Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 906-916.doi: 10.3724/SP.J.1006.2023.21029

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat

ZHU Zhi1,2(), LI Long2, LI Chao-Nan2, MAO Xin-Guo2, HAO Chen-Yang2, ZHU Ting2, WANG Jing-Yi2,*(), CHANG Jian-Zhong1,*(), JING Rui-Lian2   

  1. 1Shanxi Institute of Organic Dryland Farming, Shanxi Key Laboratory of Organic Dry Farming, State Key Laboratory of Integrative Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-04-21 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-29
  • Contact: *E-mail: cjzyfx@163.com;E-mail: wangjingyi@caas.cn
  • Supported by:
    State Key Laboratory of Integrative Sustainable Dryland Agriculture, the Shanxi Agricultural University(202105D121008-2-7);China Agriculture Research System of MOF and MARA(Wheat, CARS-03)

Abstract:

MYB transcription factor plays an important role in plant growth and development. In this study, we cloned TaMYB5-3B gene on chromosome 3B in wheat. The full-length genome sequence is 3005 bp, including 2112 bp promoter region and 893 bp coding region. TaMYB5-3B coding region consists of two exons and one intron, which encodes a R2R3-MYB protein. The polymorphism of TaMYB5-3B was analyzed by sequencing 32 wheat accessions with wide variations. A total of eight SNPs were detected at -2048, -1632, -1178, -1156, -504, -461, -433, and 61 bp, respectively. They were eight SNPs linked by G/A conversion, G/A conversion, G/A conversion, T/C conversion, C/T conversion, A deletion, T deletion and T/A inversion, respectively. A pair of molecular markers were developed based on the promoter region SNP-1632 to detect the genotypes of wheat natural population. The association analysis of genotype and phenotypic traits showed that TaMYB5-3B was significantly associated with plant height (PH), peduncle length (PLE), and 1000-grain weight (TGW). Two haplotypes (Hap-3B-1 and Hap-3B-2) were detected in the population, in which Hap-3B-2 was an excellent haplotype with short PH and high TGW. Hap-3B-2 had been positively selected in the breeding, and its frequency in modern cultivars gradually increased with the advance of breeding years in China. Therefore, TaMYB5-3B could be used to further understand the mechanism of wheat plant height and grain yield formation, and its molecular markers may contribute to ideal plant architecture and grain yield breeding of wheat.

Key words: molecular markers, plant height, 1000-grain weight, haplotype, association analysis, wheat

Table 1

Information of 32 highly diverse wheat accessions"

序号
Number
材料
Accession name
来源
Origin
1 安85中124-1 An 85 Zhong 124-1 中国北京Beijing, China
2 北京10号 Beijing 10 中国北京Beijing, China
3 北京14号 Beijing 14 中国北京Beijing, China
4 北京8686 Beijing 8686 中国北京Beijing, China
5 单R8093 Dan R8093 中国北京Beijing, China
6 丰抗13 Fengkang 13 中国北京Beijing, China
7 京411 Jing 411 中国北京Beijing, China
8 京核8922 Jinghe 8922 中国北京Beijing, China
9 京品10号 Jingpin 10 中国北京Beijing, China
10 04-030 中国北京Beijing, China
11 04-044 中国北京Beijing, China
12 晋2148-7 Jin 2148-7 中国福建Fujian, China
13 白齐麦 Baiqimai 中国甘肃Gansu, China
14 霸王鞭 Bawangbian 中国河北Hebei, China
15 沧州小麦 Cangzhouxiaomai 中国河北Hebei, China
16 冀麦6号 Jimai 6 中国河北Hebei, China
17 冀麦41 Jimai 41 中国河北Hebei, China
18 白糙麦 Baicaomai 中国河南Henan, China
19 内乡188 Neixiang 188 中国河南Henan, China
20 偃展1号 Yanzhan 1 中国河南Henan, China
21 紫杆白芒先 Ziganbaimangxian 中国河南Henan, China
22 昌乐5号 Changle 5 中国山东Shandong, China
23 长6878 Chang 6878 中国山西Shanxi, China
24 红和尚 Hongheshang 中国山西Shanxi, China
25 临抗5108 Linkang 5108 中国山西Shanxi, China
26 长武131 Changwu 131 中国陕西Shaanxi, China
27 大荔1号 Dali 1 中国陕西Shaanxi, China
28 中国春 Chinese Spring 中国四川Sichuan, China
29 9th-5-1 国际玉米小麦改良中心CIMMYT
30 9th-25 国际玉米小麦改良中心CIMMYT
31 9th-50-1 国际玉米小麦改良中心CIMMYT
32 PANDAS 意大利Italy

Table 2

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
试验目的
Experimental purpose
TaMYB5-3B-F1 GCCAGATCCGTCAAGCAATTCATGT 克隆基因编码区 Cloning gene coding region
TaMYB5-3B-R1 GCAACGTTTCCCAACATGTGTGC 克隆基因编码区 Cloning gene coding region
TaMYB5-3B-F2 GCAAACGAGGGCTGAATACCAATCA 克隆基因启动子区 Cloning gene coding region
TaMYB5-3B-R2 ATGTTGCCGGAGCTCATCCACTA 克隆基因启动子区/测序 Cloning gene coding region
TaMYB5-3B-dCAPS-F ACCAACTACTTTGGGGGTGCAGA dCAPS分子标记 dCAPS molecular markers
TaMYB5-3B-dCAPS-R GCAACGTTTCCCAACATGTGTGC dCAPS分子标记 dCAPS molecular markers
TaMYB5-3B-cDNA-F GCCAGATCCGTCAAGCAATTCATGT 克隆cDNA/测序 Cloning cDNA/sequencing
TaMYB5-3B-cDNA-R TCTCAGTCTCAGAAAAAGCGTCCGA 克隆cDNA/测序 Cloning cDNA/sequencing
TaMYB-3B-seq-R CAACATGTGGCGTGAGTTCCTCTC 测序 Sequencing
TaMYB-3B-seq-F GAGAGGAACTCACGCCACATGTTG 测序 Sequencing

Fig. 1

Sequence alignment and relationship of TaMYB5 protein A: TaMYB5 sequence alignment. The R2 and R3 structure domains are marked with black underlines; B: phylogenetic tree of TaMYB5 proteins. TaMYB5-3B is marked with a red dot. Ta: Triticum aestivum; Td: Triticum dicoccoides; Hv: Hordeum vulgare; Bd: Brachypodium distachyon; Sb: Sorghum bicolor; Zm: Zea mays; Si: Setaria italica; Ph: Panicum hallii; Pv: Panicum virgatum; Ob: Oryza brachyantha; Os: Oryza sativa."

Fig. 2

Nucleotide polymorphism and molecular marker development of TaMYB5-3B A: the schematic diagram and polymorphism sites of TaMYB5-3B. Red letter indicates the SNP that is designed for molecular marker. B: the development of the molecular marker dCAPS-1632, red rectangle and dot represent an introduction of the Bgl II restriction site by a base mismatched (T to C), and red letters represent two haplotype base differences. C: PCR products were digested by Bgl II enzyme. M: 100 bp DNA ladder."

Table 3

Associations between dCAPS-1632 and agronomic traits in wheat"

年份
Year
地点
Site
处理
Treatment
性状Trait
株高PH 穗下节长PLE 千粒重TGW
2015 顺义Shunyi WW 0.01404* 0.01882* ns
WW+HS 0.00191** 0.01511* 0.01324*
DS ns ns 0.00139**
DS+HS 0.04595* 0.02753* 0.01404*
2016 顺义Shunyi WW 0.01204* 0.01945* ns
WW+HS 0.00600** 0.02717* ns
DS 0.00661** 0.00912** 0.01480*
DS+HS 0.01621* 0.00883** ns
昌平Changping WW 0.04117* ns 0.04570*
DS 0.03954* ns 0.00178**
2017 顺义Shunyi WW 0.00621** 0.01578* 9.93E-05***
WW+HS 0.00860** 0.03151* 0.00514**
DS 0.02229* ns 0.00405**
DS+HS 0.00712** 0.00773** ns
昌平Changping WW 0.02190* 0.01346* 0.00625**
DS 0.02983* 0.02417* 0.01491*

Fig. 3

Comparison of agronomic traits between two TaMYB5-3B haplotypes A-C: PH (A), PLE (B), and TGW (C) comparisons of two TaMYB5-3B haplotypes in 16 environments; D: PH and TGW comparisons of two TaMYB5-3B haplotypes in three environments. E: environment; E1: 15-SY-WW; E2: 15-SY-WW-HS; E3: 15-SY-DS; E4: 15-SY-DS-HS; E5: 16-SY-WW; E6: 16-SY-WW-DS; E7: 16-SY-DS; E8: 16-SY-DS-HS; E9: 16-CP-WW; E10: 16-CP-DS; E11: 17-SY-WW; E12: 17-SY-WW-HS; E13: 17-SY-DS; E14: 17-SY-DS-HS; E15: 17-CP-WW; E16: 17-CP-DS. 15: 2015; 16: 2016; 17: 2017; 02: 2002; 05: 2005; 10: 2010. SY: Shunyi; CP: Changping; LY: Luoyang. WW: well-watered; DS: drought stress; HS: heat stress. Significance of data is tested by Student’s t-test. **: P < 0.01; ***: P < 0.001. Error bar: ±SE."

Fig. 4

Frequency and distribution of two haplotypes of TaMYB5-3B A-B: the distribution of two TaMYB5-3B haplotypes in 157 landraces (A) and 348 modern cultivars (B) from 10 Chinese wheat production zones. I: Northern Winter Wheat Zone; II: Yellow-Huai River Valleys Facultative Wheat Zone; III: Middle and Low Yangtze Valleys Autumn-Sown Spring Wheat Zone; IV: Southwestern Autumn-Sown Spring Wheat Zone; V: Southern Autumn-Sown Spring Wheat Zone; VI: Northeastern Spring Wheat Zone; VII: Northern Spring Wheat Zone; VIII: Northwestern Spring Wheat Zone; IX: Qinghai-Tibetan Plateau Spring-Winter Wheat Zone; X: Xinjiang Winter-Spring Wheat Zone."

Fig. 5

TaMYB5-3B haplotype frequency, PH, and TGW in 348 Chinese modern cultivars in China A: the frequency variation of Hap-3B-1 and Hap-3B-2 in Population 3 over decades; B: the changes of PH and TGW in Population 3 over decades. Error bar: ±SE. PH and TGW data are obtained from Hao et al. [23]"

[1] Ray D K, Mueller N D, West P C, Foley J A, Hart J P. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428.
doi: 10.1371/journal.pone.0066428
[2] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573-581.
doi: 10.1016/j.tplants.2010.06.005
[3] Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory cl locus of Zea mays encodes a protein with homology to MYB-related proto-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553-3558.
doi: 10.1002/j.1460-2075.1987.tb02684.x pmid: 3428265
[4] Li J L, Han G L, Sun C F, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal Behav, 2019, 14: 1-9.
[5] 陈清, 汤浩茹, 董晓莉, 侯艳霞, 罗娅, 蒋艳, 黄琼瑶. 植物MYB转录因子的研究进展. 基因组学与应用生物学, 2009, 28: 365-372.
Chen Q, Tang H R, Dong X L, Hou Y X, Luo Y, Jiang Y, Huang Q Y. Progress in the study of plant MYB transcription factors. Genom Appl Biol, 2009, 28: 365-372. (in Chinese with English abstract)
[6] Yang X, Li X, Shan J M, Li Y H, Zhang Y T, Wang Y H, Li W B, Zhao L. Overexpression of GmGAMYB accelerates the transition to flowering and increases plant height in soybean. Front Plant Sci, 2021, 12: 667242.
doi: 10.3389/fpls.2021.667242
[7] Mu R L, Cao Y R, Liu Y F, Lei G, Zou H F, Liao Y, Wang H W, Zhang W K, Ma B, Du J Z. An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res, 2009, 19: 1291-1304.
doi: 10.1038/cr.2009.83
[8] Yang Y, Zhang L B, Chen P, Liang T, Li X, Liu H T. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J, 2020, 39: e101928.
[9] Seo P J, Xiang F, Qiao M, Park J Y, Park C M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol, 2009, 151: 275-289.
doi: 10.1104/pp.109.144220
[10] Li Y F, Zeng X Q, Li Y, Wang L, Zhuang H, Wang Y, Tang J, Wang H L, Xiong M, Yang F Y. MULTI-FLORET SPIKELET 2, a MYB transcription factor, determines spikelet meristem fate and floral organ identity in rice. Plant Physiol, 2020, 184: 988-1003.
doi: 10.1104/pp.20.00743
[11] Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin bio-syntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol, 2010, 51: 463-474.
doi: 10.1093/pcp/pcq011 pmid: 20118109
[12] Li G L, Xu B X, Zhang Y P, Xu Y W, Khan N U, Xie J Y, Sun X M, Guo H F, Wu Z Y, Wang X Q, Zhang H L, Li J J, Xu J L, Wang W S, Zhang Z Y, Li Z C. RGN1 controls grain number and shapes panicle architecture in rice. Plant Biotechnol J, 2021, 20: 158-167.
doi: 10.1111/pbi.13702
[13] Ren D Y, Cui Y J, Hu H T, Xu Q K, Rao Y C, Yu X Q, Zhang Y, Wang Y X, Peng Y L, Zeng D L, Hu J, Zhang G H, Gao Z Y, Zhu L, Chen G, Shen L, Zhang Q, Guo L B, Qian Q. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J, 2019, 100: 813-824.
doi: 10.1111/tpj.14481
[14] Zhang Y X, Yu C S, Lin J Z, Liu J, Liu B, Wang J, Huang A, Li H Y, Zha T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One, 2017, 12: e0180825.
doi: 10.1371/journal.pone.0180825
[15] Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y, Yakushiji H, Koshita Y, Kobayashi S. Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis × labruscana grapes. Theor Appl Genet, 2011, 122: 1427-1438.
doi: 10.1007/s00122-011-1542-7
[16] Jiu S T, Guan L, Leng X P, Zhang K K, Haider M S, Yu X, Zhu X D, Zheng T, Ge M Q, Wang C, Jia H F, Shang-Guan L F, Zhang C X, Tang X P, Abdullah M, Javed H U, Han J, Dong Z G, Fang J G. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) skin coloration. Plant Biotechnol J, 2021, 19: 1216-1239.
doi: 10.1111/pbi.13543
[17] Zheng X W, Liu C, Qiao L, Zhao J J, Han R, Wang X L, Ge C, Zhang W Y, Zhang S W, Qiao L Y, Zheng J, Hao C Y. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat. J Exp Bot, 2020, 71: 5808-5822.
doi: 10.1093/jxb/eraa355 pmid: 32725154
[18] Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867
[19] Kage U, Kumar A, Dhokane D, Karre S, Kushalappa A C. Functional molecular markers for crop improvement. Crit Rev Biotechnol, 2016, 36: 917-930.
doi: 10.3109/07388551.2015.1062743 pmid: 26171816
[20] Salgotra R K, Stewart C N Jr. Functional markers for precision plant breeding. Int J Mol Sci, 2020, 21: 4792.
doi: 10.3390/ijms21134792
[21] 张宏娟, 李玉莹, 苗丽丽, 王景一, 李超男, 杨德龙, 毛新国, 景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数. 作物学报, 2019, 45: 1615-1627.
doi: 10.3724/SP.J.1006.2019.91009
Zhang H J, Li Y Y, Miao L L, Wang J Y, Li C N, Yang D L, Mao X G, Jing R L. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat. Acta Agron Sin, 2019, 45: 1615-1627. (in Chinese with English abstract)
[22] Li L, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ, 2019, 42: 2540-2553.
doi: 10.1111/pce.13577
[23] Hao C Y, Wang L F, Ge H M, Dong Y C, Zhang X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One, 2011, 6: e17279.
doi: 10.1371/journal.pone.0017279
[24] Cao S H, Xu D G, Hanif M, Xia X C, He Z H. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020, 133: 1811-1823.
doi: 10.1007/s00122-020-03562-8 pmid: 32062676
[25] Khobra R, Sareen S, Meena B K, Kumar A, Tiwari V, Singh G P. Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiol Mol Biol Plants, 2019, 25: 589-600.
doi: 10.1007/s12298-018-0629-x
[26] Foulkes M, Slafer G, Davies W, Berry P, Sylvester-Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. Raising yield potential of wheat: III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot, 2011, 62: 469-486.
doi: 10.1093/jxb/erq300 pmid: 20952627
[27] Yang X Y, Li J G, Pei M, Gu H, Chen Z L, Qu L J. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep, 2007, 26: 219-228.
pmid: 16972096
[28] 王诺菡, 于霁雯, 吴嫚, 马启峰, 李兴丽, 裴文锋, 李海晶, 黄双领, 张金发, 喻树迅. 棉花GhMYB0基因的克隆、表达分析及功能鉴定. 作物学报, 2014, 40: 1540-1548.
doi: 10.3724/SP.J.1006.2014.01540
Wang N H, Yu J W, Wu M, Ma Q F, Li X L, Pei W F, Li H J, Huang S L, Zhang J F, Yu S X. Cloning, expression, and functional analysis of GhMYB0 gene from cotton (Gossypium hirsumtum L.). Acta Agron Sin, 2014, 40: 1540-1548. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01540
[29] Yang H, Xue Q, Zhang Z Z, Du J Y, Yu D Y, Fang H. GmMYB181, a soybean R2R3-MYB protein, increases branch number in transgenic Arabidopsis. Front Plant Sci, 2018, 9: 1027.
doi: 10.3389/fpls.2018.01027 pmid: 30065741
[30] Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S J, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439
[31] Mao H D, Jian C, Cheng X X, Chen B, Mei F M, Li F F, Zhang Y F, Li S M, Du L Y, Li T, Hao C Y, Wang X J, Zhang X Y, Kang Z S. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnol J, 2022, 20: 846-861.
doi: 10.1111/pbi.13764
[32] Carter A H, Garland-Campbell K, Kidwell K K. Genetic mapping of quantitative trait loci associated with important agronomic traits in the spring wheat (Triticum aestivum L.) cross ‘Louise’ × ‘Penawawa’. Crop Sci, 2011, 51: 84-95.
doi: 10.2135/cropsci2010.03.0185
[33] Liu J, Wu B H, Singh R P, Velu G. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. J Cereal Sci, 2019, 88: 57-64.
doi: 10.1016/j.jcs.2019.05.008
[34] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659-675.
doi: 10.1007/s00122-013-2249-8 pmid: 24326459
[35] Cuthbert J L, Somers D J, Brule-Babel A L, Brown P D, Crow G H. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet, 2008, 117: 595-608.
doi: 10.1007/s00122-008-0804-5 pmid: 18516583
[36] Hao C Y, Jiao C Z, Hou J, Li T, Liu H X, Wang Y Q, Zheng J, Liu H, Bi Z H, Xu F F, Zhao J, Ma L, Wang Y M, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H F, Zhang X Y. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant, 2020, 13: 1733-1751.
doi: 10.1016/j.molp.2020.09.001 pmid: 32896642
[37] Guo W L, Xin M M, Wang Z H, Yao Y Y, Hu Z R, Song W J, Yu K H, Chen Y M, Wang X B, Guan P F, Appels R, Peng H R, Ni Z F, Sun Q X. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat Commun, 2020, 11: 5085.
doi: 10.1038/s41467-020-18738-5 pmid: 33033250
[38] Wang J Y, Wang R T, Mao X G, Zhang J L, Liu Y N, Xie Q, Yang X Y, Chang X P, Li C N, Zhang X Y, Jing R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388.
doi: 10.1093/jxb/eraa271
[39] Xue Y H, Wang J Y, Mao X G, Li C N, Li L, Yang X, Hao C Y, Chang X P, Li R Z, Jing R L. Association analysis revealed that TaPYL4 genes are linked to plant growth related traits in multiple environments. Front Plant Sci, 2021, 12: 641087.
doi: 10.3389/fpls.2021.641087
[40] Ma Q J, Sun M H, Lu J, Kang H, You C X, Hao Y J. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnol J, 2019, 17: 625-637.
doi: 10.1111/pbi.13003
[41] Deng S Z, Xu L, Xu Z, Lv W Y, Chen Z X, Yang N, Talbot N J, Wang Z Y. A putative PKA phosphorylation site S227 in MoSom1 is essential for infection-related morphogenesis and pathogenicity in Magnaporthe oryzae. Cell Microbiol, 2021, 23: e13370.
[42] Zhuang M J, Li C N, Wang J Y, Mao X G, Li L, Yin J, Du Y, Wang X, Jing R L. The wheat SHORT ROOT LENGTH 1 gene TaSRL1 controls root length in an auxin-dependent pathway. J Exp Bot, 2021, 72: 6977-6989.
doi: 10.1093/jxb/erab357
[43] Zhang B, Xu W N, Liu X, Mao X G, Li A, Wang J Y, Chang X P, Zhang X Y, Jing R L. Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP-Box genes governing yield-related traits in hexaploid wheat. Plant Physiol, 2017, 174: 1177-1191.
doi: 10.1104/pp.17.00113 pmid: 28424214
[1] YANG Xiao-Ming, CHENG Xu-Zhen, ZHU Zhen-Dong, LIU Chang-Yan, CHEN Xin. Advances in germplasm innovation and genetic improvement of food legumes resistant to bruchid [J]. Acta Agronomica Sinica, 2023, 49(5): 1153-1169.
[2] LIU Jia, GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin, WU Bi-Hua. Genome-wide association study for agronomic traits in common wheat lines derived from wild emmer wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1184-1196.
[3] JIA Yu-Ku, GAO Hong-Huan, FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1410-1425.
[4] ZHANG Xiao, LU Cheng-Bin, JIANG Wei, ZHANG Yong, LYU Guo-Feng, WU Hong-Ya, WANG Chao-Shun, LI Man, WU Su-Lan, GAO De-Rong. Quality selection indices and parent combination principle of weak-gluten wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1282-1291.
[5] SUN Xian-Jun, JIANG Qi-Yan, HU Zheng, LI Hong-Bo, PANG Bin-Shuang, ZHANG Feng-Ting, ZHANG Sheng-Quan, ZHANG Hui. Identification and evaluation of wheat germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 1132-1139.
[6] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[7] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[8] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[9] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
[10] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[11] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[12] LIU Xiao-Ying, ZHANG Chi, WANG Xue-Qing, YANG Chen-Xiao, WANG Guang-Yu, BIAN Yun-Di, FANG Fang, WANG Ying, WANG Zhen-Ying. Cloning and functional analysis of TaRPP13-1B gene related to powdery mildew resistance in wheat cultivar Brock [J]. Acta Agronomica Sinica, 2023, 49(2): 392-401.
[13] LIU Fang-Fang, WAN Ying-Xiu, CAO Wen-Xin, LI Yao, ZHANG Qi-Qi, LI Yan, ZHANG Ping-Zhi. Evaluation method of late spring coldness tolerance in wheat [J]. Acta Agronomica Sinica, 2023, 49(2): 438-446.
[14] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[15] WANG Xue, WANG Wen-Hui, LI Dong, YAO Xia, ZHU Yan, CAO Wei-Xing, CHENG Tao. Difference between bidirectional reflectance factor and directional-hemispherical reflectance factor spectra and its effect on the estimation of leaf chlorophyll content in wheat [J]. Acta Agronomica Sinica, 2023, 49(2): 485-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[4] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[5] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[6] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[7] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[8] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[9] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[10] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .