related traits. The blue segment represents the proportion of synergistic SNP loci. TKW: thousand kernel weight; SNPP: spike number per plant; KNS: kernel number of spike; YPP: yield per plant."

Table S1

Marker informations in HFCS of Lumai 14"

染色体
Chromosome
高频率共选区段
HFCS
标记
Markers
关联性状
Associated Traits
1D 58.905983-60.704201 Xgwm458, wPt-741323--wPt-664609 seed weight from sample ears, spike number
2A 112.911673-122.169547 Xgwm356, Xgwm526.1, Xgwm265, 1128252—985175, Xgwm356--Xgwm382 thousand kernel weight, spike number per plant, tiller number, grain yield, spike length
125.065333-130.287176 Xgwm382 kernel weight
2B 80.919673-81.943795 Xgwm120 grain yield
3A 46.256526-49.846165 wPt-7756 spike length
112.292542-114.888625 wpt-1888 kernel number per spike
3B 39.830393-40.866704 Tdurum_contig50954_1393--Kukri_c15654_309 grain Weight
96.503834-103.237886 wPt-8752--wPt-1171, wPt-1804, wPt-4933--wPt-667746 grain number per spike, spike length, spikelet number per spike, grain yield
4A 46.408021-53.671828 Xmwg549--Xwg622, WPT-5694-WPT-7939, Xwmc468--Xbarc170, Ku_c6779_1381--Xwmc258 grain number, thousand kernel weight, grain number per spike
57.494839-59.99089 Xmwg549--Xbcd1670, BS00066891_51--wsnp_Ex_c3988_7221220, RAC875_c83401_115--Tdurum_contig65718_209, wPt-2247--tPt-9400, tPt-9400, Xwmc258, 1242399--3064552 grain number, grain weight per ear, spike length, kernels per spike, number of nodes, kernels per node, fertile spikelet number, thousand grain weight
65.519761-66.770139 IWB25909, wPt-0023, wPt-4620, wsnp_Ku_c9746_16265584--BS00087277_51 kernel weight, thousand grain weight, grain yield, spikelet number per spike
75.307817-83.610777 Xcdo545, Xgwm160--Xwmc232, Xcfd2 yield, grain number per spike, spike length, compactness, tiller number
83.759753-85.587069 Xbarc78--Xwmc722 sterile spikelet number
88.019734-89.066785 Xwmc497--Xwmc219 grain number per spike
4D 57.867989-62.949715 wmc720, Xbarc48--Xbarc240 thousand grain weight
5A 50.743753-53.276562 Tdurum_contig86202_175--wsnp_Ra_c10915_17838202, Xbarc141, Xgwm415--Xgwm304, wsnp_BE404341A_Ta_2_3, wPt-4262--VRNA1, Xgwm293 flowering, thousand grain weight, grain number per ear, spike length, grain yield, grain weight per plant, spike number per plant, grain weight per ear, grain number per total spikelets, spikelet number per spike, grain number per square meter
5B 33.477304-34.80488 wsnp_Ex_c49423_54028488--wsnp_Ra_c39562_47242455 spikelet number per spike
39.416962-41.823352 xcfd7, Xbarc340.1--Xgwm443.2, wPt-6014--wPt-7006 grain filling rate, grain number per spike, kernels per node
89.684338-93.239903 Xgwm371--Xgwm604 yield, thousand kernel weight
6B 62.268859-66.443909 WPT-669607, wPt-1048--Xgwm219, XksuG30--Xfbb169, Xbarc178 kernel weight, thousand kernel weight, grain weight per ear
78.17482-79.349348 IWB5488, wPt-1264 spike length, kernels per node
80.980565-82.649349 wPt-6116--wPt-1541, wPt-0171, RAC875_c28848_330, Tdurum_contig68258_1773 penetrance of clavate architecture, kernels per spikelet, grain number per spike, grain weight
6D 29.901228-31.937716 Xgdm132 grain yield
34.387538-38.576284 Xgwm469 spike number per plant
67.499205-68.923987 xbarc196--xgwm325 grain filling rate
102.752092-106.435316 Xbcd1319--XksuD27 biomass, grain yield, tiller number
7A 101.609097-108.885105 Xgwm332, Kukri_rep_c97425_164, IWA7325--IWA4626, 2262955, gwm282, IWA7325--IWA4626, 2262955--Xwmc633 grain yield, tiller number, grain number per ear, thousand kernel weight, grain number per spike
7B 57.805476-60.081873 Xgwm46, wsnp_BE404339B_Ta_2_2--BS00059061_51, WPT-4230-wmc517, Xwmc758--Xbarc72 thousand kernel weight, days to heading, flowering date, spikelet number per spike
67.969371-68.990187 Xpsr927, Xwmc396 grain weight/plant, grain weight/ear, grain number per square meter
71.476476-73.787477 Xbarc50 spike length, floret number per spikelet, grain number per spike
136.182314-137.23701 Xmwg710a, Xwmc526--Xwmc273 final grain weight, tiller number
7D 96.302557-101.231804 Xbarc26, xgwm437--xcfd14, xgwm437, Xcfd14--Xbarc172 thousand grain weight, biomass, spike weight, grain number per spike
137.311934-142.701669 Xgwm428 grain number per ear
154.122529-166.657341 Xwmc634--Xwmc273, Xwmc634, Xbarc76, Xcfd69, Xgwm37 fertile spikelet number, spike number, grain number per spike, grain yield, thousand kernel weight
[1] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4): 1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4): 1-7. (in Chinese with English abstract)
[2] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 10-13.
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 10-13. (in Chinese)
[3] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395-1404.
Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin, 2009, 35: 1395-1404. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01395
[4] 杨子博, 王安邦, 冷苏凤, 顾正中, 周羊梅. 小麦新品种淮麦33的遗传构成分析. 中国农业科学, 2018, 51: 3237-3248.
doi: 10.3864/j.issn.0578-1752.2018.17.001
Yang Z B, Wang A B, Leng S F, Gu Z Z, Zhou Y M. Genetic analysis of the novel high-yielding wheat cultivar Huaimai 33. Sci Agric Sin, 2018, 51: 3237-3248 (in Chinese with English abstract).
[5] 李小军, 胡铁柱, 李淦, 姜小苓, 冯素伟, 董娜, 张自阳, 茹振钢, 黄勇. 小麦品种百农AK58及其姊妹系的遗传构成分析. 作物学报, 2012, 38: 436-446.
Li X J, Hu T Z, Li G, Jiang X L, Feng S W, Dong N, Zhang Z Y, Ru Z G, Huang Y. Genetic analysis of broad-grown wheat cultivar Bainong AK58 and its sib lines. Acta Agron Sin, 2012, 38: 436-446. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00436
[6] 赵春华, 樊小莉, 王维莲, 张玮, 韩洁, 陈梅, 纪军, 崔法, 李俊明. 小麦候选骨干亲本科农9204遗传构成及其传递率. 作物学报, 2015, 41: 574-584.
doi: 10.3724/SP.J.1006.2015.00574
Zhao C H, Fan X L, Wang W L, Zhang W, Han J, Chen M, Ji J, Cui F, Li J M. Genetic composition and its transmissibility analysis of wheat candidate backbone parent Kenong 9204. Acta Agron Sin, 2015, 41: 574-584. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00574
[7] 李俊, 万洪深, 杨武云, 王琴, 朱欣果, 胡晓蓉, 魏会廷, 汤永禄, 李朝苏, 彭正松, 周永红. 小麦新品种川麦104的遗传构成分析. 中国农业科学, 2014, 47: 2281-2291.
doi: 10.3864/j.issn.0578-1752.2014.12.001
Li J, Wan H S, Yang W Y, Wang Q, Zhu X G, Hu X R, Wei H T, Tang Y L, Li C S, Peng Z S, Zhou Y H. Dissection of genetic components in the new high-yielding wheat cultivar Chuanmai 104. Sci Agric Sin, 2014, 47: 2281-2291. (in Chinese with English abstract)
[8] 李玉刚, 任民, 孙绿, 王圣健, 韩梅, 李振清, 翟晓灵, 代小雁, 侯元江, 盖红梅. 利用SSR和SNP标记分析鲁麦14对青农2号的遗传贡献. 作物学报, 2018, 44: 159-168.
doi: 10.3724/SP.J.1006.2018.00159
Li Y G, Ren M, Sun L, Wang S J, Han M, Li Z Q, Zhai X L, Dai X Y, Hou Y J, Ge H M. Genetic contribution of Lumai 14 to Qingnong 2 revealed by SSR and SNP markers. Acta Agron Sin, 2018, 44: 159-168. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00159
[9] 孙妮娜, 赵明, 王冬梅, 孙亮, 严美玲, 赵倩, 姜鸿明, 于经川, 李林志. 小麦骨干亲本‘鲁麦14’的育种价值分析. 中国农学通报, 2020, 36(10): 13-17.
doi: 10.11924/j.issn.1000-6850.casb18120068
Sun N N, Zhao M, Wang D M, Sun L, Yan M L, Zhao Q, Jiang H M, Yu J C, Li L Z. Breeding value of wheat key parent material Lumai 14. Chin Agric Sci Bull, 2020, 36(10): 13-17. (in Chinese with English abstract)
[10] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇. 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38: 954-961.
Ge H M, Li Y G, Wang R Y, Li Z Q, Wang S J, Gao J L, Zhang X Y. Genetic contribution of Lumai 14 to novel wheat varieties developed in Shandong province. Acta Agron Sin, 2012, 38: 954-961. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00954
[11] 王冬梅, 冯烨宏, 于经川, 李林志, 严美玲, 殷岩, 孙晓辉. 用亲缘关系法估算鲁麦14对小麦育种的贡献. 农业科技通讯, 2020, (10): 62-64.
Wang D M, Feng Y H, Yu J C, Li L Z, Yan M L, Yin Y, Sun X H. Estimating the contribution of Lumai 14 to wheat breeding by kinship method. Bull Agric Sci Tech, 2020, (10): 62-64 (in Chinese).
[12] 李昊哲. 小麦烟农999优质高产遗传基础解析. 烟台大学硕士学位论文, 山东烟台, 2021.
Li H Z. Genetic analysis of high yield and high quality in wheat Yannong 999. MS Thesis of Yantai University, Yantai, Shandong, China, 2021. (in Chinese with English abstract)
[13] 王冬梅, 孙玉海, 郑建鹏, 于经川, 孙晓辉, 姜鸿明, 冯烨宏. 小麦骨干亲本蚰包育成品种的应用分析. 农业科技通讯, 2021, (3): 276-279.
Wang D M, Sun Y H, Zheng J P, Yu J C, Sun X H, Jiang H M, Feng Y H. Application analysis of cultivars bred from wheat backbone parent Youbao. Bull Agric Sci Tech, 2021, (3): 276-279. (in Chinese)
[14] 孙妮娜, 王建萍, 于经川, 丁晓义, 刘洁, 赵明, 姜鸿明, 李林志. 小麦骨干亲本‘鲁麦13’在小麦育种中的应用. 农学学报, 2020, 10(7): 15-18.
doi: 10.11923/j.issn.2095-4050.cjas19030022
Sun N N, Wang J P, Yu J C, Ding X Y, Liu J, Zhao M, Jiang H M, Li L Z. The application of wheat main parent Lumai 13 in wheat breeding. J Agric, 2020, 10(7): 15-18. (in Chinese with English abstract)
[15] 殷岩, 赵倩, 辛庆国, 严美玲, 于经川. 小麦新品种烟农19的特点及育种价值. 农业科技通讯, 2019, (6): 258-260.
Yin Y, Zhao Q, Xin Q G, Yan M L, Yu J C. Characteristics and breeding value of new wheat variety Yannong 19. Bull Agric Sci Tech, 2019, (6): 258-260. (in Chinese)
[16] 孙亮, 刘洁, 王鹏, 孙妮娜, 刘维正, 于经川. 鲁麦21品种特性及在小麦育种中的应用. 中国农技推广, 2019, 35(5): 21-23.
Sun L, Liu J, Wang P, Sun N N, Liu W Z, Yu J C. Characteristics of Lumai 21 and its application in wheat breeding. China Agric Technol Extens, 2019, 35(5): 21-23. (in Chinese)
[17] 孙亮, 刘洁, 王鹏, 孙妮娜, 刘维正, 于经川. 烟农15的特性分析及育种应用. 中国农技推广, 2019, 35(8): 37-39.
Sun L, Liu J, Wang P, Sun N N, Liu W Z, Yu J C. Characteristic analysis and breeding application of Yannong 15. China Agric Technol Extens, 2019, 35(8): 37-39. (in Chinese)
[18] 刘洁, 于经川, 王鹏, 孙亮, 孙妮娜, 冯烨宏, 殷岩. 烟农系列小麦研究进展与展望. 中国种业, 2019, (11): 18-22.
Liu J, Yu J C, Wang P, Sun L, Sun N N, Feng Y H, Yin Y. The research progress and prospects of yannong series wheat. China Seed Industry, 2019, (11): 18-22. (in Chinese)
[19] 刘朦朦, 张萌娜, 张倩倩, 刘锡建, 郭宇航, 孙靳惠, 武亚瑞, 王素容, 吴永振, 孙晗, 崔法, 赵春华. 小麦旗叶宽主效QTL QFlw-5B遗传效应解析. 麦类作物学报, 2019, 39: 1399-1405.
Liu M M, Zhang M N, Zhang Q Q, Liu X J, Guo Y H, Sun J H, Wu Y R, Wang S R, Wu Y Z, Sun H, Cui F, Zhao C H. Genetic analysis of a major stable QTL QFlw-5B for wheat flag leaf width. J Triticeae Crops, 2019, 39: 1399-1405. (in Chinese with English abstract)
[20] 崔俊鹏, 赵慧, 张倩倩, 宫娜, 刘朦朦, 张萌娜, 侯玉竹, 刘成, 李林志, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效QTL-qKnps-4A遗传效应解析. 分子植物育种, 2019, 17: 3632-3640.
Cui J P, Zhao H, Zhang Q Q, Gong N, Liu M M, Zhang M N, Hou Y Z, Liu C, Li L Z, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Genetic effects analysis of major QTL-qKnps-4A for kernel per spike in common wheat. Mol Plant Breed, 2019, 17: 3632-3640. (in Chinese with English abstract)
[21] 张倩倩, 闫学梅, 刘锡建, 张萌娜, 刘朦朦, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效QTL-qKnps-2A遗传效应解析. 分子植物育种, 2020, 18: 5003-5009.
Zhang Q Q, Yan X M, Liu X J, Zhang M N, Liu M M, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Analysis of the genetic effect of the main QTL-qKnps-2A on the number of grains per spike in wheat. Mol Plant Breed, 2020, 18: 5003-5009. (in Chinese with English abstract)
[22] Stacey J, Isaac P G. Isolation of DNA from plants. Meth Mol Biol, 1994, 28: 9.
[23] Fan X, Cui F, Ji J, Zhang W, Zhang X Q, Liu J J, Meng D Y, Tong Y P, Wang Y P, Wang T, Li J M. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Front Plant Sci, 2019, 10: 187.
doi: 10.3389/fpls.2019.00187 pmid: 30863417
[24] 朱志翔. 遗传分析软件QGAStation2.0和GMDR-GPU的开发. 浙江大学硕士学位论文, 浙江杭州, 2012.
Zhu Z X. Development of Genetic Analysis Software QGAStation2.0 and GMDR-GPU. MS Thesis of Chinese Zhejiang University, Hangzhou, Zhejiang, China, 2012. (in Chinese with English abstract)
[25] 宋迎辉, 吴少方, 王林海, 田志强, 詹克慧, 姚燕. 河南省小麦主要推广品种间的亲缘关系研究. 中国农学通报, 2007, 23(3): 181-184.
Song Y H, Wu S F, Wang L H, Tian Z Q, Zhan K H, Yao Y. Studies on relationship among main released wheat cultivars in Henan Province. Chin Agric Sci Bull, 2007, 23(3): 181-184. (in Chinese with English abstract)
[26] 傅体华, 王春梅, 任正隆. 四川育成小麦品种的SSR遗传多态性及系谱关系. 四川农业大学学报, 2007, 25: 1-8.
Fu T H, Wang C M, Ren Z L. SSR genetic diversity among modern advanced wheat cultivars (Triticum aestivum L.) in Sichuan and its relationships with their pedigree. J Sichuan Agric Univ, 2007, 25: 1-8. (in Chinese with English abstract)
[27] Fradgley N, Gardner K A, Cockram J, Elderfield J, Hickey J M, Howell P, Jackson R, Mackay I J. A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders. PLoS Biol, 2019, 17, 2: e3000071.
[28] 亓晓蕾, 李兴锋, 吕广德, 王瑞霞, 王君, 孙宪印, 孙盈盈, 陈永军, 钱兆国, 吴科. 基于SNP分子标记的泰山/泰科麦系列小麦遗传解析. 作物杂志, 2021, (5): 64-71.
Qi X L, Li X F, Lyu G D, Wang R X, Wang J, Sun X Y, Sun Y Y, Chen Y J, Qian Z G, Wu K. Genetic analysis of Taishan/Taike wheat series based on SNP molecular markers. Crops, 2021, (5): 64-71. (in Chinese)
[29] 梅耀杰, 刘成, 韩冉, 徐文竞, 刘建军, 傅晓艺, 李洪振, 汪晓璐, 李豪圣. 利用660K芯片解析小麦品种济麦262的遗传构成. 山东农业科学, 2021, 53(5): 94-98.
Mei Y J, Liu C, Han R, Xu W J, Liu J J, Fu X Y, Li H Z, Wang X L, Li H S. Analysis on genetic composition of wheat variety Jimai 262 using 660K array. Shandong Agric Sci, 2021, 53(5): 94-98. (in Chinese with English abstract)
[30] 邹少奎, 殷贵鸿, 唐建卫, 韩玉林, 李楠楠, 李顺成, 黄峰, 王丽娜, 张倩, 高艳. 小麦新品种周麦23号的遗传构成分析及其特异引物筛选. 中国农业科学, 2015, 48: 3941-3951.
doi: 10.3864/j.issn.0578-1752.2015.19.016
Zou S K, Yin G H, Tang J W, Han Y L, Li N N, Li S C, Huang F, Wang L N, Zhang Q, Gao Y. Genetic analysis of new wheat variety Zhoumai 23 and screening of specific primers. Sci Agric Sin, 2015, 48: 3941-3951. (in Chinese with English abstract)
[31] 孔子明, 宋晓朋. 小麦品种周麦16的遗传构成分析. 种子, 2020, 39(9): 117-119.
Kong Z M, Song X P. Analysis of genetic composition of wheat variety Zhoumai 16. Seed, 2020, 39(9): 117-119. (in Chinese)
[32] 亓佳佳, 韩芳, 马守才, 张莉莉, 余欣欣, 陈蕴文, 毕晓静, 史秀秀, 牛娜, 张改生. 小麦骨干亲本小偃6号及其衍生品种(系)的遗传解析. 西北农林科技大学学报(自然科学版), 2015, 43: 45-53.
Qi J J, Han F, Ma S C, Zhang L L, Yu X X, Chen Y W, Bi X J, Shi X X, Niu N, Zhang G S. Genetic dissection of wheat milestone parent Xiaoyan 6 and its derivatives. J Northwest A&F Univ (Nat Sci Edn), 2015, 43: 45-53. (in Chinese with English abstract)
[33] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919-3929.
doi: 10.3864/j.issn.0578-1752.2011.19.001
Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919-3929. (in Chinese with English abstract)
[34] 郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚勋武, 刘三才, 曹永生. 我国育成小麦品种的遗传多样性演变. 中国科学: 生命科学, 2005, 35: 408-415.
Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y C, Jia J Z, Liu X, Shang X W, Liu S C, Cao Y S. Genetic diversity changes of Chinese cultivars in the past 50 years. Sci Sin (Vitae), 2005, 35: 408-415. (in Chinese)
[35] Pestsova E, Ganal M W, Roder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689-697.
pmid: 10984182
[36] 李红琴, 相吉山, 郭青云, 杨欣明, 李秀全, 刘伟华, 李立会. 小麦骨干亲本阿夫及其衍生品种(系)的高分子量麦谷蛋白亚基演变分析. 植物遗传资源学报, 2009, 10: 37-41.
Li H Q, Xiang J S, Guo Q Y, Yang X M, Li X Q, Liu W H, Li L H. Analysis of HMW-GS evolution in Funo and its derived varieties. J Plant Genet Resour, 2009, 10: 37-41. (in Chinese with English abstract)
[37] 邓梅, 何员江, 苟璐璐, 姚方杰, 李健, 张雪梅, 龙黎, 马建, 江千涛, 刘亚西, 魏育明, 陈国跃. 小麦骨干亲本繁6产量相关性状关键基因组区段的遗传效应. 作物学报, 2018, 44: 706-715.
doi: 10.3724/SP.J.1006.2018.00706
Deng M, He Y J, Gou L L, Yao F J, Li J, Zhang X M, Long L, Ma J, Jiang Q T, Liu Y X, Wei Y M, Chen G Y. Genetic effects of key genomic regions controlling yield-related traits in wheat founder parent Fan 6. Acta Agron Sin, 2018, 44: 706-715. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00706
[38] 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良. 小麦骨干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析. 作物学报, 2013, 39: 827-836.
doi: 10.3724/SP.J.1006.2013.00827
Chen G Y, Liu W, He Y J, Gou L L, Yu M, Chen S S, Wei Y M, Zheng Y L. Specific loci for adult-plant resistance to stripe rust in wheat founder parent Fan 6 and their genetic dissection in its derivatives. Acta Agron Sin, 2013, 39: 827-836. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00827
[39] 何员江. 小麦骨干亲本繁6产量相关性状重要基因组区段及关键位点遗传效应分析. 四川农业大学硕士学位论文, 四川雅安, 2013.
He Y J. Genetic Effect Analysis of Specific Genome Regions and Key Loci for the Yield-Related Traits in Wheat Founder Parent Fan 6. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2013. (in Chinese with English abstract)
[40] 肖永贵, 路亚明, 闻伟锷, 陈新民, 夏先春, 王德森, 李思敏, 童依平, 何中虎. 小麦骨干亲本京411及衍生品种苗期根部性状的遗传. 中国农业科学, 2014, 47: 2916-2926.
doi: 10.3864/j.issn.0578-1752.2014.15.002
Xiao Y G, Lu Y M, Wen W E, Chen X M, Xia X C, Wang D S, Li S M, Tong Y P, He Z H. Genetic contribution of seedling root traits among elite wheat parent Jing 411 to its derivatives. Sci Agric Sin, 2014, 47: 2916-2926. (in Chinese with English abstract)
[41] 乔玲, 刘成, 郑兴卫, 赵佳佳, 尚保华, 马小飞, 乔麟轶, 盖红梅, 姬虎太, 刘建军, 张建诚, 郑军. 小麦骨干亲本临汾5064单元型区段的遗传解析. 作物学报, 2018, 44: 931-937.
doi: 10.3724/SP.J.1006.2018.00931
Qiao L, Liu C, Zheng X W, Zhao J J, Shang B H, Ma X F, Qiao L Y, Ge H M, Ji H T, Liu J J, Zhang J C, Zheng J. Genetic analysis of haplotype-blocks from wheat founder parent Linfen 5064. Acta Agron Sin, 2018, 44: 931-937. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00931
[42] 袁园园, 王庆专, 崔法, 张景涛, 杜斌, 王洪刚. 小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递. 作物学报, 2010, 36: 9-16.
doi: 10.3724/SP.J.1006.2010.00009
Yuan Y Y, Wang Q Z, Cui F, Zhang J T, Du B, Wang H G. Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin, 2010, 36: 9-16. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00009
[43] 于海霞, 肖静, 田纪春. 小麦骨干亲本矮孟牛及其衍生后代遗传解析. 中国农业科学, 2012, 45: 199-207.
doi: 10.3864/j.issn.0578-1752.2012.02.001
Yu H X, Xiao J, Tian J C. Genetic dissection of milestone parent Aimengniu and its derivatives. Sci Agric Sin, 2012, 45: 199-207. (in Chinese with English abstract)
[44] 张莉莉, 韩芳, 马守才, 亓佳佳, 陈蕴文, 余欣欣, 薛小雁, 郑雅潞, 张改生, 牛娜. 小麦品种豫麦2号及其衍生系的遗传差异分析. 中国农业大学学报, 2015, 20(4): 1-11.
Zhang L L, Han F, Ma S C, Qi J J, Chen Y W, Yu X X, Xue X Y, Zheng Y L, Zhang G S, Niu N. Genetic differentiation analysis on derived lines from wheat cultivar Yumai 2. J China Agric Univ, 2015, 20(4): 1-11. (in Chinese with English abstract)
[45] 任勇, 李生荣, 罗建明, 何中虎, 杜小英, 周强, 何员江, 魏育明, 郑有良. 绵麦37特异位点在其衍生品种中的遗传贡献率分析. 遗传, 2014, 36: 145-151.
Ren Y, Li S R, Luo J M, He Z H, Du X Y, Zhou Q, He Y J, Wei Y M, Zheng Y L. Frequency and contribution of specific genetic loci transferred from wheat cultivar Mianmai 37 to its derivatives. Hereditas, 2014, 36: 145-151. (in Chinese with English abstract)
[46] 郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 刘于斌, 蒲宗君. 利用小麦660K SNP芯片分析川麦44在其衍生后代中的遗传贡献. 麦类作物学报, 2019, 39: 1293-1300.
Zheng J M, Luo J T, Wan H S, Li S Z, Yang M Y, Li J, Liu Y B, Pu Z J. Genetic contribution of Chuanmai 44 to its derivatives analyzed by a wheat 660K SNP array. J Triticeae Crops, 2019, 39: 1293-1300. (in Chinese with English abstract)
[47] 罗江陶, 郑建敏, 邓清燕, 刘培勋, 蒲宗君. 重要育种亲本川麦44对衍生品种的遗传贡献. 中国农业科学, 2021, 54: 4255-4270.
doi: 10.3864/j.issn.0578-1752.2021.20.001
Luo J T, Zheng J M, Deng Q Y, Liu P X, Pu Z J. The genetic contribution of the important breeding parent Chuanmai 44 to its derivatives. Sci Agric Sin, 2021, 54: 4255-4270. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.20.001
[48] 张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526-1535.
Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin, 2006, 39: 1526-1535. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.at-2006-7287
[49] Lai J S, Li R Q, Xu X, Jin W W, Xu M L, Zhao H N, Xiang Z K, Song W B, Ying K, Zhang M, Jiao Y P, Ni P X, Zhang J G, Li D, Guo X S, Ye K X, Jian M, Wang B, Zheng H S, Liang H P, Zhang X Q, Wang S C, Chen S J, Li J S, Fu Y, Spring N M, Yang H M, Wang J, Dai J R, Schnable P S, Wang J. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet, 2010, 42: 1027-1030.
doi: 10.1038/ng.684 pmid: 20972441
[1] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[2] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Me, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[3] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[4] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[5] FENG Lian-Jie, YU Zhen-Wen, ZHANG Yong-Li, SHI Yu. Effects of irrigation on tiller occurrence, photo-assimilates production and distribution in different stem and tillers and spike formation in wheat [J]. Acta Agronomica Sinica, 2023, 49(6): 1653-1667.
[6] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[7] GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454.
[8] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[9] LEI Xin-Hui, LENG Jia-Jun, TAO Jin-Cai, WAN Chen-Xi, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, FENG Bai-Li, WANG Meng, GAO Jin-Feng. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1678-1689.
[10] LIU Jia, GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin, and WU Bi-Hua. Genome-wide association study for agronomic traits in common wheat lines derived from wild emmer wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1184-1196.
[11] JIA Yu-Ku, GAO Hong-Huan, FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1410-1425.
[12] ZHANG Xiao, LU Cheng-Bin, JIANG Wei, ZHANG Yong, LYU Guo-Feng, WU Hong-Ya, WANG Chao-Shun, LI Man, WU Su-Lan, GAO De-Rong. Quality selection indices and parent combination principle of weak-gluten wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1282-1291.
[13] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[14] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
[15] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .